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Abstract. We prove that the renormalization program discussed in [1] can also
be developed beyond the α2 = 2π(j/l7—1) threshold found in the preceding
work. This result, as a byproduct, also allows a simplification in the technical
part of the proof of ultraviolet stability in the (/^-theory [2]. In the last section
of this work we discuss, heuristically, but in some detail the interpretation of
the sine-Gordon theory as a two-dimensional Yukawa gas for βe2 = a2>4π.

Introduction

The two-dimensional sine-Gordon theory has been studied by Frδhlich [3] for the
values of α 2 < 4 π and, in the finite volume, by Benfatto et al. [1] for the values
§:4π. There it was proven that, for α 2 ^ 4 π , the theory has to be renormalized a
renormalization procedure was constructed which amounted to subtracting from
the potential V^] = 2λ j : cos uφf^.dξ some constant counterterms C^N), whose

number increases each time α2 overcomes the thresholds a\n = %π(l — l/2n) and
which, of course, become infinite as the cutoff is removed (JV->ao). Although the
procedure envisaged in [1] seemed to prove the ultraviolet stability of the theory
for any values α 2 <8π, some technical difficulties did not allow us to prove the
upper bound of the ultraviolet stability for α 2 ^ α 2 = 2π(]/Ϊ7 — 1).

The main goal of this paper is to prove that this spurious threshold can be
removed. This is obtained by proving a theorem which allows us not to use the
second part of Lemma 2 in [1], which was true only for α2 < ά 2 . As this lemma was
also used in the proof of the upper bound in the ^-theory [2] and as this result
can be immediately translated for that field theory model, this amounts to a
slightly technical simplification of that proof also. Moreover now the proofs of the
upper and lower bound appear more symmetric. The theorem is applied to prove
explicitly the ultraviolet stability for all the values of a2 <^π ( ^ π > ά 2 ) , but the
structure of this result and of the renormalization technique discussed in [1],
allows us to conclude that the proof of stability for all α 2 < 8 π is only a matter of
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computation and no new ideas are necessary at all. After a short review of the
renormalization scheme, discussed in Sect. 1, the next three sections are devoted to
a careful discussion of this result. The last section is of a different and less technical
nature. It is well known that the sine-Gordon theory has a very interesting
interpretation, for α 2 <4π, at short distances, as a classical two-dimensional
Coulomb gas1 for enough high temperature (oc2 = βe2, where ±e is the particle
charge) and as the counterterms in the renormalization procedure are constants
we expect it must be possible to preserve the Coulomb gas interpretation also at
lower temperatures, that is for α2 Ξ^4π. Therefore one is immediately challenged to
understand which phenomena are produced in the Coulomb gas each time β

overcomes a -^&\n threshold. This was briefly discussed in [1], where heuristic

arguments were given to show that at each even threshold the gas tend to form
neutral clusters of particles, whose size tends to zero as N goes to infinity and
whose density tends to infinity in the same limit. The renormalization procedure
can be seen as a way of subtracting this infinite sea of clusters in such a way that
the meaningful statistical observables refer to the gas of single particles which do
not cluster and lie over this sea. This interpretation is discussed at some length in
the last section where heuristic arguments are given to get the expression of the
charge-density in the different regions of α2.

Some similar results for the massive Thirring model in the repulsive case have
been obtained by Korepin [4], with different techniques (see also the references
therein for the results on the sine-Gordon massless model using the quantum
inverse scattering method).

1. The Renormalization Scheme

To prove the ultraviolet stability for a field theory, in a finite volume /, with an
interaction potential Vj(φ{N)) = V}N) amounts to proving the following inequalities

^ (1.1)

where φ{N) is the gaussian field, depending on the cutoff N, with covariance

C(JV) = ( l - z l Γ 1 - ( y 2 ( ϊ I + 1 > - z l Γ 1 , (1.2)

where A is the Laplace operator in R2 and γ>l is a constant (see [1]). Here
P(dφ{N)) is the free field measure, V}N) is the renormalized potential and E±(λ) are
finite constants, N-independent.

