
Communications in
Commun. Math. Phys. 88, 447-463 (1983) Mathematical

Physics
© Springer-Verlag 1983

Examples of Discrete Schrδdinger Operators
with Pure Point Spectrum

Jϋrgen Pδschel

Mathematik, ETH-Zentrum, CH-8092 Zurich, Switzerland

Abstract. We present a general approach for constructing potentials for the
discrete Schrodinger equation of arbitrary dimension having only pure point
spectrum. We give examples of limit periodic potentials of that kind such that
the pure point spectrum is dense in an interval or a Cantor set of measure zero.

0. Introduction

In this note we consider the discrete Schrodinger operator

(Hu)t = ε Σ Ui + * + diUi9 ίeZm

with a small positive coupling constant ε acting on /2-sequences u — (uj) of
arbitrary dimension mΞ>l. Various examples of potentials d = (di) are now known
such that this operator has only pure point spectrum and a complete set of
exponentially localized eigenvectors. It is our aim to present a general approach to
the construction of these examples as well as some new ones. Namely, we construct
limit periodic potentials d such that the pure point spectrum is dense in [0,1] in
one case, and dense in a Cantor set of measure zero in another case.

We proceed as follows. We write

in the form of a 2m-dimensional Jacobi matrix, with D = diag(d) and

m

where |*f| = £ |/J for ^ = (/1? . . .ym). For a suitably fixed D and sufficiently small

ε, we then prove the existence of another diagonal matrix D close to D such that

D, (0.1)
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with a unitary isomorphism Voΐ /2(2£m). The new Schrδdinger operator H = D + εA
is thus unitarily equivalent to the multiplication operator D, hence

and σ(H) = cl σpp(H). The corresponding eigenvectors of H form a complete set,
since they are the columns of V.

The matrices D and V are constructed simultaneously by means of a
Newton-type iteration process. This approach requires the solvability of the
commutator equation

ID
for W, where P is assumed to vanish on the main diagonal. The solution of this
equation introduces the divisors dt — dp and the crucial condition is that these
divisors don't get small too fast as \i—j\ gets large so that their influence is
overcome by the quadratic convergence of the iterarion scheme

with c>0, is a typical example of such a small divisor condition. In fact, the
problem consists in finding interesting sequences d = (di) satisfying such a con-
dition. For instance, it is not at all clear that there are limit periodic sequences of
that kind.

What we described so far amounts to solving an inverse problem - we
construct a potential for a given spectrum. There is also a solution of the direct
problem of determining the spectrum of a given potential, but only under a much
more restrictive hypothesis. In order to construct D and Fwith

we have to be able to solve the linearized equation

[D,W]+P = 0

for all D near D. This requires the small divisor conditions to be preserved under
small perturbations. This is hardly ever the case but nonetheless there are
nontrivial examples of that kind. They yield unbounded discrete Schrδdinger
operators with a dense pure point spectrum on the real line.

The preceding results are obtained as straightforward corollaries of more
general results about arbitrary perturbations D + P of infinite diagonal matrices D.
These results are formulated in terms of a general translation invariant Banach
algebra of m-dimensional real sequences. This allows us to obtain different
examples of Schrδdinger operators with pure point spectrum just by switching
frome one Banach algebra to another one.

This note was stimulated by a paper by Craig [4], and its basic ideas are due to
him - or rather Rϋssmann [7] and Moser [6], as far as the solution of Eq. (0.1) is
concerned. We just put them into a general framework and added examples of
limit periodic sequences satisfying a small divisor condition. When this work on
the inverse problem was essentially completed, we learned of a similar treatment of
the direct problem for some nontrivial examples by Bellissard et al. [2]. It turned
out that their treatment fitted into our general approach quite easily.
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1. Main Results

Let m ̂  1 be an integer. Our starting point is a Banach algebra Jί of real
m-dimensional sequences a = (a^^m with the operations of pointwise addition and
multiplication of sequences. In particular, the constant sequence 1 is supposed to
belong to Jί and have norm one. In addition, Jί is required to be invariant under
translations: if aeJί, then TkaeJί with \\Tka\\Ji = \\a\\M for all keΈm, where

f αί + k. In other words, all translations Tk are isometries of Ji.
The translation invariance of Jί implies that

where | |α | |^ = sup|α |. In fact, if a were unbounded, then there would exist translates
an = Tkna, n^l with n'^a^n'^Jtί and n"1\\an\\J( = n~ί\\a\\J(^09 so in the
limit we had a sequence oceJί with | | α | | ^ = 0 and | α o | ^ l . Now, if we had \\a\\@
> \a\\M9 then l ± α / | | α | | ^ would be invertible in Jί which is a contradiction.

