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Abstract. We consider a Kirchhoff network on a random two-dimensional
lattice with links and weights as previously specified, and a circular boundary
of radius R. We show rigorously that the resistance between the central point
and the boundary, averaged over all placements of the remaining sites with site
density ρ, is bounded above by

I. Introduction

In a series of recent papers [1-3], a formulation of field theory on a random lattice
has been developed. The possibility was raised that this approach might lead to a
true theory of nature and not merely a method of making numerical approxi-
mations to continuous field theory. According to this view, physical quantities
might be obtained as averages over an ensemble of random lattices.

Such an idea invites a program of research in which almost every branch of
mathematical physics may be examined to see how it is altered when reformulated
along the lines of [1-3]. We have addressed ourselves here to electrostatics in two
dimensions, and specifically to the finiteness of the self-potential of a charge.

When electrostatics in a vacuum is reformulated as a lattice theory, it becomes
the problem of a network of capacitors joined at nodes which may bear charge. If a
unit charge is placed at the origin, the potential at large distances will behave as in
the continuous theory, but at short distances it will behave quite differently. In the
continuous theory, the potential is singular at the origin; in the network, it
remains finite even at the node on which the charge is placed. (In two dimensions,
we make the potential vanish at a finite boundary so as to eliminate the
logarithmic infinity at large distances.)
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By a well-known analogy, the capacitors may be replaced by resistors, charge
by current, and energy by power. The finite quantity in question is then the
resistance g between a single node and the boundary of the system. This quantity
has no finite analog in the continuous theory.

Since g is different for each lattice, we expect to find a universal constant <#>
by averaging over all distributions of lattice sites with a given average density ρ. In
two dimensions g is dimensionless, and therefore the result will be independent of
ρ. But here a question presents itself. The ensemble includes some lattices whose
density near the origin is very much greater than ρ. For these lattices, g will be
correspondingly large, since the network acts like a continuum roughly down to
the lattice spacing. Thus g can be arbitrarily large, for improbable lattices. One
may ask whether {$) is nevertheless finite.

Taking the rules for linking lattice sites from [1], and for assigning a
conductance to each link from [3], we have answered this question affirmatively in
two dimensions, by deriving a rigorous upper bound for <g>. In Sect. 2 we
formulate the problem. In Sect. 3 we show that for any lattice, g does not exceed
the sum of two quantities gχ and g2, defined simply from the immediate
neighborhood of the site at the origin. In Sects. 4 and 5 we derive upper bounds for
<#!> and <#2>. In Sect. 6 we assemble and discuss the results.

II. Formulation of Problem

We consider a circle of radius JR, at the center of which we place a permanent
lattice site, p0. We distribute the remaining sites independently throughout the
area πR2, with average density ρ. That is, the probability of finding a site in an
infinitesimal area dA is ρdA, regardless of the position of other sites. This yields an
ensemble of position distributions identical (apart from the site p0) to that derived
from the grand canonical ensemble for a classical ideal gas.

We link sites according to the prescription of [1] : a polygonal cell is defined
for each site so that each point on the boundary between two cells is equidistant
from the two sites in question. Two sites are linked if their cells share a boundary.
The links between sites then form a network of triangles. (An equivalent
prescription, ignoring the cells, is that any three sites are linked into a triangle if
the circumscribed circle has no site in its interior.)

As described in [3], we assign to each link (between sites p and pj) a
conductance λt. = bjtf^, where ίtj is the length of the link and btj is the length of
the boundary between the cells containing pt and p..

Let us call a link "exterior" if the corresponding cell boundary terminates on
the circumference of the circle of radius R. The exterior links form a polygon
enclosing all sites except those on its vertices. We call the latter "exterior sites" (see
Fig. 1).

To define g, we set the potential F = 0 on all exterior sites, V= Vo at p 0, and
identify V^/g with the total power dissipated in all the conducting links. (An
exception arises when p0 is exterior, very improbable when ρR2 > 1. In this case we
define 0 = 0. Since we seek an upper bound for <#>, this case cannot harm the
argument.)
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EXTERIOR
SITES

Fig. 1. A section of the lattice near the bounding circle, showing three exterior sites and two exterior
links

We now define <#> as the average of g over the ensemble of lattices described
above.

III. Partition of Problem

In this section we state and prove a theorem which shows that g cannot exceed a
quantity determined by the immediate neighborhood of p0.

