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Abstract. We study the spectrum of the almost Mathieu hamiltonian:

(Hy)n)=pn+1)+ypn—1)+2ucos(x—nlyy(n), neZ,

where 0 is an irrational number and x is in the circle T. For a small enough
coupling constant  and any x there is a closed energy set of non-zero measure
in the absolutely continuous spectrum of H. For sufficiently high 1 and almost
all x we prove the existence of a set of eigenvalues whose closure has positive
measure. The two results are obtained for a subset of irrational numbers 6 of
full Lebesgue measure.

1. Introduction

The aim of this paper is to study some properties of the spectrum of operators of
the form:

Hw(n)=w(n+1)+p(n—1)+uV(x—ndyn), (1.1)

where we/*(Z), V is a continuous function on the circle T, 6 is an irrational
number, xe T and u is a real positive number (the coupling constant). From the
physical point of view, both the dependence of the spectrum on y, as well as the
growth of the eigenfunctions as n— oo are crucial.

The first example of the treatment of an almost periodic potential goes back to
Peierls [217] where the Schrodinger operator defined in (1.1) describes the one band
hamiltonian for a Bloch electron in a magnetic field, in the approximation where
the interband contributions is neglected; see also [22]. The prediction of Little
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[19] concerning the possibility of getting supraconductivity at high temperatures
using organic conductors gave, more recently, a new interest to the subject.

Subsequently a great effort was made theoretically as well as experimentally in
these fields. The first studied materials, such as the family TTF-TCNQ [8], failed
to be conductors below 40 K since they present a metal-insulator transition, due to
the Peierls instability. In order to avoid Peierls instability, one has to increase the
rigidity of the material. This was performed very recently using the (TMTSF)-PF;
[7], for which material it seems that supraconductivity can appear at higher
temperatures.

On the other hand, Frohlich theory [11] predicts superconductivity provided
the perturbing modulation is small enough. It has been conjectured that large
modulation creates localization of the electrons as argued by Anderson [1] for the
case of random media.

One of the main heuristic steps in the understanding of the phenomenum is due
to Aubry and André [2], who proposed a tight binding approximation, for which
the Schrodinger operator, known as the almost Mathieu operator, consists of the
operator (1.1) in the case where V(y)=2cos2ny. Computing the Liapounov
exponent y which gives the asymptotic behaviour of y(n) as n— oo, they found that
for almost all x

y=loglul, (12)

suggesting localization properties for >1. An argument, known as the André-
Aubry duality [2] relates the spectra of H® and H{* suggesting then a
conducting phase for < 1. See Avron and Simon [4] for a rigorous proof of the
Thouless formula and (1.2). Subsequently Hermann [16] gave a simpler proof of
(1.2). However, as it was recently pointed out by Avron and Simon [4] a result of
Gordon [12] implies that localization cannot occur for all irrational values of 6.

Therefore at most we can expect that for “almost” all irrational 6, the metal-
insulator transition really takes place. The aim of this paper is to prove rigorously
that such is the case.

There are two pieces of mathematical machinery which will be employed. First
we use the method developed by Dinaburg and Sinai [9] for studying the
spectrum of H" for small values of u. This method is based on the Newton
algorithm for computing roots of certain equations, together with the analysis of
the small divisors as in the classical work of Kolmogoroff [18], Arnold [3], and
Moser [20]. Actually we use Riissmann’s point of view [23] with the main
difference coming in our case from the fact that we treat a discretized version of the
Schrodinger equation.

After that, we use, in an essential way the André-Aubry duality. In a previous
paper [6], two of us showed that this duality is fairly general, since it appears as a
Fourier transform in the algebraic formalism related to this problem. In our work
we use this duality argument in order to show the existence of an infinite number
of eigenvalues, with corresponding exponentially localized eigenfunctions.

Furthermore we are able to prove, using techniques of number theory, that the
measure of the closure of the set of eigenvalues is strictly positive.
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The paper is organized as follows. In Sect. 2, we recall some useful results about
number theory and Riissmann approximation functions, and we fix some
functional spaces used in the sequel. Section 3 contains the list of results. In Sect. 4
we make the first steps of an application of the Dinaburg-Sinai method using
Riissmann’s point of view and obtain estimates of the linearized equation. In
Sect. 5 we achieve the proof of Theorem 1 inspecting a recursion process. The
existence of absolutely continuous spectrum for small coupling, which is the
content of Theorem 2, is proved in Sect. 6. Finally, the proof of the existence of a
pure point spectrum at high coupling, together with an estimation of its Lebesgue
measure, is given in Sect. 7. Section 8 is devoted to the case of a special type of
irrationals 0 for which the estimate of the size of the spectrum can be improved.