The small divisor conditions take the following form. Let d = (di) be an
arbitrary real sequence. We call d a distal sequence for Jί if

where Ω is a continuous function [0, oo[->[l, oo[ with the property that both

φ(σ) = σ'4m sup Ω(r)e

and

00

!F(σ)=inf Π Φ(σv)
2~

Sσ v = 0

are finite for σ > 0, where Sσ is the set of all sequences σσ ^ σ1 ^ . . . ^ 0 with YJJV ^ σ.
Such functions Ω are called approximation functions they were first introduced by
Russmann [7].

Clearly, if Ω is multiplied by a positive constant, then Φ and Ψ are multiplied
by the same constant. Moreover, the product of two approximation functions is
again an approximation function. In the particular case

Ω(r) = r\

one easily finds

by choosing σv = σ 2 ~v ~x, the constant c depending on τ and the dimension m. For
a general Ω there are simple sufficient conditions due to Russmann [7] under
which Φ and Ψ are finite. We recall them in an appendix.

Finally, we introduce the space M of all matrices A = (aij)ijGZm satisfying

In other words, AeM if all diagonals of A belong to Jί. InM we define a scale of
Banach spaces

<oo},



450 J. Poschel

where

M | | s = s u p U J ^ I k | s , O^s^oo.

Clearly,

In particular, M00 is the space of all diagonal matrices in M, and we have an
isometry a\->dmg(a) of Ji andM.

We are now ready to formulate our main results.

Theorem A. Let D be a diagonal matrix whose diagonal d is a distal sequence for Ji.

1 - 1

where δ>0 depends on the dimension m only, then there exists another diagonal
matrix D and an invertible matrix V such that

In fact, V,V~1eMs~σ and D-DEM00 with

where C = δ~1 ψl — L and [•] denotes the canonical projection MS^M°°. // P is

hermitian, then V can be chosen to be unitary on l2(Έm).

This theorem allows us to solve the inverse problem of finding a potential for a
given spectrum. The direct problem of finding the spectrum of a given potential is
somewhat more natural, but, as we already pointed out, requires the much more
restrictive hypothesis that the small divisor conditions are preserved under
perturbations.

Theorem B. Let D be a diagonal matrix with a diagonal d such that all sequences d
with d—deJί, \\d— d\\M^y^\ are distal sequences for Jί with one and the same

approximation function Ω. Let 0<s^co and 0 < σ ^ 1,-. // PeMs,

δ as in Theorem A, then there exist D and V with the same properties as in Theorem
A so that

V~\D + P)V=D.

A sequence d with the property described above is called a stable distal
sequence for Ji.
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We postpone the proof of these theorems to the end of this note, and consider
first their consequences for discrete Schrodinger operators.

Corollary A. Let d be a distal sequence for some translation invariant Banach
algebra M of m-dimensional real sequences. Then, for 0 ̂  ε ̂  ε0, ε0 > 0 sufficiently
small, there exists a sequence d with d — deJί, \\d — d\\JiSε2/εl, such that the
discrete Schrodinger operator

has pure point spectrum {d. :ieZm} and a complete set of exponentially localized
c

eigenvectors with decay rate 1-hlog —.
ε

Proof We apply Theorem A to the Jacobi matrix D + εA, D = diag(d). Clearly,
AeMs with ||zl||s = es for all s = 0, so for σ=l the smallness condition amounts to

with s = 2, thus

This also bounds s from above by logθ/ε. By Theorem A there now exists a unitary
matrix FeM 5" 1 and a diagonal matrix D = diag(d) with D — DeM00 such that