Theorem 1. For g defined as in the previous section, we have

(1)

where

1 1 R

l

(2)

(3)

Here £ is the length of a particular link to p0, h is the altitude of one of the triangles
based on that link, and r is the smallest altitude of a triangle containing p09 measured
from p0 to the opposite side. To remove any ambiguity, we state that the triangle
determining h is the one on the right-hand side of £, looking from p 0, and that the link
determining i is the one giving the largest ratio ί/h (see Fig. 2).

Proof. We have already specified that

(4)

where 0> is the power dissipated in all the links when the potential is set to Vo at p0

and to zero at all exterior sites. Under these conditions the potential at sites linked
directly to p0 will assume various values. Let V1 be the lowest of these neighbor
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Fig. 2. A typical immediate polygon showing the two triangles from which /, h, r of Eqs. (2) and (3) are
determined

potentials. We shall prove that

(5)

where gv g2 are given by (2) and (3). By minimizing the right side of (5) with respect
to Vv it follows that

V2

(6)

which implies (1).
To prove (5), we subject the configuration to a series of modifications, each of

which can only decrease or leave unchanged the total power dissipated.

Step 1. We appeal to Theorem 3 of [3]. This states that 0> remains unchanged if we
replace the conducting links by a continuous medium of conductivity 1 filling up
all the triangles1, provided that we constrain the potential as follows: at each site
the potential must have the same value that it attained in the network problem,
and along each link the potential must vary linearly. (Under these conditions the
field within each triangle will assume a constant vector value, without further
constraint.)

Note that this theorem applies only for two dimensions and only when the
conductances are as prescribed in [3]. Strictly, we should have defined the
conductance of our exterior links in a peculiar way, to make the theorem exactly
true, see Eqs. (A1)-(A4) of [3]. But we have set the potential to zero on all exterior
sites. Therefore no current flows through these links anyway, and their con-
ductance has no effect. Hence no correction is necessary.

Step 2. We also fill up the space between the bounding circle and the exterior links
with the same conducting medium. We set the potential to zero on the bounding
circle. Then it is zero everywhere in this new space, so that no current flows here.
Hence the total power is still 0*.

1 Conductivity has the same units as conductance in two dimensions, and our conductances
λ.j = bvji{. are dimensίonless
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V = V

v = v o

Fig. 3. The triangle selected to give a lower bound for ,

Step 3. The sites directly linked to p0 are vertices of a polygon which we may call
the "immediate polygon". We now relax all constraints on the potential except
those on the interior and boundary of the immediate polygon, and on the
circumference of the bounding circle. By a well-known theorem of current flow, the
potential between the immediate polygon and the bounding circle will adjust itself
so as to minimize the power. Hence the total power is not more than ^ .

We are now in a position to write

Here ^ is the power dissipated inside the immediate polygon, where the field
is constant within each triangle, the potential at p0 is Fo, the potential on the
boundary varies linearly along each link but is otherwise unknown to us, and 0>2 is
the power dissipated outside the immediate polygon, where the potential vanishes
at the bounding circle, is continuous at the boundary of the immediate polygon
with the potential used to determine ^\, but is otherwise unconstrained. From
now on we consider ^ and &2 separately.

Of the sites linked to p 0, let px have the lowest potential Vv Let / 1 be the
distance from p0 to pv and let hί be the perpendicular distance from the line popί

to the site p 2, which is the vertex of the immediate polygon next after px in a
clockwise direction.

Let us now choose our coordinate system so that the y-axis is parallel to popv

Then the ^-component of the field in the triangle p0p1p2 is known; it is

Ey = (V0-Vί)/ί1 (8)

(see Fig. 3). The power dissipated in this triangle is E2A, where E is the total field
and A = ̂ 1h1. Since E2^E2, and this triangle is only a part of the immediate
polygon, we have

= (V0-V1)
2 hι/2S1. (9)
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Now, we are not guaranteed that the triangle p0p1p2 is the one used to define
gv But the choice of the latter triangle is such that

9 (10)

and therefore (9) implies

^V°~V^ . (11)
0

To analyze ^ 2 , we carry out some additional modifications.

Step 4. We lower the potential to Vί everywhere on the boundary of the immediate
polygon.

It is intuitively evident that this reduces the power outside the polygon, but we
can sketch a proof. Let E = Eα + Eb, where E is the field determining 0>

1 (present
before this step), Eα is the field present after this step, and Eb is the difference. Then
Eb is the field that would be present if the potential on the immediate polygon were
replaced by its excess over Vv Since this excess is never negative, the field lines of
Eb can arise only on the polygon, although they may terminate either on the
polygon or on the bounding circle.

