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Abstract. The Julia set Bλ for the mapping z->(z — λ)2 is considered, where λ is a
complex parameter. For λ ^ 2 a new upper bound for the Hausdorff dimension
is given, and the monic polynomials orthogonal with respect to the equilibrium
measure on Bλ are introduced. A method for calculating all of the polynomials
is provided, and certain identities which obtain among coefficients of the three-
term recurrence relations are given. A unifying theme is the relationship
between Bλ and /ί-chains λ± ]/(λ± ]/{λ± ...), which is explored for —\^λ^2
and for λe(£ with \λ\^4, with the aid of the Bδttcher equation. Then B; is
shown to be a Holder continuous curve for |A|<^.

1. Introduction

In this paper we consider the Julia set Bλ for the mapping

Tλz = (z-λ)2

9 ze<£,

of the complex plane into itself, where λ is a parameter which may be real or
complex. Here Tλ is equivalent to z-»l — λz2 which has been studied in the context
of iterated maps of intervals, see [10, 13], and also to z-^z2 Λ- λ, see [11].

Bλ was first studied by Fatou [12] and Julia [19] in the context of arbitrary
rational transformations. With the notation

= z, and Tn

λ

 + 1z=Tλ{Tn

λz) for ne{l,2,3,...},

Bλ can be defined to be those points in (C where {T"z} is not normal. This is the
starting point of the survey by Brolin [8]. Equivalently Bλ can be defined to be the
closure of the set of all repulsive /c-cycles, /ce{l,2,3,...}, [12]. This shows at once
the relevance of Bλ to the corresponding iterated real map where B^nlR plays a
central role.
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Our approach is to consider the set Bλ of formal objects which we call A-chains,
{λ± ]/(λ± ]/{λ± ...}, where all half-infinite sequences of plus and minus signs are
included, and where the branch cut is fixed, for example, on the negative real axis.
We use /l-chains as a unifying idea in our discussion of Bλ. For λ > 2 we easily work
out a one-to-one correspondence between the elements of Bλ and the points of Bλ.
For — jt^λ^2 the correspondence is exhibited via the Bόttcher equation and
conformal mapping, and for some values of λ we show only that almost all
/l-chains correspond to individual points in Bλ.

In Sect. 2.1 we examine the case 2^λ< oo, where we give a direct construction
of Bλ which displays its connection with Bλ. Use is made of a distance function,
natural to Bλ, which yields a simple demonstration that the Lebesgue measure of
Bλ is zero for λ>2 and which provides a new upper bound on its Hausdorff
dimension. We also construct the equilibrium measure σ on Bλ by means of a
special sequence of approximating measures. The latter are related to the monic
orthogonal polynomials with respect to σ which are considered in Sect. 2.2. A
method for calculating all of the polynomials is provided, and certain identities
which obtain among the coefficients of the three-term recurrence relations are
discovered. Interrelations between the polynomials reflect the structure of Bλ. In
particular, it is found possible to describe completely an infinite subsequence of
Pade approximants to the generating function. The polynomials generalize those
of Tchebycheff, to which they are simply related when λ = 2.

In Sect. 3.1, we present for the case —\^λ^2 two constructions for Bλ; one
from the "outside" and one from the "inside". Each involves a sequence of
functions which converges to the solution of the functional equation Fλ(z)
= λ+ ]/Fλ(z2) with Fλ(z) = z + O(l) at oo. Here Fλ maps the exterior of the unit
disk conformally onto a region bounded by Bλ, and by means of Fλ we relate
/l-chains to Bλ. The first construction involves the formation of an increasing
sequence of domains, successive inverse images under Tλ of a neighborhood of oo,
as suggested by Fatou and by Julia. We include it for completeness, and to shorten
the proof of the second construction which involves a decreasing sequence of
domains. Of interest are the complements of the domains which form an increasing
sequence of trees and describe Bλ from the interior. We have recently proved [4]
that this sequence of trees converges to Bλ itself for infinitely many values of
Λe(0,2).

In Sect. 3.2 we begin by restricting attention to 0:gA^0.2 and we make explicit
calculations with A-chains to show that they are well-defined and that F λ(z) can be
extended continuously to the unit circle. Next we make analytic extensions to λ in
the set L={λe€\\λ\<l/4} and show that the mappings Gλ{Θ) = F\(eiθ) are uni-
formly Holder continuous for λ in any compact subset of L.

In Sect. 4 we give a few pictures in connection with Bλ.

2. The Case ^

2.1. Construction of Bλ and of an Invariant Measure

Throughout this section we assume λe [2, oo). We begin with a construction of the
Julia set Bλ which displays its connection with Bλ. Thus we obtain a concrete
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example of the correspondence apparently first introduced by Fatou [12, Sect. 23]
for arbitrary rational transformations. Our approach uses a new distance function
which allows us to obtain a significant improvement on Brolin's estimate [8,
Theorem 12.2] of the Hausdorff dimension of Bλ.

We conclude this section with the construction of an invariant measure,
supported on Bλ, by means of an approximating sequence of measures, different
from the ones used by Brolin [8, p. 126], with the advantage that they are related
to the measures which come from associated orthogonal polynomials. A related
reference is [16].