But V defines a unitary isomorphism on /2(2£m) in view of || | | ^ ^ || \\M and the
exponential decay of the diagonals of V in the norm || |l̂ > so the discrete
Schrodinger operator H = εΔ+D is unitarily equivalent to the multiplication
operator D. Hence,

σpp(H) = σpp(D)={di:ieZm},

and the corresponding eigenvectors form a complete set. Since they are the
columns of V, they are exponentially localized with decay rate

s - l = l o g — = l + l o g ^
eε ε

by choosing s = logθ/ε. Finally,

by choosing 5 = 2. •
In the same manner one proves

Corollary B. // d is α stable distal sequence for some translation invariant Banach
algebra M of m-dίmensional real sequences, then Corollary A holds with the role of
d and d interchanged.

The main problem now is to construct interesting examples of distal sequences.
This we do in the next two sections, then we prove Theorems A and B.
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2. Limit Periodic Examples

Fix m ^ l , and let Θ> be the set of all real m-dimensional sequences a = {aι) with
period 2", n^O, in each dimension; that is,

ai = api-je2nΈm.

The closure of & with respect to the sup norm || | |^ is a Banach algebra, which we
denote by if. It is a subspace of the space of all limit periodic sequences, which is
obtained as the closure of the set of all periodic sequences.

In the following we give two examples of sequences in if, which are distal
sequences for if, and whose values lie dense in [0, 1] in one case, and dense in a
Cantor set #C[0, 1] of measure zero in the other case. It follows by Corollary A
that there exist limit periodic potentials having a pure point spectrum with the
same density properties.

We note that a sequence d e i f satisfies

if and only if

ie Z m

The proof is straightforward.
To begin with, let αv, v ^ l , be the characteristic function of the set

J [ JV 2V, N T + 2V ~*), v even

J [JV 2V + 2V~ 1,iV 2v + 2v), vodd.
•z

Then αv has period 2V, and we have the following two lemmas.

Lemma 2.1. For n ̂  1, ί/ie map

(α1? ...,απ):Z->{05 1}"

ftαs period 2", απrf is one-to-one as a map from Έ/2nΈ to {0, 1}".

Proof The first statement is obvious, and the second statement is easily proven by
induction. •

Lemma 2.2. Let n^ί and UjeZ. If ocn + v(ί) = l for v = l ,2,3 and \i-j\<2n, then

Proof By periodicity we may assume that 0 ^ z < 2 " + 3 . If n is odd, then our
assumptions imply 2n+1 ^i<2n + 2-2n and thus 0^ i /<2 f l + 2 , hence an+3(j)=l. If n
is even, then 2n+2 + 2n^i<2n+3-2n+1 and thus 2 " + 2 ^ ; < 2 " + 3, hence αn + 3(/) = l
also in this case. •
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Example 1. The m-dimensional sequence d^id^, given by

co m

4= Σ Σ«v(g2-<*-1>m-'\ί =(;1,...,/m)eZ'\
v = 1 μ = l

belongs to Jδf and lies dense in [0, 1]. It is a distal sequence for JSf with

\\{d-Tkd)-ι\\^i6m\k\m, 0 φ k e Z w . (2.1)

Proof We first consider the case m— 1, where

00

d f = Σ «v(02"v, i eZ.
v = l

We define sequences dn = (d"), n ^ l , by

<*?= Σ «v(02~ v .
v = 1

By Lemma 2.1, d" has period 2n and takes on all values JV 2~",
Moreover, \d — dn\mi^2~n. Hence, deif, and its values lie dense in [0, 1].