We may now write

0>2 = gw + 2^f + &f (12)

in an obvious notation. Since 0^ is positive definite, we need only show that
0>f ^0 . Explicitly

^ f = fEβ.Eb = jEβ.J f t, (13)

where the current density J is equal to the field. The area under consideration can
be divided into tubes of flux of Jb. Within each tube a constant current dlb flows
from source to sink. The contribution of this tube to ^ & *s

dP? = dIb 7 Ea-dί = dIb ΔVa, (14)
source

where AVa = 0 if the tube begins and ends on the polygon, or ΛVa=V1^0 if it
begins on the polygon and ends on the circle. Hence (14) is never negative, and so

(15)

as claimed.

Step 5. We fill in the space between the immediate polygon and a circle of radius r,
centered at p 0, with the same conducting medium. (This is the largest such circle
that remains inside the polygon.) Throughout this new space we set V= Vv so that
no current flows and no power is added. The power between polygon and circle is
still

Step 6. We maintain V— Vί on the circumference of the inner circle (radius r) and
V=0 on the circumference of the bounding circle (radius R) but relax any
constraint on the space between. By an elementary calculation the power is now
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Fig. 4. The immediate polygon of Fig. 2. The shaded region is the new space filled up in Step 5. V— V1

throughout this region

V?/g2, where g2 is given by (3). But this is the minimum value for the power with
potential fixed on the two circles. Therefore

V?lqo<0^a. (16)

Combining (7), (11), (15), and (16), we obtain (5). This completes the proof of
Theorem 1.

IV. Upper Bound on <^F1>

We start by establishing two lemmas.

Lemma 1. Suppose that a variable β is distributed between 0 and oo with probability
00

P{β)dβ, where J P(β)dβ=l. Suppose that f(β) is a decreasing function of β for
o

0<β< oc, and that another function P is given so that

Then

where β is defined by

Proof. Let Q and Q be two functions such that

o
Q(χ)

o

(18)

(19)

(20)

(21)
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Fig. 5. The triangle and circumscribed circle entering into Lemma 2

for 0 < x < l . Then from (17) it follows that

for 0 < x < 1. Now (18) can be rewritten as

0 0

which follows from (22) since / is a decreasing function.

(22)

(23)

Lemma 2. // the sides of a triangle are a, b, c and the altitude to the base c is h, then
the circumscribed circle has radius

c ==^
ab

2ft"
(24)

Proof Let φ be the angle between a and b. The area of the triangle can be
expressed in two ways:

fch = fαbsinφ. (25)

But c is a chord of the circumscribed circle, subtending an angle 2φ at the center,
by an elementary theorem of geometry (see Fig. 5). Therefore

c = 2s sin φ.

Combining (25) and (26), we obtain (24).

(26)



Electrostatics on a Random Lattice 139

We now write (2) as

* = £. (27)
where

β=%. (28)

For any triangle pop1p2, where the vertices have been written in clockwise order
starting with p0, we infer a value of β from (28) by taking *f as the length of pop1

and h as the altitude from p2. Then

Ίl>P<β)dβ, (29)
o P

where P(β)dβ is the probability that the largest value of 2hji obtained from a
triangle of the lattice including p0 lies between β and β + dβ.

We shall calculate a function P(/?), where P(β)dβ is the probability that some
triangle of the lattice including p0 gives 2hji between β and β + dβ. Obviously
P{β)^P{β)> and (27) gives ^ a s a decreasing function of β. Therefore Lemma 1
applies, and we shall have

{9l}^P(β)dβ (30)
o P

with β given by (19).
To find P(β), we note that the probability of finding p1 so that pop1 lies between

ί and £ + d€ is ρ 2πίdί. Then taking cartesian coordinates (/ι,j;) for p2, with /z
measured perpendicular to pop1 and y along popv and /z = j ; = O at the midpoint of
pop19 the probability of finding p2 in an area dW); is ρdhdy. Finally the probability
that p0pίp2 is a triangle of the lattice is just the probability e~ρπs2 that the
circumscribed circle has empty interior. (This is the probability of no events in a
Poisson distribution in which the average number of events is ρπs2.) Here 5 is the
radius of the circle and by Lemma 2 is given by

s= ytf + iy-ffi. γh

2 + {y + ̂ )2/2h. (31)