Let Ω denote the set of all semi-infinite sequences of numbers from {— 1, + 1}.
Then ωeΩ if and only if

ω = (e19e29e3,...), e f e { - l , + 1 } .

Let

a = λ + ±+]/λ+ϊ/4 and l = \_λ-

Note that a is the unique nonnegative real solution of a = λ-\- ya and that

λ — ]/~a ^ 0, where the inequality is strict when λ > 2.

We define for ne{0,1,2,...}

so(ω,x) = x,

Then it is readily proved that sn:Ωx 1
We introduce a measure μ on / by

for all Lebesgue measurable subsets E of /. Then μ is absolutely continuous with

respect to Lebesgue measure on / because J — ^ = ^ < oo. Also, Lebesgue
/ yw(2λ — w)

measure is absolutely continuous with respect to μ on / because

\dx = \ ]/w(2λ — w) dμ(ω). The corresponding distance function is
E E

d(x,y) = \F(x)-F(y)\ for x,yel,

where we define

/w{2λ-w)

Lemma 1. Let λe[_2,oo\ ρ=-\ λ+Va and ne{0,1,2,...}. Then

2 V λ2~λ+γa

d(sn(ω,xlsn(ω,y))Sρnd(x,y),

where ρ ̂  1/2, the latter inequality being strict for λ>2.



482 M. F. Barnsley, J. S. Geronimo, and A. N. Harrington

Proof. For x<y and ee{— 1, +1} we have by Cauchy's mean value theorem

\F(x)-F(y)\

e F'(λ + e]/C)

F\C)

for some Ce (x, y). Since 0 ^ λ — \/a ^ x < C < y ^ a < 2λ ^ Λ,2, the right-hand-side is
bounded above by ρ. This establishes the lemma for n= 1 and induction completes
the proof. Q.E.D.

Lemma 2. Let ωeΩ,xeI and λe [2, oo). Then s(ω) = Lim sn(x, ω) exists, belongs to /,
n~* oo

and is a constant independent of xel. For λe(2, oo), s.Ω^I is one-to-one.

Proof We have from Lemma 1

d(sn+ί(x, ω), sn(x, ω)) = d(sn(λ + en+1]/x',ω\ sn{x, ω))

S ρnd(λ + en + , ]/x, x) ^ ρn4A - ]/α, α),

from which it follows that {sn(x, ω)}™= ί is a Cauchy sequence. If

Lim sw(x, ω) — s(ω) and Lim sn(y9 ω) = s(ω),
λj->oo «->oo

then

d(s(ω), s(ω)) ^ d(s(ω\ sn(x, aή) + d(s(ω), sn(y, ω)) + d(sn(x, ω\ sn(y, ω)),

which can be made arbitrarily small by choosing n sufficiently large. The one-to-
oneness follows at once from the fact that 0^7 for λ>2. Q.E.D.

We now observe that the Julia set for Tλz = (z — λ)2, λe[_2, oo) is precisely

Bλ = {s(ω)\ωeΩ}.

This follows from the fact that the Julia set is the set of all limit points of all finite
order preimages of any point in the plane, with at most two exceptions, [8]. The
relationship between Bλ and the collection of formal objects Bλ is clear from this
construction, and we will sometimes use the 'U-chain" notation

The known properties of Bλ, given by Brolin [8] and summarized in the following
theorem, are now straightforwardly deduced.

Theorem 1. For λe\_2, oo), Bλ is perfect and totally invariant under Tλ, with

Tλs(ω) = s(Tω) for all ωeΩ,

where T:Ω-^Ω is the left-shift operator. For λe(2, oo), Bλ is of Lebesgue measure
zero.
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Proof. Since for any ωeΩ and xel we have

T~ ιs{ω) = {Lim sn(σ, x)\σe T~1ω\= s{T' ιω),
\n-oo j

and since T " 1 ^ ^ , it follows that both T~1Bλ = Bλ and Tλs(ω) = s(Tω).
Every element of Bλ is a limit point of other distinct elements of Bλ because if

σneΩ agrees with σeΩ in the first n components then Lims(σn) = s(σ). (We can
n~* oo

ensure {s(σn)} contains infinitely many distinct elements even when λ = 2 since for
λ = 2, s: Ω->Bλ is at most two-to-one.) Similarly, Bλ is compact because any infinite
sequence in Ω contains a subsequence {σn} and an element σ such that σn agrees
with σ in the first n components. Hence Bλ is perfect.

Since BλCl we have B;CT^nI = In, where In consists of 2n intervals, each of
which can be written sn(ω,I) for some'ωeΏ. Using Lemma 1 we readily calculate

whence when λ>2, so that ρ<l/2, we have μ(Bλ) = 0. Q.E.D.
Using our alternative measure μ we obtain a new estimate for the Hausdorff

dimension of Bλ.

Theorem 2. For λe(2, oo) the Hausdorff dimension of Bλ is bounded above by the
number Λ .