To prove (2.1), let ίΦy, and fix n^l so that

(2.2)

Then ^ Φ d J and | < - ^ | ̂ 2 " " by Lemma 2.1. On the other hand, for dn = d-dn we
have

00

by Lemma 2.2, hence

with (2.2), and (2.1) follows for m= 1.
The general case m ̂  1 is handled analogously, defining d" by

v = 1 μ = 1

Again, assume (2.2). By Lemma 2.1, we have d^d) and therefore \dn

t -dn^2~nm

On the other hand, Lemma 2.2 implies

w-q\^ Σ Σ
+ l

μ = 1

<Π—2~ m )l V 2
\v = n+ 1

where dn = d — dn as before. Hence,

l ^ - ^ l ^ 2 ~ 3 m 2 " n m ^ 2 - 4 m |i

with (2.2), and (2.1) follows for arbitrary m ^ l . •
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Example 2. The m-dimensional sequence d = (di), given by

oo m

4 = 2 Σ Σ α v(g3- ( v-1 ) m-", i = (i1,...,iJeZm,
v = 1 μ = 1

belongs to t£ and is a distal sequence for ££ with

| | ( ^ - T ^ ) - 1 | U ^ 3 m | / c | A m

9 0φfceZm, (2.3)

where λ = log23. Its values lie dense in the standard Cantor set Ή of all real numbers
in [0, 1] whose triadic expansion consists only of zeroes and twos.

Proof We prove (2.3). If 2"" 1 ^\ί-j\<2\ and d\ dn are defined as before, then
"m", while

oo m

v = « + 1 μ— 1

Thus,

and (2.3) follows. The remaining statements are easy to prove. •
The question arises, how typical such distal sequences in S£ are. Here is a first

answer.

Proposition 1. For an approximation function Ω with Ω(r)^rm, the set

fcΦO

is of first category and dense in ££.

Proof Clearly, 2 = (J 2N, where
J V = 1

Each @N is closed and nowhere dense, since its complement contains 0>. So 2 is of
first category. Now let α e ^ , let deJS? be the sequence of Example 1, and consider
the sequence aε = a + εd. Since

inf |α,-α, | =

with the convention, say, δ = l for a constant sequence a, one easily finds

by distinguishing the cases α. = α;. and α + a . Hence, for εφ0,

IKα8- Γfcα
e)-2 | | Λ ^ 16mfi"

and aεe3. It follows that 9> is dense in # = J2\ Π
This proposition shows that our examples are not typical in the sense of Baire

category. Our first example is also not typical from another point of view.
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Proposition 2. The set

έf = {de J£: d is dense in some interval}

is of first category and dense in <£.

Proof. We have ?Γ = (J 3~ah, where, for fixed a<b,
a, b rational, a<b

$~ab = {de£?\ d dense in [a, ft]}.

3~ah is easily seen to be closed, and it is nowhere dense, since its complement
contains βP. So 2Γ is of first category. The sequence aε = a-\-εd, εφO, introduced in
the preceding proof, is dense in some interval, since otherwise d would be nowhere
dense. Consequently, 2Γ is dense in JSf. •

For a similar result in the continuous case see [1].

3. Other Examples

A couple of known examples of discrete Schrodinger operators with pure point
spectrum is contained in

Corollary C. Let ^ be a translation invariant Banach algebra of functions defined
on IR, and let ωelRm, m^l. If φ is an arbitrary function satisfying

{φ-Tkωφ)~1e&r, \\{φ-Tkωφ)~1\\^^Ω{\k\), /cφO (3.1)

with some approximation function Ω, then, for 0 ^ ε ^ ε o , ε o > 0 sufficiently small,
there exists a function φ with φ — φe^, \\φ — φ\\^^ε2/εQ, such that the discrete
Schrodinger operator

has pure point spectrum {φ(ίω), ieΈm} and a complete set of exponentially localized
eigenvectors with decay rate 1 +logε0/ε.

// condition (3.1) even holds for all functions ψ with ψ — φe^, \\ψ — φ\\&^y,
y > 0, then the preceding statement is also true with the role of φ and φ interchanged.

m

Above, we used the notation fcω= £ kμωμ and Tkωφ = φ( +kω). We stress
μ=l

that our assumptions include that | | / | | ^ = 0 implies / = 0 everywhere.

Proof. Let Ji be the set of all real m-dimensional sequences a = (ai) satisfying
a. = f(iώ) for some fe !F, and set

taking the inf over all fe^ with this property. Since \f\^ II/IU f o r a 1 1

the same arguments as for sequences, || \M is a norm on M, and Jί is a translation
invariant Banach algebra with this norm. Now it is easy to see that the sequence d,
given by dt = φ(iω\ is a distal sequence for Jί with \\{d- Tkd)'~1\\Jί^Ω(\k\) by (3.1).
An application of Corollaries A and B then gives the result. Π
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We give two applications of Corollary C. In both cases, ω is required to satisfy
a diophantine condition

(3.3)

where ||x|| = min|x + n| for x e R Apart from trivial cases, such a condition is
neX

necessary to verify (3.1). For m> 1, it incidentally implies that the points ίω, ieZm,
lie dense on the real line.