The product of these probabilities is

ρ2'2πtfdίdhdye-ρπs\ (32)

Now let us define

« = | , β=2j. (33)

We then have

s2 = ί2K{a,β), (34)
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where

K = \_β2 + (α + I) 2 ] [_β2 + (α + 1)2]/16£2. (35)

Then integrating (32) over { and y, with fixed β9 we have

00 00 i

P f -

with K given by (35).
A contour integration gives

and combining this with (36) and (35), we have

P(β) = 4β(l + 5β2)/(l+β2)\ (38)

Substituting this into (19) we obtain

β = 5~m. (39)

From (30) we then have

tan"V +
β3

= 16 t a n - 1 5 " 1 / 4
5 1 / 4

(40)

V. Upper Bound on

The distance r appearing in (3) is the altitude of a lattice triangle p0p1p2> dropped
from p0 as vertex. It is specified that r is the least such altitude, but we shall drop
that restriction, thereby over-estimating the probability. Thus we shall study Px(r),
where P^rjdr is the probability of finding a triangle whose altitude from p0 is
between r and r + dr, and

where P(r)dr is the true probability distribution of r.
Let us assign cartesian coordinates (±r,y 1 ) to p 1 and (±r, y2) to p2. We

remove ambiguity by requiring Ij/Jrgj^ (see Fig. 6). To find the probability
associated with a given triplet {r,yvy2) we first locate p2 with respect to p x this
involves infinitesimal probability 2π\y2 — y1\d(y2 — y1) since the line pxp2 can be
any direction. We then fix our coordinate system so that pγp2 is parallel to the
j^-axis, with p2 above pv Translating pγp2 so as to locate p1 with respect to p0, we
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Fig. 6. The triangle determining g2, with the coordinates r, yv y2. Four allowed cases are shown. Note
that y2 > \yί | in all cases

find a second infinitesimal probability 2ρdrdyv where the factor 2 accounts for the
fact that p0 may be on either side ofp 1p 2. Finally the circumscribed circle must be
empty; the probability for this is e~βπs2, where by Lemma 2 we have

s= (42)

Assembling these factors, we have

P1(r) = ρ2 J 2dyx ] dy22π{y2-y,)
||

00 00

= ρ2 \2dyι \ dy22π 2y2e'

00 00

= 8πρ2 I άyx \

o yt + r

Combining (43) with (41), we have

(43)

(44)
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Since (3) is a decreasing function of r, Lemma 1 applies with r in place of β. From
(19) we have

r= |/l/4πρ , (45)

and (18) becomes

J P ( Γ ) l n d r

0 zπ r
F i n

f 8πρr In — dr
J

o In r

~ ln-+ρr2

In r

(46)

VI. Results and Discussion

We have proved rigorously that the ensemble average of the resistance between a
site at the origin and a bounding circle of radius R, as defined more fully in Sect. 2
and references therein, is bounded above by

1 Γ 5 1 / 4

[ l ( 4 i ^ 2 ) + l ] + 16 t a n - 1 5 ~ 1 / 4

L

. Λ . „ « „ , , (47)

4π

No doubt the second term is much too large. In estimating ^ in Sect. 3, we
discarded all but one of the triangles of the immediate polygon in typical cases
this means we underestimated ^ by 5 or 6 times and consequently (2) gives 5 or 6
times too large a value of gv Of course, in exceptional lattices this reasoning may
break down but anyone who tries to construct a lattice in which ^ is as small as
permitted by (11) and (40) will run into difficulties, unless he is cleverer than we.
The last escape clause, however, precludes our offering a rigorous bound much
smaller than (47).

We may compare (47) with numerical averages computed by Mr. H. C. Ren,
who obtains [4]

<#>^0.90 (48)

on a square (L x L) lattice with boundary conditions periodic in one direction,
antiperiodic in the other, and ρL2 = 104.

The continuum theory with such boundary conditions gives the potential at
small distances r, due to a unit current source, as

(49)
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where

dx £1.8541. (50)

In the circular configuration considered in the present paper, the continuum
theory gives

F(r)=~ln-. (51)
2π r

Therefore we can compare the two theories by replacing R-+ ]/ΪL/K or, in this

case, }/ρR-*lO2' ]/2/1.8 541 =76.27. Thus (48) can be written as

ln76.27 + O.21, (52)
2π

where the second term corresponds to the second term 12.0 of (47).
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