In 2

Proof This follows the same lines as [8, Theorem 12.2] except that here we use the
distance function d(x,y) in place of \x — y\, these being equivalent metrics when
λe(29 oo). Consider the sequence of coverings {In} introduced above and write In as

a union of disjoint closed intervals, /„ = (J /JJ1. Let
m- 1

f ί » = Σ (μiOT for
m = 1

Then using Lemma 1 we readily calculate

from which it follows that LimHM(α) will be finite if 2ρa< 1, which corresponds to
n-> oo

ρ. This implies that (ln|)/lnρ is an upper bound to the Hausdorff
dimension of Bλ. Q.E.D.

Brolin has given the following upper bounds for the Hausdorff dimension of

(ϋ) ? 7—77^,—-UHWTΛ . v a l i d f o r
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Our bound improves over both of these, where they apply. We note that for
λ = 5, Theorem 2 yields the upper bound 0.564 whilst (i) gives 0.636. Thus our
bound is good enough, at λ = 59 to distinguish Bλ from the classical ternary set of
Cantor, whose Hausdorff dimension is ln2/ln3 = 0.631, see [18].

We next give a construction, involving a particular sequence {σn(x)} of
approximating distributions, for an invariant distribution σ(x) of Tλ, supported
upon Bλ. Here σ(x) is an example of the equilibrium distributions described by
Brolin [3, Chap. Ill], and the σw(x)'s are related to the orthogonal polynomials
given in the next section.

Let Kn = T^nλ, which consists of the 2" real points

λ ± ]/(X ± j/(X ± ... ± ]/(I)...)) where there are n plus - or - minus signs. Let

*»(*)= i Σ θ(χ-y),
L yeKn

where θ(x) = 0 when χ5^0 and θ(x) = l when χ > 0 . Thus, σn(x) equals the
proportion of members of Kn which are less than x.

It is straightforward to prove that {σn(x)} converges uniformly to a continuous
distribution σ(x), for x e R It is also straightforward to show, and in any case it
follows from Brolin, that σ(x) provides an invariant measure under Tλ, according

\f(x)dσ{x)= j f(Tx)dσ(x)
E Ύ-^E

for all Borel measurable subsets E of Rand all measurable functions/ When λ = 2,
T2z = {z-2)2, and we have [23]

Let F denote the set of all Borel measurable subsets of Bλ. Then (Bλ, F, σ, Tλ) is
a system as defined by Billingsley [6]. It is readily proved to be isomorphic to the
system formed by the left-shift on Ω with the usual uniform measure. Consequently
(Bλ, F, σ, Tλ) is mixing with entropy In 2. The system is also isomorphic to the one
formed by z-^z2 on the unit circle in (C, with circular Lebesgue measure. This is
one way to see the connection between the system which exists when λ Ξg: 2 and that
which exists when λ = 0.

2.2. Orthogonal Polynomials

One way of characterizing the invariant measure σ when 2 ̂  /I < oo is by means of
the associated set of monic orthogonal polynomials. We denote this set by
{Pn(x)}™= _ 1? where P_ 1 ( X ) Ξ 0 . For n^O, Pn(x) has degree n and the coefficient of
xn is unity. The polynomials obey

\Pn{x)Pm{x)dσ{x) = 0 for n + m.
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These polynomials provide an interesting generalization of the Tchebycheff
polynomials {Tn(x) = cos(ncos~1x)} to which, in view of the explicit formula for
the measure given at the end of the last section, they must be related by

Pn(x) = 2Tn(\x-ί) when λ = 2.

One would like to know how the invariance of the measure under Tλ relates to the
structure of the polynomials. Also, what can be said about the associated three-
term recurrence relations?

Let us introduce a second set of monic orthogonal polynomials {Qn(x)}™=-V

where Q_1(χ) = 0. For nΞ>0, Qn(x) has degree n and the coefficient of x11 is unity.
They obey

jxQn(x)Qm(x)dσ(x) = O for n φ m .

Then we have, for n^O and 2^A<oo, [9, 14, 22]

Qn(x)=^lPfl+1(x)-Pn+1(0)Pn(x)/Pn(0)l' (1)

We also define a set of polynomials {Sn(x)}™=_1 by S_ί(x) = 0 and

for m = 0,l,2,.... (2)

Theorem 3. For λe [2, GO),

Sn(x-λ) = Ptt(x). (3)

Proof. Clearly Sn(x — λ) is a monic polynomial of degree n, when n^O. It remains
only to prove that {Sn(x —A)}^= _ 1 is a set of polynomials orthogonal with respect
to σ. Consider first for nή=m

ί sm +i(x~ λ)S2m +1(* - λ)dσ{x) = j (x - λ)2Qn((x ~ λ)2)Qm((x - λ)2)dσ(x)

I

where we have exploited the invariance of the measure σ under Tλ. Next consider

f S2n(x - λ)S2m(x - λ)dσ(x) - J Pn((χ - λ)2)Pm((x - λ)2)dσ(x)
I I

= $P,,(x)Pm(x)dσ(x) = 0,
I

where we have again used the invariance of the measure. Finally consider, for m
and n not necessarily distinct,

j S2n(x - λ)S2m +1(x~ λ)dσ(x) = ί (x - λ)Pn((x - λ)2)Qm((x - λ)2)dσ(x).

This is zero because the integrand is antisymmetric about the midpoint λ of
/. Q.E.D.