As a first example, we consider the space if of all real functions of period 1 and
bounded variation. With the norm

I I J II ψ = \\j II oo •" IJ ' total var ia t ion '

if is a translation invariant Banach algebra. The periodic extension φ of the
identity function on [0, 1] belongs to if and satisfies

\φ~Tkωφ\^\\kω\\^Ω(\k\Γ\ ^ΦO, (3.4)

by (3.3). From this one obtains {φ-Tkωφ)~1eif with

So Corollary C applies, and for small positive ε there exist φeif such that (3.2) has
pure point spectrum φ(ίω), which is dense in [0, 1]. This is Craig's example [4].

It is worth mentioning that (3.4) can not hold for a continuous, 1-periodic
function φ, since for any kωφZ there exists x with φ(x) = φ(x + kω) by the mean
value theorem.

As a second example, we let r >0, and consider the space J-fr of all real analytic
functions on Sr = {ze<E: | Imz|<r} with period 1 and bounded derivative. With the
norm

11/11̂ = sup |/(z)|+sup |/'(2)|,
zeSr zeSr

this is a translation invariant Banach algebra. The function 0 = tanπz is real
meromorphic on Sr, of period 1, and satisfies

, w . sinπx
(φ-Txφ)(z)= cosπzcosπ(z

For zeSr and xelR, we have

|sinπx|^2 ||x||,|cosπzcosπ(z + x) |^c r = cosh2πr.

Together with

\f-Txf\Srύ\\f\\*r \\x\\,

and assumption (3.3), this implies

for all ψ with ψ — φejfr, Wψ — φW^^c'1. It follows by Corollary C that for small
positive ε the discrete Schrδdinger operator
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has pure point spectrum {φ(iώ)}, φ — φeJ^r small, which is dense on the real line.
This is the example of Fishman et al. [5] for sufficiently small positive ε. In fact, in
this case, our result is slightly better, since in addition we obtain a complete set of
eigenfunctions.

Fishman, Grempel and Prange actually approached the tangent potential
differently. It was observed by Bellissard et al. [2] that perturbation methods are
applicable. See [2] for a treatment in a more general setting.

Another example also contained in Corollary C for sufficiently small ε can be
found in [8].

4. Proof of Theorem A and B

We outline the proof of Theorem A. We write

D-D= ΣA
V = 0

as a sum of diagonal matrices Av to be constructed consecutively, and set

v = n

We suppose that at the nth step of the iteration, we have

where Vn is the product of all transformations applied so far, and Pn is small for
n = 0,

The next transformation Wn is then determined by the commutator equation

V-U^O, (4.1)

which in addition determines An by the requirement that Pn+ Vn~
1ΛnVn vanishes

on the main diagonal. Solving this equation and setting

V =VW P =W~1(P -\-V'1
Vn+1 Vnyyn >Γn+l VVn \Γn^ Vn /

we obtain

with a smaller Pn+V This completes one step of the iteration. In the limit, we have
Pn->0, Dn^0 and Vn-+V, hence

V~1(D + P)V=D

as wanted.
In this scheme, it turns out, small divisors not only enter with the solution of

the linearized equation (4.1) as usual, but also with each product of two matrices
involving infinite sums. So we deal with small divisors even in cases where the
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commutator [D, ] is boundedly invertible on its range. In any event, their
influence is overcome by the quadratic convergence of the iteration scheme.

We now supply the necessary details, beginning with a couple of lemmas.

Lemma4.1. If XsW% YeW and 0<σ^s, thenXYeUs~\

the constant h ̂  1 depending only on the dimension m.