In [1] we proved that, given the potential of the sine-Gordon theory in two
dimensions

(1.3)

1 To be precise the massive sine-Gordon theory describes a Yukawa gas instead of the Coulomb
one, but at short distances the properties of the two gases coincide, so from now on we will always refer
to the "Coulomb gas" interpretation of this field theory model
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the renormalized potential for which (1.1) is fulfilled is for α2 in the interval [4π, α2)

3 !
where

i

where ^ ( / /c) is the /c-order cumulant performed with respect to the free field
measure P(dφ{N)). For α 2 < α 2 = 8τr(l — J) = 6π only the cumulants until the second
order have to be subtracted. More generally it was expected in [1] that each time

α2 overcomes a threshold value α2

tt = 8π 1— —- a constant

has to be subtracted, the renormalized potential looking, therefore:

y(N) _ y(N) _ y 1 *T(y(N) . 9W

α 2 G[α 2

t t ,α 2

( n + 1 ) ) .

This was proved in [1] for the lower bound, but for the upper bound the proof was
lacking when α 2 ^ α 2 and the elimination of this restriction is the main goal of this
paper.

To prove (1.1), as discussed in detail in [1, 2], φ{N) is decomposed as a sum of
independent gaussian fields

with covariance

m-n)= jtf^emξΛf^¥ ~ y**h?)> (L6)

then one performs the integration in (1.1) by successive integrations over the
fields ώ{k)

Ψ $P(dφiN)) exp V™ = \P{dφ{N~1}) {f P{dφ{N)) exp V™} , (1.7)

and shows that

N (1.8)
where VJN~ υ is again a potential with similar properties to V}N~ υ and R(N~ 1](λ)\I\
is a remainder term.

2 Let's observe that only the even order cumulants become infinite in the limit JV-»oo (see [1]) and
therefore modifying the definition of the ultraviolet stability one can avoid the subtraction of the odd
order cumulant terms
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Then yjN~1) is such that it is possible to iterate (1.8) obtaining, for a generic
frequency h

JP(dφ(<h))expVjh) = exp[fj ~ 1 } + R^h~ 1\λ)\I\] , (1.9)

where

(1.10)
y(N) = y(N)

Here i^( k) is the truncated expectation of order k with respect to the measure
P(dφ(h)) and \Yjkckλ

k~\n_ 1 is the truncation to order n—1 of the polynomial X|/cc/c/l/c,
and the remainder satisfies

ίW\ (l.ii)

where C is some constant ^-independent.
After performing all the N integrations we get

(1.12)

and, provided that £ Λ R(h~ 1}{λ) is finite we can, from (1.11), obtain immediately the
o

ultraviolet stability inequalities.
Using (1.11) we see that

N

0

which is finite provided

U - " I" l ( ', (1.13)

(1.14)

The main part of the proof consists therefore in proving (1.9) and (1.11) in the next
sections we'll discuss in detail the problem arising in [1] for the upper bound and
the way of getting rid of it.

2. The Upper Bound

To understand the way in which the spurious threshold is eliminated it is necessary
to recall, in some detail, how it appeared in [1]. The careful discussion of the upper
bound is in Sect. 5 of [1], (see also [2]); here we only recall the main strategy.

As we want an upper bound estimate we cannot put, ab initio, in the integral
(1.9) any characteristic function to constrain the field to be Holder-continuous.
Nevertheless to obtain, performing the integration frequency by frequency, at each
step, an interaction potential such that the condition (1.11) for the remainder is
satisfied we have to exclude the regions where the fields are "rough" (not Holder-
continuous). For that purpose we define a potential Vjh\ where for any choice of



On the Massive Sine-Gordon Equation 585

the field φ(h) we subtract the regions where φ{h) is rough (see formula (3.23) of [1])
these regions are ^-dependent, but to perform the integration with respect to
P{dφih)) we have to avoid this complicated dependence of the potential on φ{h)

through the integration regions to do that one defines a different function Hψ
which depends only on the field φ ( Λ ~ υ , via the integration regions, and whose
dependence on φ(h) is of the same type as that of Vjh) and therefore can be
integrated respect to it.