Upon combining (1), (2), and (3) one finds

Pn{x2), (4)
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(5)

These two equations provide a bootstrap procedure for calculating the Pπ(x)'s, as
indicated in the following scheme:

The numbers in parentheses indicate the equation to be used to travel along the
arrows. Some examples of the resulting formulas are

P1(x) = x-λ9

P3(x) = (x-λ)((x-λ)2-λ-l),

(x-λ)2= (x-λ)\(x-λf-
(2λ2 + 2λ-\)

Notice that the set of zeros of P2n{x) is precisely the set Kn which was used in the
construction σ. Similarly one can give expressions for all the zeros of P3.2n{x) and

We next consider the three-term recurrence relation satisfied by the
polynomials.

Theorem 4. For 2^λ<co there exists a unique set of real numbers {^m}^=1 such
that for ne {1,2,3,...}

λ-a2

2n+1-a2

2n = 0, (7)

and

(8)

Proof. Since the measure σ(x) is symmetric about x = λ it follows at once from the
theory of orthogonal polynomials that there exists a unique set of real numbers
{αm}^= 1 such that the three-term recurrence formula (6) holds. To prove (7) and (8)
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it is convenient to work in terms of the shifted polynomials Sn(x) = Pn(x + λ): we
consider

^2n + 2\X)~X^2n+ l W ~ a2n+ 1^2n\X) '

Eliminating S2n+1(x) from this expression by using the recurrence relation we
obtain

S2n + 2(x) = (x2-a2

2n+ι)S2n(x)-xa2

2nS2n_1(x).

Herein we reexpress S2n_ x(x) in terms of S2n(x) and S2n_2{x\ again with the aid of
the recurrence equation, to obtain

S2n + 2W = (χ2 ~ aln + 1 ~ "ln)S 2n(*) ~ ̂ Irflln~lS2n- 2W

We now set x' = x2 — λ and use the fact that

S2m(x) = Sm{x2-λ) for me {0,1,2,...};

which yields

Sn+1(x') = (x' + 2 - α 2 n + 1 - α ^ ) S n M - < α L - i S B - 1 ( x ' )

Equations (7) and (8) follow at once upon comparing with the recurrence relation

Sn + 1(x) = A , ( x ) - α n

2 V 1 ( x ) . Q E D.
With the aid of (7) and (8) we readily calculate

a\=λ, aj = l, al=λ-l,

2 _ 1 2_λ2-λ-l 2_λ2-2λ+l

We also obtain the following continued fractions representation for an: for n ̂  2

2 _an\ an-l\
2n \λ \λ '" μ - Γ

and

2n+1 \λ \λ '" μ-i

In particular, when 2 = 2 we have a2 = l for n>2 and α^ = 2, and (6) becomes
exactly the three-term recursion relation for the Tchebycheff polynomials
{TJ^x— 1)}̂ L _ r From this it follows that the zeros of T2n{\x—ΐ) are precisely the
set of numbers

1 n times '

The densification of the latter set of numbers on [0,4] can thus be seen as an
example of Blumenthal's theorem [7] on the distribution of zeros of orthogonal
polynomials upon the support of the measure.

Further information, which relates in particular to the sequence of approx-
imating measures {σn(x)} given in Sect. 2.1, is obtained by examining the
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polynomials of the second kind, {P*(x)}^=0, which are defined by

Pι

n(x)=^"+ίW_"+ίWdσ(y) for ne{- 1,0,1,2...}. (9)

/ x y
Theorem 5. For all ne {0,1,2,...},

P1

2n+1(x) = (x-λ)P1

n((x-λ)2) (10)

and
1

'2n^' (x-λ)

Proof. From (9) one has

P2n+2Wpi
Γ2n-l\X) (11)

where the in variance of the measure under Tλ has been exploited. We now split up
the denominator and use (4), which yields

In the second integral here we make the change of variable y — λ-> — (y — λ), use the
symmetry of the measure and / about λ, and again exploit (4), to provide

From this (10) is immediate.
Equation (9) also implies the recursion relation

P1

n+M) = (x-λ)P1

n{x)-a2

n+1Pl_1{x) for ne{0, l ,2 , . . . } ,

with P1_ί(x) = 0, and PQ(X) = 1. This implies (11) when a2

+1 is eliminated with the
aid of (6) wherein λ = x. Q.E.D.

From (10) it is apparent, in contrast to the previous case, that the odd
polynomials of the second kind are easily calculated from the even ones. Some
examples of the polynomials are

P\(x) = {x-λ) ((x - λ)2 -λ) = P^P^x) = ™ P4(x),

k=o

=o
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Now consider the moment functions

and

G(x ) = J
iχ-y

From the theory of Pade approximants [2], one has that the [n—l/ή](x)
approximant to G(x) is

ln-lM(x)=Pffψ, for We{l,2,...}.

Using (4) and the fact that S2m{x) = Sm(x2 — λ) we discover the remarkable result

[2n- l/2n'](x) = (x-λ)[n- l/n~]((x-λ)2) for n= 1 , 2 , 3 , . . . .