Proof It suffices to prove this when ||X||s_σ = l, || Y||s = l. The diagonals of Z=XY
are

Since

IIz ιι ^ y \\xό'T*γ_ ιι ^ y nx n n

^ Σ ?-\t?\ (s-σ)e-\k-έ\s

,-\k\(s~σ)m y e~V\σ

converges, we have Z G M S σ, and

by a simple integration. •

Lemma4.2. If XeMs and \\X-I\\s<σm/b for 0 < σ ^ l , 5, where b is the constant
of Lemma 4.1, thenX is invertible in Ms~σ with

Proof. Write down the Neumann series for X " 1 and use \\(X — iy\\s_σ

^ ( b σ " m ) v ~ Ί l ^ - / | | s ? which follows from Lemma 4.1. Q

Lemma 4.3. If KV~1EM(T with | | F - / | | σ , \\V~ί-I\\σ^σm/2b for 0 < σ ^ l , then the
equation [P+V~XAV]=O has a unique solution 4̂eM°° for any PGM, with

Proof Since A-[V'1Alr\ = l(V~1-I)[V-I, A^ and hence

2b2

for A elVI °° by Lemma 4.1, the map A \->A - [ F~ x 4 7 + P ] is a \-contraction in M °
for each PeM, whose unique fixed point solves [V~1AV + P']~0. •
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Lemma 4.4. Let Dbea diagonal matrix whose diagonal d is a distal sequence for Jt.
Then the equation [D, W\ + P- [P] = 0, PeM, has a unique solution WeM with

= 0. // PeM s and 0 < σ ^ s , then WeMs~σ with

\\W\\,-σ^Φ(σ) \\l

where φ(σ)= sup Ω{r)e~~σr' = σ~ 4 mΦ(σ).

Proof. The unique solution W is given by

By our assumptions, WkeJί for all /c and hence WeM. If P G M S and 0<σ^s, then

and the last statement follows. •
Now the iteration scheme. By hypotheses, we are given a diagonal matrix D,

whose diagonal is a distal sequence for Jί, and a perturbation PeM s with

As is proven in the appendix, there exists a positive, nonincreasing sequence (σv)
such that

where Φv = Φ(σv). We fix such a sequence and set

n - 1

sn = s-2 X σv,

so that s = so>s1 >... >sn~>s — σ. Furthermore, we set

v = 0

with c = 96b6. Then θOD=c\\P\\sψ{ — \ ̂ cδby hypothesis, and we choose δ so that

We observe that

cΦ,βTύθl, (4.3)
00 GO

since Φv increases with v, hence Φn= J~] Φ ^ " " " " 1 ^ f| Φ^ n~ v" 1 .
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We now prove inductively that for each n^O there is PneMSn,

and an invertible VneMSn + σn with V~xeWn,

such that V-\D + P)Vn = D + Pn + V~ιDnVn.
This is certainly true for n = 0, so we assume it holds for the first n indices. This

implies
θ (72m

\\V — j\\ | iy-i_r | | < σ

2 m * <

by (4.2), and in particular

111/11 IIF" 1 ! ! < 1 (4 4)
II Vn II sn + σn> II Vn \\sn=2m \^ ^J

Since sn + σn > sn > s — σ ̂  σ and σ ̂  1 by assumption, we may apply Lemma 4.3 to
obtain /4πeM°°,

| | o o ^ 2 ^ f , (4.5)

such that Qn = Pn+V~1AnVn satisfies [ β J = 0 . Clearly, β,eMs", and

3fr2 c'
^^rflB

2". c=8ft 2 (4.6)

with Lemma 4.1 and the last estimates.
By Lemma 4.4, we now have a solution WneMSn~σn of [D,Wn —

satisfying

l l ^ - ί l l ^ - . ^ ^ O lieJL^Cσ^ΦA2" (4-7)

by the preceding estimates and the definition of Φn. In particular,

II Wn -I\\Sn.σn ^σ^θζ/Ub^σ^βb (4.8)

because of c'^c/12b and (4.3), so Wn is invertible inM s " " 2 σ " ,

WW '-IW^-^M-WW^IW^^c-σ^Φβl", c" = 12b2 (4.9)

by Lemma 4.2.