This is significant because between Vjh\ Vjh\ and Hψ there are the following
relations

j/OV-l)< yiN-1)

ί A (2.1)

[ see Eqs. (5.3) and (5.4) of Lemma 2 of [1] for the definition of Ah which there is

denoted by Rh, which here indicates a different set (see Sect. 4)]. Once these

inequalities are proved the integration for the upper bound is reduced to the

ΓCow.ngone fPWV^pH^ (22)

(see Eq. (3.32) of [1] and Eqs. (4.21) and (4.22) of [2]), and we can apply Lemma 1
of [1], obtaining, apart from a remaining term with the right properties,

(2.3)

n - l

To produce an iteration mechanism we have to recover Vj1'^ from

r«-i i
1 'Xπ

1
k)\

L h \ >κ)\
o κ J π - i

and this was only partially provided from Eq. (5.5) of [1] of Lemma 2 as this
relation was valid only for α 2 < ά 2 . Therefore what we have to do is to devise a
mechanism to avoid the need of inequality (5.5) of [1] in the proof of the upper
bound. This is the content of the next two sections.

3.

Let's assume α 2 e [ 6 π , ^ π ) ; in this interval the cumulant expansion has to be
performed until the fourth order. At a generic level h, we have (see Eq. (3.1) of [I ]) 3

4
2 7

' Z-ji / 3 Δ-ji I2 x I2

(3.1)

where the explicit expressions for all these terms are written in Eqs. (3.2)—(3.13)
of [1]. As we discussed in Sect. 2 (see [1, Sect. 3] for more details) to obtain a

3 The factors λ^] (k :2,3,4) appearing in Eq. (3.1) of [1] have been included in the definition of the
2
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remainder with the right properties [Eq. (1.11)] after having performed the
integration with respect to the P(dφ(/ι))-measure we should need instead of Vjh) an
interaction V\h) where the regions of / x /, where φih) is not Holder-continuous are
subtracted. Then V}h) has the following explicit expression, V/i

2
τ/(fr)_ yih) _ yίΛ2,h) , y ixΛ3,i.h)
yl ~ v0,I vγϊ2\&h^ Lui yyI3

1
5

3

_j_ p 0 4 , 2, Λ) _|_ p 0 4 , 6, Λ) _j_ J/J/K4, 7, h) _|_ ^(Λ) _|_ £<(Λ) /g 2)

Due to the complicated dependence on the field φ{h) through the regions 2h [see
Eq. (3.21) of [1] and Eq. (4.1) of Sect. 4 for the definition of these regions] the
integrations with respect to the P(dφ{h))-measuΐQ in the cumulant expansion
cannot be explicitly performed anymore.

Therefore we are forced to introduce, using the relations (2.1) proved in [1],
another function H^ defined in the following way:

2 5

1 3

7
i ττΛ4, l,h) i w(4,2,/i) , y ττ/(4,i,/i)

"•" yVI2\S)h - i x / 2 t VVI2 x I2\®h - l "*" Lui yyI2\@h - i x I2

6

"I -t^-j l̂  i ' v /

which does not depend on φ(h) through the subtracted region ^h_1 and whose
cumulants can be computed explicitly.

Performing the integration J P(dφ(h))χ^h

hQxp Hf^ (see Sect. 4) we are left with

plus some terms which will be included in the remainder (see Eq. (3.32) of [1] and
Sect. 4). Then V^h'1] has to be connected in the right way to v£h~~1} so that the
procedure can be iterated.

From Appendix B of [1, Eqs. (B.l)-(B.ll)] we have

y(h~ l) i/ih- 1)
Vj Vj —

+ ΣiVh-1)(%-ί)- (3-5)
1

In [1] the idea was to use the positivity of the W^~ x){βh- x) term plus the fact that
it is of second order in the effective coupling constant (Λ^-»0 as /ι-> oo, for α2 < 8π)
to dominate with it the other terms of (3.5) which are of order (λ^L)4' proving that
(3.5) was negative and therefore could be thrown away. Unfortunately a detailed
investigation of their explicit structure showed that it was impossible to prove
completely that (3.5) was negative; then we decomposed the fourth order terms in
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two parts one which was dominated by W^h~1)(^h_1) and the other which, as
summable in h, could be safely put in the remainder. The way this was done
implied an upper bound for the allowed α values: α2 > α 2 (see Eqs. (B.13)-(B.22) of
[1]). To remove this upper bound on α2 is the main goal of this paper which is
obtained by Theorem 1 of Sect. 4.