Also, for rc = 27c where /ce{0,1,2,...}, we find

which makes contact with the sequence of approximating measures {σn(x)}.
Finally, we note that since (Bλ, F, σ, Tλ) is a mixing system, so is (Bλ, F, σ, 7J) for

ne{l,2,3,...}. Hence P2n(x) + λ provides a mixing transformation on Bλ, with
respect to σ. Shifting Bλ to the left by subtracting λ, and correspondingly adjusting
the measure, this shows that each of the polynomials P2n(x + λ) provides a mixing
transformation upon the shifted system. This extends a result of Adler and Rivlin
[1], and is itself a special case of a wide reaching theorem [5].

3. The Cases - 1 / 4 ^ A ^ 2 and U l ^ 1/4 with

In this section, the Julia set Bλ is connected, and a central role is played by the
Bδttcher equation, see [12], for Tλ at oo

T0oHλ = HλoTλ, Hλ(z) = z + O(l)at oo. (la)

We actually use the equivalent equation in terms of inverses, where Fλ = H^1,

?)9 Fλ(z) = z +0(1) at oo. (lb)

We let C be the complex plane, C = Cu{oo} and D 0 = {ze(C||z|>l}. Then we
shall see that Fλ maps Do conformally onto a region bounded by Bλ, and by means

of Fλ we can relate λ-chains to Bλ.

3.1. Two Constructions for Bλ

We present two constructions for Bλ one from the "outside", and one from the
"inside", when —\^λ^2. The first is not new in principle: it involves the
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formation of an increasing sequence of domains, successive inverse images under
Tλ of a neighborhood of oo, as suggested by Fatou [12] and by Julia [19]. We
include it both for completeness and for comparison with the second method.

The second construction, from the "inside", provides a decreasing sequence of
domains and a corresponding sequence of functions, from Do to the domains,
converging uniformly to Fλ(z) on compact subsets of Do. Of interest are the
complements of the domains, which form an increasing sequence of trees, with
fractal-like structure [20] and two-dimensional measure zero, which serve to
describe Bλ from the interior. This construction turns out to be important: we
have recently proved [4] that this sequence of trees converges to Bλ itself, for
infinitely many values of Ae(0,2).

For λ jg — I we define

and b= ]/\λ\ + 1/4 + μ | + 1/2.

Then a is the unique positive real numbers which obeys a = λ+ ]/α. Notice that

a^b, and λ- | /α^0, for -^λg>2.
The following Lemma will allow us to make a concrete iterative solution of the

Bottcher equation (lb). This construction is important later on in our discussion of
Holder continuity.

Lemma 3. For — \ ^ λ < 2, we may start from fo(z) = λ+ ybz and iteratively define
analytic functions fn:D0-+(t for we {1,2,3,...} by

and they will satisfy

Sketch of Proof The lemma can be easily proved by induction. The exclusion of
the interval [/I— j/α,α], which contains zero, follows from the facts that a^b and
Tλ maps the excluded interval into itself. Thus, fn is well defined because
0φfn_ί(D0). That /LCDO^/OΦO) *s a simple calculation using the definition of b,
and upon iteration we obtain the monotonicity of the images.

Theorem 6. Let —\^λ^2. The sequence {fn} of Lemma 3 converges uniformly on
compact subsets of Do to a function Fλ which obeys the inverse Bottcher equation
(lb).

Remark. We denote the boundary of Fλ(D0) by Bλ. The theorem says Tλ^
1Bλ = Bλ.

Then Bλ turns out to be the Julia set for Tλ, see [12] for example.

Proof The theorem follows at once from Lemma 3 and Caratheodory's theorem
on domain convergence, see Goluzin [15, p. 53]. Q.E.D.

We can now set up a correspondence between A-chains and points on Bλ.
Corresponding to ω = (eve2,e3,...)eΩ we define S0(ω,z) = z and, for
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The value of the square root ]/w for we(C is fixed by writing w = Γeιθ with
O^θ<2π, and then

T \ and - \Γz = - }/Teίθ/2=

We will say that we have a positive axis branch cut. Thus Sn(ω, z) is clearly a well
defined function of its arguments.

Theorem 7. Let ~l^λ^2 and 0^θ<2π. Write θ = 2π £ dβ\ where ^ e
7 = 1

Let e.= + 1 if dj = O, e — — 1 if d7.= 1, ami ω = (e1,e2,e3,...). Then
i) L i f 1 ( S ( ) ) iθ

o

and
(ii) Lim ^(ω, z) exists for almost all θ, independent of zeFλ(D0).

H->-00

Remark. We define the A-chain S(ω) to be the limit of Sn(ω, z) when it exists.

Proof Let z = Fλ(Γeι% 0:gα<2π, Γ > 1 . From symmetry observe that Fλ maps
each of the upper half plane, the lower half plane, the positive axis and the negative
axis into itself. Hence when we use the Bottcher equation (lb) we can choose the
appropriate branches of the successive square roots and find

7 = 1

From this (i) follows.
It is easy to show that in (i) the limit eιθ on the unit circle is approached

nontangentially. Since Fλ(z) — z is regular and bounded on Do, it has nontangential
limits almost everywhere on the unit circle, Goluzin [15, p. 343], and we find that
{Sn(ω9 z)} has a unique limit point for almost every θ. Q.E.D.

The power series coefficients of the unique solution of the Bottcher equation
(lb) can be calculated recursively. For example, after several iterations we obtain

λ λ(2-λ) λ\2-λ) , Jί

2z 8z2 16zf

When λ = 2 this reduces to F2(z) = z + 2 + - .