Now set Vn+1 = VnWn, V-+\ = W~ ιVn~\ Since

Sn+ 1 =Sn~ 2σn> Sn+ 1 + °n+ 1 ̂ Sn~ °n

by construction, we have j / + l eM S n + 1+<Tn + 1 and Vn~+\eMSn + ί. Moreover,

by (4.4) and (4.8), and similarly for || V~+\ - V~1 | | s + .
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Finally, Pn+ί = W~1Qn(Wn —I) obviously is in M5 n + 1, and since

ll^~1llS n-2σn^2 b y ( 4 8 ) a n d ( 4 9)> w e o b t a i n

using (4.6), (4.7) and c = 96b6. This completes the induction.
The convergence of this scheme presents no problems. For instance, since

A — _ r PΊΛ0=-ίPl

£ Σ

by (4.5) and (4.2), which gives the desired estimate.
If P is hermitian, then V is not necessarily unitary. But by the simplicity of the

eigenvalues, F* V is a diagonal matrix close to the identity, and it suffices to replace
V by V(V*Vy112. This completes the proof of Theorem A.

The proof of Theorem B is just a variant of the preceding proof. Here we
suppose we have

at the 77th step of the iteration with Pn and Dn — D small. Setting

we then solve

and with

Vn+1 = VnWn,Pn+ί = W- ι(Pn - ίPJ)(Wn -1)

the nth step of the iteration is completed. In the limit, Pπ->0, Dn->D and Vn-^V, and
we obtain the desired result.

To this scheme exactly the same estimates as before - and even better ones -
apply, where now Qn = Pn — [ P J . We just have to observe that

and

so that, by the hypothesis of Theorem B, the diagonals of all Dn are distal
sequences for .Jt with one and the same approximation function. Hence,
Lemma 4.4 applies to the equation [_Dn+v Wn — Γ\ + Qn = 0 for all n^O.
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Appendix. Approximation Functions

Let Ω be a continuous function [0, oo[->[l, oo[, and set

and

where λ ^ 0 is fixed, and Sσ is the set of all sequences σ0 ^ σx ^ . . . ^ 0 with ^ σ v ^ σ.
Here Φ and Ψ are allowed to be infinite. They are decreasing functions of σ and
satisfy Φ(σ) S Ψ(σ), as is easily verified.

The set Sσ is compact with respect to the topology of pointwise convergence,
and since

Π φ ( σ v ) 2 ~ V ~ 1 = s u p f \ Φ ( σ v ) 2 v l

v = 0 n large v = 0

on accont of Φ(σ) ^ 1 for σ ^ 1, the map from Sσ to the infinite product on the left is
lower semicontinuous in this topology. Hence, there is a sequence σ0 ^.σ1 ^ . . . ^ 0
such that

Ψ(σ)= f[Φ(σv)
2'v\

Clearly, σv > 0 for v ̂ 0 and £ σ v = σ, if Ψ(σ) is finite. (We took this argument from
Bellissard et al. [3].)

Following Rϋssmann [7] we now show that ^(σ) is finite for positive σ, if ω(r)
= log Ω(r) satisfies

(A.I)

and

^ ^ o, (A.2)

and furthermore J r 2ω(r)dr< oo. More specifically, we prove

Lemma A.I. // ω(r) = log£2(r) satisfies the preceding conditions, and

1

JIog2

Proo/ Set

ω(rv)
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Then σ0 > σx >... > 0 by (A.2), and

by assumption. So this sequence belongs to Sσ. Next, ω(r) —σ/f^O for r^rv again
by (A.2), hence

sup ω(r) —σ v r= sup ω(r) — σvr ^ ω(rv)

with (A.I), and we obtain

Φ(σv) £ σv -
 λeω^ = (rv/ω(rv)) V ^ .

Since

and ω(rv)^ω(s) by (A.I), we arrive at

Ψ(σ) ̂  f [ φ ( σ v) 2 " V ^ (4s/ω(s))λeσs. Q
v = 0

This lemma allows us to estimate *F(σ) quite easily. For example, if Ω(r) = ev'\
then

2 2

satisfies the hypothesis of the lemma, and Ψ{σ)i^aσ~λealσ follows. For a more
subtle example, see Russmann [7].
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