We follow this strategy: we use the positivity of W^h~1\^h_ί) only to control

those terms ^ T];h 1){@h_ί)\ which can be dominated by it without any

restriction on a2 therefore we are left with the problem of dealing with the terms

WF-^H-J + CP-^H-I). (3.6)

First of all, let's observe that we can bound these terms, which are integrals of the
following kind

f ^ __ d ^ ^ - 1 , . J V > A ) > ( 1 7 )

substituting the integrands with their modulus and eliminating their dependence
on (e1*-^*1'"— 1), where it appears, (after having removed the Wick-dots) majoriz-
ing it by 2.

Therefore we get

^ / ( ? 1 J h _ i , (3.8)

and now Cf2~x

1^h_ί depends on φ{h~1] only through @h_v

Using the explicit expression (B.3)-(B.9) written in [1] it is easy to prove that

where

\Ω(Sιh)\= J d(ξ1 + ξ2), (3.9)

and A is an h, ΛΓ-independent constant. Therefore for any h we can write

yφ) < yih) i Q{h) (3 10)

where CSj}x3)h satisfies (3.9).
In the next section we discuss how to accomplish our goal, that is how to put

the Cf^ ^-contributions, after the integration, in the remainder.

4. The Main Result

Let's start with some definitions

oc
ύn-{φf-φf

(4.1)

Rh(φw)= \AeQh\3ξ9ηeΔ9 such that sΪΆ^(φf-φ[
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with

Rh(φm) = {A eQh\γhd(A, Rh(φW)) ^ 1} *

From these definitions the following lemma follows easily

F. Nicolό

(4.2)

(4.3)

Lemma 1. Let B= — B with and B>\ then

Proof. The proof (trivial) uses the following "triangular" inequality

and the observation that if (ξ,η)e3>h then

(4.4)

which implies that or ξ and η belong to the same AeQn or they belong to two
adjacent ones. •

From Lemma 1 we have

Q(Rh x Rh x R (4.5)
h x Rh) (φ<>)u((0Λn0Λ_ X)\(ΛΛ x Rh)

Let's now investigate the second region of this inclusion. We have the following
result:

Lemma 2.

where

B,•<ft,Jι-iΓ
, 1 - ε '

Then 3>h_ ±{B(h Λ_ x)) ̂ «s ίfee same definition as in (4.1) w/ί/i B substituted by B(h h_ ̂
and ε' wiίί be defined during the proof of the lemma.

Proof. Let (ξ, η) be a couple of points belonging to {2)hC\!2>h_ 1)\Rh x ^ f t. Then the
following inequalities hold

a)

b)

c)

d)

*
\ l - ε

4 β/, is a pavement of .R2 made by cubic tesserae with side size y h d(Δ, F) is the distance between A
and the region F
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The relation d) can be strengthened in fact using the "triangular" inequality

s i n
; m ~ (

(4.7)

then

Bh-2Bh = (choosing σ - 1 = l and therefore B = B/2) = B(h3-h2)>Bγ~δ(ί+h3),

where δ is a monotone decreasing function of h. Therefore defining ε' = ε + δ we get

. α
sin-(

From Lemmas 1 and 2 we get, omitting the field dependence

( h - 1 ) ) . (4.8)

( l l w . 1 ) ) . (4.9)

As the proof of Lemmas 1 and 2 does not depend on the choice of B we can iterate
the procedure obtaining

where

-« { ί + h 3 )

Repeating the procedure until l i=0we get

with an obvious change of notations, where

As, see Eq. (3.7),

we can write

{$*®h= ί

/ 2 x ®h(B, φW) = Lk ^I2 x (Rk)2(B(h,k); φ
0

and, of course, from (3.8)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)
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with some constant A' independent of h and N. Remembering Eq. (3.9) we have,
writing N instead of N — 2 for notational simplicity,

N

Vj ^Vj +Cj2χS)NiB.φ(N))ύVI +ΣkCl2x(Rk)HBiN>k);φW)
0

iV— 1

= (Vj{ ^ C ^ ^ ^ ^ ) ) ) * Σ/c c/2χA)2(β ( J V k);φ(k>) (4.1V)
0

J V - 1

and with respect to the P(dφ{N)) integration the Σ/t part is a true constant as it
does not depend on φ(N). °

At this stage, therefore, we have only to show that, after the integration is
performed we can safely put the contribution coming from C^°x {RN)2{B. φ^N)) in the
remainder. Let's suppose that this can be done, (this will be proven in a general
way later) in this case we are left with