Remark. Some of the results contained in this paper were announced by one of us
(J.B.) at the Summer Institute on Operator Algebras and Applications, Kingston
(Ontario), July 1980, and the VIth International Conference on Mathematical
Physics, Berlin, August 1981.

2. Preliminaries

Here we fix some notation and recall some results used in the sequel.

2.1. Riissmann’s Approximation Functions [23]

An RAF (Riissmann approximation function) is a strictly positive function € on
[0, + oo[ which satisfies:
i) Q is continuous, decreasing and

limQ2(s)=0 as s—+ o0, 2.1)
.. 1 1. .
i) 5o S logb(—sj is decreasing, (2.2)
iii) +foo d L lo ! <+ foran >0 (2.3)
! s zlogg B y $0>0. .

A useful example of an RAF is given by

Qs)=Qs,) if s<sy=e*"", (2.4)
Q(s)=Cexp—s/(logs)* ™ for s=s,, (2.5)

where « <4 and C are strictly positive constants.

Clearly the product of two RAF’s is again an RAF, so that in particular
positive powers of an RAF are RAF’s. Following [23], we now introduce the
functions

2,(0= | mds for ¢>0. (2.6)
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Here @,, is a decreasing function of ¢. Further we define DS(g) to be the set of

positive decreasing sequences r=(r,),», such that Y r,<¢. Endowed with the
n=0
topology of pointwise convergence, DS(g) is a compact subset of [0, o]".
For each RAF, Q, we define

@ 1
¥, ()= inf [[®,r*", m>0. (2.7
reDS(e) n=0
It is proved in [22] that
0<d, ()= Y, (0)<+0o0. (2.8)

On the other hand, since @,(¢) increases as ¢ decreases to 0, the map

1 N 1

reDS()— [] &,() " =sup [T @.r)>"" 29)
n=0

n=0

is lower semi-continuous and therefore, by the Weierstrass theorem, there exists a
sequence 7e DS(g) such that

1

¥ (0)= HO @, (7). (2.10)

D18
~?

=
Il

IS

Clearly #,>0 for all n and (2.11)

3
]
(=]

2.2. Function Spaces

In what follows we deal with functions of three parameters (¢, x, 1), where ¢ runs
over a domain in T+i{R=C/Z, x is chosen 1 some open neighbourhood of T
in €/Z, and p is a small complex parameter.

For ¢peT+iR we define

ol = inlf|¢+nl. (2.12)

For any compact subset K of T+iR and any Banach space B we denote by
Z(K, B) the set of Lipschitz continuous functions from K to B. On %(K, B) we
define the following norm:

(Pl =sup IF@)1 + sup OO .1

6, @K lé—a'l
PRy

If B is a Banach algebra, #(K, B) turns out to be a Banach algebra under
pointwise multiplication.
The following is easy to prove:

Lemma 2.1. If B is a Banach algebra and Fe #(K, B) such that for any ¢eK,
| F(¢)*| £k < + o0, then F is invertible as an element of the algebra ¥ (K, B) and

IF= 1, Sk*FI,. (2.14)
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In what follows B will be the Banach space of holomorphic bounded functions
on the interior of some holomorphic manifold .# with boundary and with values
in € or in the two by two matrices M ,(C). Here B is equipped with the norm of
uniform convergence. Accordingly, we shall denote #(K, B) by Z(K,.#,C) or
ZL(K, M,M,(C)) in these cases. More specifically .# should be one of the
following:

(1) a one point set and in which case B=C or M,(T), (2.15)
(ii) T.=T+i[—r,r], for r>0, (2.16)
(iii) D,={zeC; |z|= 4}, for A>0, (2.18)
(iv) T,xD,. (2.19)

So that there is no ambiguity, we shall drop the index ¢ in the norm of #(K, B) and
denote by || [, | I, [l [, or |l [, , the norms in L(K, #,C or M,(T)), according
to whether ./ is given by (i), (i), (iii) or (iv).
Given an RAF @ and an irrational 6 such that
inf ||nl| =Q(m), (2.20)

[n|=m

we define a domain K, j g, for R>0 by

Ko g =10 T+iR, |¢+nl|| ZQ(n|), neZ}nTy. (2.21)

Note that K, 4 p is the complement in T, of the union of open discs with
centre nfe T and radius Q(|n|). If Q decreases rapidly enough, and if Q(0) is small
enough, K, , xT turns out to have non-zero Lebesgue measure.