In order to obtain more detailed information about Bλ it is useful to construct
a second sequence of functions {/π*(z)} which is convergent to Fλ{z). Whereas the
sequence {fn(z)} provides a sequence of images which increase to Fλ(D0) (whose
boundary is Bλ), the sequence {f*(z)} yields decreasing images, and we get
convergence to Bλ from the "inside". The proof is similar to that of Lemma 3.

\\
Lemma 4. For —\^λ^2we may start with /0*(z) = λ+ ya/4 \z + - and iteratively
define analytic functions f* : Do-><& for ne {1,2,3,...} by ^ z'

and they will satisfy

f*(D0)Cfn*.,(
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0 12

-05

0

4--O5

Fig. 1. The boundaries Γn for n = 0, 1, 2, and 3, are drawn unbroken; the dots lie upon the coordinate
axes. In general, Γn+ ί contains 2" new arcs not in Γn, and Γo C Γλ C Γ2 C Γ3 c ...

It turns out to be very useful to give a fairly complete characterization of the

sets Γn = f*(dD0). Let S0 = [λ— |/α, a]=Γ0. Then the image of So under the

principal branch of λ+]/z is [A, α]u[the closed line segment from λ to

λ + iyya — λ]. Since f*(z) — λ is an odd function of z we can reflect the latter set

about λ to obtain the rest of Fv In this way we find

where Slλ is the closed line segment connecting λ± y]/a — λ. It will be found

helpful here to look at Fig. 1. Here Γ2 is the image of Γί under λ ± ]/z. Then ,S0 will

generate SouSlv but Sίί will produce two new analytic arcs denoted by S21 and
S22. In general Γn will contain 2n new arcs not in Γ

U
7 = 1

M
where each SJk is an analytic arc. The endpoints of So are λ± ]/a = Fλ(±l), and by
repeatedly using the Bottcher equation (lb) and the definition of /„* we find that
the endpoints of the arcs composing Γn are Fλ(ejπι/2n) for all je{l,2,... ,2"+ 1}.
Equivalently, the endpoints of Γn are all numbers expressible in the form

Fλ(± \Γ{± ]Γ{± .

- n times n times -

where + indicates that both branches of ]/ can be chosen.
We can replace the fn of Theorem 6 by f* to obtain the following result.

Theorem 8. Let — \^λ^2. Then the sequence of functions {f*} provided by
Lemma 4 converges uniformly to Fλ on compact subsets of Do.



Invariant Sets for Quadratic Maps 493

Fig. 2. The boundaries of f3(D0) and f*(D0) are superimposed, and sixteen components are thereby
defined. The closure of the component labeled j contains the part of B} which corresponds to

The proof is like that of Theorem 6. The uniqueness of the solution to the
Bόttcher equation ensures that the limit is Fλ.

If K is a compact subset of Do, then the sequence of sets {fn{K)}^0 and
{/„%£)}„% increase and decrease respectively to Fλ(K). Similarly {/„(£> 0)} «°°= i
increases to Fλ(D0) = Dλ. However, the decreasing sequence {f*{D0)}™=0 does not
converge to Dλ. This sequence illustrates a peculiar property of domain con-
vergence. For example, we will show in the next section that when Org/t̂ g 1/4, D\
contains the disk of radius 1/4 about 0. In this case the area of Dc

λ is strictly
positive, yet the area of Γn is zero for all n.

The behavior of these image sets can be better understood by considering the
ί 00 Ί

endpoints of the analytic arcs in Γn. The set <̂  (J ejπιl2n\j = 1,2,..., 2n+ γ > is dense in
U=i J

the unit circle dD0 = B0, and its image under Fλ is dense in Bλ. The latter image is
precisely the set of endpoints of all of the analytic arcs in all of the Γn

9s. Thus,
consistently with the general theory of domain convergence, we find Fλ(D0) is one
component of the interior of Lim f*(D0).

n—> oo

For 0 < / ί < 2 the numbers λ± ]/~a are on the boundary of both fo(Do) and
/*(D 0). Hence

fn(z) = fn*{z) = Fλ(z) for z = e^2\

for all je{1,2,... ,2"+ 1} and ne{0,1,2,...}. If we superimpose the boundaries of
fn(DQ) and f*(D0) then we separate the complex plane into many components. The
portion of Bλ corresponding to {eιθ\(j— l)π/2n^ΘSjπ/2n} must lie in the closure of
the j t h component counted counter-clockwise, starting from the one in the first
quadrant which has a on its boundary. As an example we illustrate the case n = 3
in Fig. 2 where the sixteen components are labeled.
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3.2. The Relation Between Bλ and Bλ when |A|<l/4 with λe(£

First we restrict attention to 0g/ί^0.2 and make explicit calculations with
λ-chains which show that S{ω) is always well-defined and that Fλ can be extended
continuously to the unit circle. Next we make analytic extensions to λ in the set
L = {λe(£\\λ\<l/4} and show that the mappings Gλ(θ) = Fλ(eίθ) are uniformly
Holder continuous for λ in any compact subset of L.