Lk ( 4 ) ( V , / c ) ; P )
0

N- 1

<y(N-i)_L.r(N-i) , y

0

N-2

_L V ^ ( N ) _l Λ(N- 1) \ / 4 -j m
1 Luk \^i2 χ(Rk)

2(B(N k);Φ(k)) I2 χ(Rk)
2(B(N-1 k);Φ(k))-'' l̂ " 1 0 ;

0

and again the first parentheses is the only φ(N'1] dependent part.
At level h we have

yW^ίyiK ty _|_ y ^(^)

Λ - l N

_i_ V y r{q) - -, „,) (4 19)
' Z-̂ /c Zjζf / 2 x (Rk)

2(Brq ky,φ( k^)'' X*'*^)
0 h

Therefore to show that the iterative mechanism can be performed we have to
prove the following theorem

Theorem 1.

for some constant c independent of h and iV.

Proof. The proof is based on a slightly more refined version of the Lemma 3 of [2]
(the "tail lemma") Let's start by introducing some simpler notations:

Let H e a fixed, but arbitrary, frequency, then

(4-20)

(4.21)
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for some constant A" independent of q and N, and of course, assuming / a region
exactly paved by J ' s e β 0 , it follows that

(4.22)

Let's consider the following decomposition of the identity

1 _ V V V V vBh yBh ° B N - I f,BN
1 ~~ Z J ΔJ " ΔJ ΔJ ΛQh\Gh ΛGh\Gh+1 ••• ΛGN-^GNΛGN

GG G \G G \G G

k + ί — 1 1 IA •>
(4.23)

where

and χfk is the characteristic function of the P(dφ(/l))-measurable event

(4.24)

Let's remark that in (4.23) Gh, Gh+V..., GN are arbitrary sets of tesserae eQh and
do not depend on φ{h). Moreover GhDGn+1D ... DGN and

therefore

h\Gh

(4.25)

^[usingEq.(2.1)]

(Gh\Gh+ l,..., GΛΓ- I\GN,

•ίexp

Remembering Eq. (4.21) we have

N- 1

h

(4.26)

(4.27)
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where the idea is that, given φ{h\ such that (XGh

h\Gh+ί ••• %G^)(Φ ( Λ )) = 1 ^ e n contri-
butions to the term proportional to \GN\ can come from any Cpx^2(φ(h)) with
qe [h, JV], but contributions to the terms proportional to |GN_ 1\G i v | can come only
from those C{$x ^2^^ with qe[h, N— 1] and so on.

9 ί— - β)
As (^Sl)4)'2^ocy^π ' > 00 we can bound each sum in the exponent by

β ^ ^)Yk\Gk\Gk+1\, (4.28)
h

so that

{(4.26)} ̂ ( ^ G , + 1... xt)^pA^B2

hy
2h\GhnI\

• expA"[(N +1 - Λ)(λ<#) V Ί G J V I + (N - Λ)(λ^- 1))4y2<Λf- " I G ^ . t \G jv|

... +2(l^+ 1») 4y 2("+ 1»|G / l + 1\G ί ! + 2 + ( ^ ) 4 y 2 Λ | G Λ G Λ + 1 | ] . (4.29)

Applying the main lemma (Lemma 1 of [1]) and the estimate (4.29) we get

[7] ^explδ(Bh, λ^)y2h\m exp [ £ k 1 ^(Hf> /c)

l(Gh\Gh +i.l(Gh\Gh+ί...GN)
N

& ί + 1 & : \ N f e } ( 4 3°)
where ρ is a positive number.

Remembering Eq. (3.9) and from [1] that δ{Bh,λ
{^)ylh^c which is

/z-independent we obtain the theorem, provided we prove that the { } of (4.30)
satisfies the following inequality

{(4.30)} ̂ ec'V{ (4.31)

with some h and iV independent constant.

Proof of (4.31). Applying the "tail lemma" (Proposition 1 of [1] and Lemma 3 of
[2]) we get

)ΛGh\Gh+i ΛGN-i\GNΛGN>

i ( ^ i " C 2^ 2 (l + d(A, y2h\I\)))

AC Gh + ί\Gh + 2

(4.32)
AcGN
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which together with (4.29) gives

{(4.30)} Ξ Σ J( ^
(Gh\Gh+ί... GN) \A c GH\GH + l

-\c2Bl{\ +d(A,γ2hm ... Π
AcGq\Gq+ί

ΔcGN

= Π

(4.33)

where Q'>Q and A is some iV-independent constant. From (4.20) and (4.13) it
follows that

where c3 is a positive constant.
We have therefore for the exponent of the right hand side of (4.33)

(4.34)

[(4.33)] ̂  V A \ λ ^ f q y 2 ^

+ ±c1-±c4B
2

hy
2i«-»(1-ε'Xl + d(Aiy

2him, (4.35)

where c 4 is some positive constant.

As (λ%)4- = y^Γ~8>qλ\ it follows that for 2ε'< ( 8 - —) and for
\ )

[(4.33)] ̂  - c5Bly2iq'h)(1 ~ε'\l + d(A9y
2hl)) with c5 > 0 . (4.36)

Moreover defining ε' = ε + δ, fixed α2, it is possible to find /zx(α2) such that for

( ^ ) (4.37)

Therefore if h>h1{a2\ it follows that

N oo

y e[(4.33)]< y eί(4r.33)]<e-c6Bh(l+d(A,y2hl)) (4 38)

Λ h

where c6 is some positive constant.
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Therefore for /z>/i1(α2), we have

{(4.30)} ̂ QxplcΊe'C6Bjίy2h\I\] ^expc"|/|, (4.39)

where c7 is some positive constant.
Inequality (4.39) together with (4.30) allows us to conclude that for h>hί(ot2)

we have

[/] ^exp[(c + c")|/|] expFf-^

^expcl/l-expC^-^ + C ? , ; ^ . ^ ^ - ! , , ] , (4.40)

which is the thesis of the theorem provided we can drop the condition h>h1(oc2).
This condition is in fact unnecessary because /ιχ(α2) is independent of the cutoff N.
Therefore when h^h^oc2), we can rewrite Eq. (4.33) in the following way

{(4.30)} ;£ Π ( l + Σ ^ [ ( 4 - 3 3 ) 1 + Σ 9

e [ ( 4 33>I

( L e ) ^ e χ P t c 8 ^ ( ^ ' W ( h ' " ) y 2 / >

ΔcQh\ h I

^ Π ( 1 + c L e ί < 4 3 3 ) I ) ^ e χ P t c 8 ^ ( ^ ' W ( h ' " ) y 2 / > U I ] , (4.41)

where c9 is no longer a negative constant, but in this term hί is fixed, h^h1 and
there is not any dependence on N. Therefore we can conclude again that there
exists a constant d" such that

{(4.30)}^exp[c'"|J|]. (4.42)

This concludes the proof of Theorem 1. •

Remarks, a) As was discussed in [1, 2] (see Lemma 2 of [1], statement IV) if λ is not
small enough, we cannot perform the cumulant expansion until h = 0. In this case
there is a certain h (iV-independent) below which we just estimate V$h) in the
following way

Ψ^clo\I\, (4.43)

and then we continue to perform the integration to get rid of the remaining terms
C{$x{A-)2 exactly as before.

b) After all the integrations have been performed, we have obtained the upper
inequality of the ultraviolet stability, but now there is not any condition on α2

except the natural one: oc2<^π which is only due to the fact that we have
performed the cumulant expansion until the fourth order, which is needed both for
the upper and for the lower bound and can be eliminated by just performing a
higher order cumulant expansion and adding the next necessary counterterms.

c) The reader should be aware that although we do not need the positivity of
Wί,h)(@h) to control the remaining fourth order terms, this does not imply that this
"positivity" property is irrelevant. In fact the positivity of W^h) is still fundamen-
tal in the proof of inequality (2.1).
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5. The Observables of the Coulomb Gas in the Regions of Collapse

The well known connection between the sine-Gordon field model and the two-
dimensional Coulomb gas is given by the following formal relations

2λS:cosaφ(ξ):dξ

oo χk ( - 1, + 1)

0 fc' ε i . . . ε k Ik

oo χk ( - ί , + l) _ ^ . ( 1 y k )