We introduce the notation

S{ + 9z) = λ+]/z and S(-,z) = λ - j / z ,

where the positive axis branch cut is used. Then we have the following two simple
computational Lemmas whose proofs we omit.

Lemma 5. Let λeWί and ze<£ with z^O. Then

For λeL and d^b let

,z) = S(-,z).

and

Lemma 6. Let λeL and d^b. Then both S( + ,z) and S( — ,z) map Rd into itself.

Let μ, σ, and ξ in Ω be defined by

and

Lemma 7. For 0<λ^2, S(σ) and S{ξ) both exist and S{σ) = S{ξ) = S(-,a).

Proof. We claim that S( — ,z) is a contraction mapping towards a on {z|Imz<0}
and that S( + ,z) is a contraction mapping towards a on {z|Imz>0}. By Lemma 5
these claims are equivalent, so we prove only the latter. For I m z > 0 we have

S( +

Z

, z ) -
— a

a λ +

Vz

yz-(λ+]/a)
z —

1

+ ]/a

a

= R e ( l

1

z —

-1/α)

\/a

a

where we have used the fact that Re j/z > 0. This proves our claim. It now follows

that the sequence {Sn(μ, z)}^= 1 approaches a through the fourth quadrant, which, in

turn implies that {]/Sn(μ,z)}™= x converges to — j/ά. Hence {Sn(σ, z)}̂ °= ί converges

Xoλ-\Γa. Q.E.D.
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Lemma 8. Let 0</l<0.2, d^a, ne{l,2,...}, and ωeΩ. Then for any zvz2eRd,

where r = 0.87.

Proof. First note that for any wvw2eRd we have

= l/2|argw1-argw2 |.

Also, for any weRd, j/w lies in the upper half plane and

Here we have used the fact that when 0<Λ<0.2, then C^0.5 so that for all
weRd we have |w|>0.5. Then we can show

Lemma 6 allows us to iterate the above result starting from zvz2eRd. We find

|argSm(ώ,z1)-argSIf l(ώ,z2)|^i8=1.25<f (1)

for all m^3, for any ώeΩ.
Again let us suppose wvw2eRd, but now with |argw1 —argw2 |^^. Then

1

+ w2

(cosj8/2)(2l/ά5)
(2)

Since the diameter of i^d is 2d and r< 1, the lemma is true for rc:g3. To obtain the
result for larger n, we use (1) and then apply (2) repeatedly. Q.E.D.

Theorem 9. Let 0</ί<0.2, ze# d , and d^a. Then S(ω) exists and lies in Ra, for all
ωeΩ, and

\Sn(ω,z)-S(ω)\<2d(0.87)n-3

Proof Let m^n and note that

\Sn(ω, z) - SJω, z)\ = \Sn(ω, z) - SB(ω, Sm _ n(ώ, z))\

for some ώeΩ. Moreover Sm_n(ώ,z)eRd by Lemma 6. Hence Lemma 8 applies
with zx=z and z2 = Sm_n(ώ,z), yielding

\Sn(ω,z)-Sm{(θ,z)\^2drn-\
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Thus {Sn(ω, z)}^= -L is a Cauchy sequence in the closed set Rd, and by Lemma 8 the
limit is independent of zeRd. If we take zeRa we find by Lemma 6 the limit S(ω)
also belongs to Ra. Q.E.D.

Next we relate S(ω) to Fλ and {/„}.

Theorem 10. Let 0<Λ,<0.2, and let θ and ω be related as in Theorem 7. Then

Lim/„(**) = S(ω), (3)
n-*oo

and
Lim Fλ(z) = S(ω). (4)
| z | > l

Proof. Notice that for some values of θ there are two expansions
00

θ = 2π Σ dj/2\ one involving infinitely many zeros and one involving infinite-

ly many ones. In these cases there correspond two distinct elements ωί and
ω2 in Ω, and for the theorem to make sense it must be true that S(ω1) = S{ω2). But
this is just what is implied by Lemma 7. Accordingly, without loss of generality, we
can assume that ω contains infinitely many + Γs.

Let z = Γeίθ. Then it follows that 0 ^ a r g z 2 J ~ 1 < π precisely when dj = O. Using
the definition of fn we obtain

fn(z) = Sn(ωJ0(z2n)) for Γ ^ l .

If Γ = l then fo(z2n)eRa and we can let n->oo with the aid of Theorem 9,
yielding (3).

To obtain (4), first let ε > 0 and choose d = 2a in Lemma 8. Pick n so that
4α(0.87)"~3<ε. Since BλCRa there exists ρ > l such that

Fλ(z)eR2a for K | z | < ρ . (5)

Let / = < ]Γ -4 ^ —}>. From the Bottcher equation (lb) we

find that
Fλ{Γeiφ) = Sn{ω,Fλ{Γ2ne2niφ)) for φel.

Combining this with (5) and Theorem 9 we obtain

\Fλ(Γeiφ)-S(ω)\<ε for φel, and l<Γ<ρ1/2n. (6)

If 0 is an interior element of / we are done. Otherwise θ is the left endpoint and
θ/2π has a second binary representation which we can use similarly to show we can
allow φ<θin (6). Q.E.D.