α ί
= Σkji Σ $dξ1...dξke

 2 ^
0 κ ε i . . . ε k Ik

00 00 ig + p

0 0 q! p I j q jp

where

<.>=Jp(dφ) ; (5.2)

a2 = βe2, (5.3)

where + e is the electric charge of the Coulomb gas particles

« p

uip, ,)(*!, , χq J Ί , , yp) = - e2 Σi Σj c(*i' y)

\u j . j (5.4)

and

C(x,j/) = (l-zlΓW), (5.5)

which at short distances behaves as the two-dimensional Coulomb potential. To
make these relations rigorous we have introduced the cutoff field φ(N) which
amounts to substitution in the last expression of (5.1) of the "Coulomb" two-
particle interaction C(x, y) with the cutoff covariance

y) = m-ΛΓ1-(y2{N+1)-AΓ1-](x,y). (5.6)

As

C^(0)=^log/=^-logl;1, (5.7)
2π In

we can interpret the introduction of this cut-off as the assumption that the
particles have a linear size of order lN — y~Nl of course collapsing phenomena are
expected in the limit lN-+0, that is for JV->oo.

Let's consider now the term of the grand canonical partition function with
q = p = n, that is the canonical partition function for the neutral gas with In
particles, and consider the contribution to ZfΠ

= ° from the configurations in which
any +e particle is "near" (at a distance of order lN) to a corresponding —e particle,
that is the dipole configurations where each dipole has a momentum of order elN.
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Due to (5.7) the energy of these configurations is approximately

U^-e2ΣiC
m(0)=-e2n^tlogl-^e^loglN, (5.8)

and the Gibbs factor is

The contribution to the canonical partition function from these configurations is

n! In

= \λ2VNfn^~2\i\n=MλyΛ*π Ί) UΓ, (5.10)

which diverges as N->cc (lN—>0), for α 2 > 4 π ; this means that the dipole-
configurations give the main contribution to Zfn

=0 when 1N<1 if α2e[4π, 6π).
Therefore in this interval the gas looks like a free dipole-gas of activity

and with the dipole-momentum of order

^ = β Γ N (5.12)

The density of this dipole-gas is of the order of λ^ which implies that the average
distance between two dipoles is

The ratio between the dipole length and the dipoles distance is therefore

^ r 0 ) as α 2 <8π, (5.14)

which proves that to consider the dipole-configurations, for a2 ^ 4π, as those of a
free dipole-gas is consistent.

We can expect similar phenomena when the next even threshold subsequent to
ocl=4π are overcome. The next even threshold is α^ = 6π. Proceeding as before it is
easy to realize that when a2 > 6π, an infinite contribution to the partition function
comes also from those configurations in which the particles form neutral clusters
of four particles so that we can interpret it as the appearance of a free quadrupole
gas with the following activity

This argument can be repeated each time an even threshold a\k is surpassed. It is
also easy to realize that contributions from configurations in which particles are
assembled in non-neutral clusters never diverge as long as α 2 <8π. The next
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problem is to understand which is the statistical mechanics interpretation of the
renormalization procedure is the renormalized sine-Gordon theory still describ-
ing a statistical gas? Which are the natural observables? To get a possible answer
let's go back to the sine-Gordon representation for α2 <4π and remember that [3],
in this case, the density of positive (negative)-charges is given by

ρf(x) = λ:e±iaφ(N)ix):, (5.16)

that is

) : e ± - ^ : e

2 A / : c W N ) < < > : d ί . (5.17)

Now it is easy to convince ourselves that <ρ(^)(x)) diverges as α 2 ^ 4 π , N^oo.
In fact if we consider the generating functional

f P(dφ{N))exp (\tλ j dxfA(x): e***™™ + λ £ J : e****™® :dξ}V (5.18)

where fΔ(x) is a function with compact support A, it is clear that for α 2 > 4 π to
prove the ultraviolet stability for (5.18) we have to renormalize the "potential"

V™ = a j dxfA(x): eiaφ{N){x): + 2λ J : cos aφ(N)(ξ): dξ
I

( 5 1 9 )

and if we try to proceed as discussed in [1] we see that now the subtraction
constant depends also on t which amounts to a redefinition of the observable

λ J dxfΔ(x): e"*"""': = j dxfΛ(x)ρ^(x).
I I

We have not proven, with the same technique of [1] the ultraviolet stability of
(5.18) after the renormalization of the "potential" (5.19), but let's assume that this is
only a technical problem and that the results of [1] can be applied also to this case.
Let's therefore consider the subtraction constants that would be needed, using the
same procedure as in [ I ] . 5

For α 2 <6π, we need only one subtraction constant which in this case is:

ΓljξT(y(N) . jγi _l&Tίy{N) . j \ _, (JP(V^)\ΛN)\ _ $(V{N))£( V(N))) CS ?0)
\-2G \V0,I ΪΔ)M~ 2& \V0,I •> Δ)^\Θ\V0,I K l ,0/ ΘVκO,//0Vκl,O//» V̂  ZUJ

and therefore (5.18) becomes

$P(dφiN))eV' !ev' , (5.21)

where

j dxfA(x):e^N)^: - F(N, Δ)= ρ^R(Δ) = j dxfΔ(x)ρ^R(x)
I I

and

β^R(x) = Q™(x) - F(N, x) = λ: e^(N^:

- [_S{V^ ~ VUΔ(x)) - S(\f}-)S{VUΔ(x))] (5.22)

5 To be precise, ultraviolet stability allows us to prove ί-analyticity only for those α1 such that the
constant counterterms are linear in t
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with obvious notations. Here

°2vVN]^'ξ)-l). (5.23)

Let's try now to give a physical interpretation to this renormalized positive charge
density ρ{+*tR(x). Following the previous discussion of the Coulomb gas for α2

above 4π, let's consider for the moment α 2 e[4π, 6π), we know that a dipole sea
with infinite density (as JV->oo) is formed, therefore we would like to subtract this
density from ρ(+\x) to get a finite result in the limit JV->oo. Let's define the positive
charge density due to dipoles at a point x in this way

Δ J1 1

where < >M is the canonical probability measure of the n-particle gas and Ax is a
volume of linear dimension of order lN centered at the point x.

The <ρ^(iV)(x)> should give us the average positive density of charges at the
point x due to the dipole sea and therefore we expect that for
α 2 e[4π, 6π)<ρ^(iY)(x)>->oo for JV-»oo and that performing the renormalization
for the charge density amounts to defining

U . (5-25)
Going back to the sine-Gordon representation we have, with slightly shortened
notations

<ρ?<*>(χ)> = e j dzlfrδjtxfaίyή - (Σδx(xή(ΣUyty (5-26)

and

i.j

• I dxί...dxq_ι I dy^.-dy 1e
jq-ί jp- 1

oo oo

-βVW**x *>-ι- r lί<-l)

o o P[(lι I* ip

x) . .e-i0LφW(z) ./ .^iαφW(xi) . .gίαφί^Ug) . .g-iαφί^ίyi) . # . g - iαφ(^)(yp) Λ

) (5.27)

(5.28)
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and therefore at the order λ2:

zίl P(dφm):e^N)(x)::e~**"Hz):

- J P(dφm): e^mix): J P(dφιm): e~ixφm(z):] I

= A 2 Jίi2(e- β 2 ι / ' 0 + " W-)>(* i ) - l ) , (5.29)
Δx

which diverges for α 2 ^ 4 π and whose divergent part coincides with the divergent
part of (5.23). Therefore Eq. (5.25) defines an observable which is finite for
α 2 e [4π, 6π) and describes the charge density for the free charges existing above the
dipole-sea. This interpretation can be extended when the second even threshold

= 6π is overcome. Let's write the order-ί contribution of the fourth order
counterterm

( 5 3°)
Now, after simple computations it turns out that the divergent part for this term
when iV—>oo is

\s{v^Δ{x)v^]' ~ v^ + vjfi " ) -

and this term is divergent for N-^oo when
Defining now, with obvious notations

i,j Δx

 z l,k Δx Δx

- e Σ δx{Xi) 1 dz2δZ2(yϊ (Σ ί dzjjxj J dz3δZ3(yk)), (532)
ίj Δx \j,k Δx Δx /

ρ^{N)(x) gives the density of positive charges at x due to the presence of the
quadrupoles6 which are formed for α2 ^ 6 π and which tends to infinity for N->oo.
It is easy to see that at order λ4"

ad of F(N9 f

and therefore the subtraction to ρ{+\x) needed for α 2 ^ 6 π means that

N (5.33)
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6 The definition of ρ^iN\x) has some arbitrariness, some other terms (finite in the limit N-* oo) can
be added to it
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