Next we extend the allowed values of λ from the interval 0</l<0.2 to the set
L = {λe<E\\λ\<l/4}. Observe that the inductive definition of {/J of Lemma 3
applies also for λeL, and that we can establish the containment condition

for ne {1,2,...}. As before, we prove the existence of the limit Fλ of the sequence
{/w}, and thus we obtain direct proof of the existence of a conformal mapping of Do

which solves the Bottcher equation (lb).



Invariant Sets for Quadratic Maps 497

In the following theorem we alter the notation slightly to emphasize the
dependence upon λ.

Theorem 11. For any fixed λeL let F(λ,z) be the conformal mapping of Do which
solves the Bόttcher equation (lb). Then F may be extended continuously to L x Do,
where it is analytic in λ. The functions Gλ(θ) = F(λ,eιθ) are uniformly Holder
continuous for λ in any compact subset of L.

Proof Let fn(λ, z) = fn(z). Observe that for λeL and zeD~0 the functions in {fn(λ, z)}
as functions of λ are analytic, and their images omit the disk {weC|[w|<C}.
Hence they constitute a normal family. This means that they have an infinite
subsequence which converges to some function H(λ,z) which, among its other
properties, is analytic in λ for λeL, for each fixed zeD0. Suppose that there are in
fact two different subsequences convergent to two different functions H1 and H2.
Since the whole sequence is convergent to a single limit for 0<A<0.2, Hx and H2

agree on a set which contains a limit point. Hence by Vitali's theorem H1=H2.
Thus, we have the existence of

H(λ,z)= Lim fn(λ,z),
H-> 00

analytic in λ for λeL for each fixed zeD0. Moreover H(λ, z) = F(λ, z) for zeD0.
Next consider Lim F(λ,z). For 0</ί<0.2 this limit exists and equals

\z\> 1

Lim f(λ, eiθ) = H(λ, eιθ). Thus, by again applying Vitali's theorem, we have that the
n->oo

limit exists for all λeL and

Lim F(λ,z)= Lim fn(λ,eiθ).
z-*eιθ n->co

It now follows that as a function of z, F(λ, z) is a one-to-one analytic function on
Do with well-defined boundary values.

Finally, we establish the Holder continuity. Since C > 1/4 for all λeL we can
choose β with 0</?<§ and R> 1 such that for any compact subset M of L

2]/Ccos(β/2)>R>l for all λeM.

Since Gλ(θ) is continuous in λ and θ we can choose y > 0 such that

|arg(Gλ(θ)/GA(0))|<j8 if \θ-φ\<γ with λeM.

Let θ and φ be real with \θ—φ\<y. Then there exists an integer n^O such that

y/2"+1^\θ-φ\<γ/2". (7)

Hence

IGλ(θ)- Gλ(φ)\ = I ]/Gλ(2θ) - γGλ(2φ)\

\Gλ(2θ)-Gλ(2φ)\

^\Gλ(2θ)-Gλ(2φ)\

R
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Fig. 3. Representation of Bλ for λ = 0.001, 0.5, and 0.9. The crosses indicate dots in the complex plane
which belong to Bλ. These drawings are based upon accurate plots of five hundred points in Bλ, picked
at random

Iterating we find

\Gλ(θ)-Gλ(φM
|GA(2"g)-GA(2"0)|

Rn

where Kί is the maximum diameter of Bλ for λeM. Using (7), with α = InR/\n2 and
K2 = K1{2/y) we have

θ-Φ\* f o r \Θ-Φ\<7

To allow for \θ— φ\^y we replace K2 by

a}. Q.E.D.

dFdF
We can illustrate some of the boundary behavior by calculating — (0,z). We

use the fact that dF/dλ= Umdfjdλ and, for >0
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λ= 16
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Fig. 4. Representation of Bλ for λ = 1.2, 1.6, and 2.0. See the caption of Fig. 3

Then since /M(0, z) = /(0, z) = z (note that b = 1 when Λ = 0) it follows that

This series implies just the expected boundary behavior. It converges uniformly for
\z\ ^ 1 and is analytic for \z\ > 1. On the other hand, it is a gap series and thus the
unit circle is the natural boundary of the domain of the analytic function. In
particular, we find that

d2F
Urn -—-(0,JYθ)=oo for β = 2π/2\

Γ->1 + OZCλ

4. Pictures Relating to Bλ

Here we present pictorially the results of some calculations which concern the
structure of Bλ.

Figures 3 and 4 represent Bλ for 0^/1^2. (See also [21] where better pictures
are given.) These drawings are not exact, but are based upon similar ones in which
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Fig. 5. Successive inclusion domains for jBλ when 1 = 0.75. The boundary indicated by ne {1,2, 3,4} is
the image of the unit circle under fn(x). The sequence of boundaries converges to 5 ; in the manner
described in Sect. 3.1

Fig. 6. Same as Fig. 5, but here 2 = 1.25

about five hundred points in Bλ were plotted. The points were all of the form
S50(ω,a\ and ωeΩ was chosen at random.

An alternative view of Bλ is in Figs. 5 and 6 where we have plotted the
boundaries of the sets fn(D0) for ne{ί, 2,3,4}, at two different values of λ. Recall
that fί(Do)Cf2(Do)Cf3(Do)C ..., and that the boundary of the set obtained in the
limit is Bλ.
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