2.3. The Irrational Rotation

Let 0e[0,1[ be an irrational number and [a,,a,,...] its continued fraction
expansion. Denote, as usual,

Dy

—=[a;,a,,...,a,].
Writing ¢,0=q,0— p,, we see that
< =lg.01 =140l = S - (222)
(an+1+2)qn qn+1+qn qn+1 an+ lqn

We shall use the following results; see [15, p. 63] for the proofs.

Lemma 2.2. Let g be such that 0<qg<gq,, ,, then
g0l 2 19,01 - (2.23)

Lemma 2.3. For each integer je[0,q, [, let I} denote the subset of T given by
I7=[j6,j0 +q,0] (mod1).

For any nz1, the (4, + 4, ,) intervals I, for 0=j<q,,, and I\ for 0=j<gq,
cover T and have disjoint interiors.
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We say that an irrational 0 is of constant type if there is a constant ¢ >0 such
that

'e— g\ 2550 VhaeN. (224)

or, equivalently, if the continuous fraction expansion is uniformly bounded,
namely a, < A, for all neIN. An irrational number 0 is called a Liouville number if

- 1
(q.)"
The set of irrational 6 for which the non-existence of localization for the

Schrodinger operator related to (1.1) was proved [4,12] is a class of Liouville
numbers, namely those for which there is a constant ¢ verifying:

‘ _ P (2.25)

4,

[

< .
- nqn

' _ P (2.26)

dn

Note that the set of numbers of constant type as well as the set of Liouville
numbers are of zero Lebesgue measure.

An irrational number is called a Roth number if, for every ¢>0, there is a
constant ¢,>0 such that

p C,
ie—ay >Em: Vp,qeN. 2.27)

The class of Roth numbers is of full Lebesgue measure.

3. Statement of Results

This section is devoted to the precise statement of the results proved in this paper.
As explained before, our results agree with the André-Aubry conjecture. They will
be presented in three steps. We use the notation introduced in the previous section.

3.1. Twisted Conjugacy

As is well known, the Schrédinger equation corresponding to (1.1) can be written

as
(wn+l> :<Z+,UV(X—”0) _1)< 1Pn ) (31)
Wn 1 O wn~l

Our first theorem asserts that, under certain circumstances, there is a twisted
conjugacy of this equation to the free model. In what follows V is a complex-
valued continuous function on T,, >0, holomorphic in the interior of T, and
[ V1|, denotes its uniform norm.

Let Q be an RAF and 6 an irrational number such that

Imo| = Qm), Ym>0. (3.2)
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For a fixed R>0, let K denote the set K, , ; defined in the previous section, see
(2.21). Define a matrix-valued function by

z+Huv(y) - 1)

1 0 (3.3)

M@%m=(
where zeC, yeT,, and peD, for some 1>0. The corresponding free matrix is

defined by

MWFG Bv. (3.4)

Theorem 1. There exists a constant B>0 such that for all ¢ with 0<g<r and all
A>0 for which
IV 1,A¥(0)<B, (3.5)

one can find a matrix-valued function G in L(K,T,_ ,x D,;, M,(C)) and a complex-
valued function o in £(K, D,, C) such that

M(2cosnd+a(, ), y, 1) = G(¢p, y— 0, WM (2 cosnp)G(h, y, )" (3.6)

for all
<4, ¢eK, yeT,_,. (3.7
Furthermore G and o can be chosen in such a way that
(i) detG(¢, y,m)=1, (3.8)
(ii) o, u=0)=0, (3.9)
(iii) G(¢, y,u=0)=1. (3.10)

Moreover, if V(y)eR for yeR, then for y and p real,
G(¢,y, =Gy, i) and (¢, W) =P, ), (3.11)

where G is for the complex conjugate matrix of G.

3.2. Absolutely Continuous Spectrum at Small Coupling
In addition to assumptions of (3.1), let 2 be an RAF such that

S Q<L (3.12)

and denote K=K, , xnT.
For xe T, consider the self-adjoint operator on Z*(Z), defined in (1.1):

HYp(n)=wpn+1)+ypn— 1)+ pV(x—nb)yn). (3.13)
We have the following

Theorem 2. There exists A, >0 such that for 0<u<A4a,, the map

E(-, 1) ¢pe Ko—E(¢, p) =2 cosne +alp, 9) (3.14)
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is a Lipschitz homeomorphism which transforms K, into a closed subset of the
spectrum of HY of positive Lebesgue measure; moreover, the restriction of the
spectral measure of H® to E(K,, ) is, for any xe T, absolutely continuous.

3.3. Pure Point Spectrum at High Coupling

In addition to the assumptions of 3.1 and 3.2, we suppose now that 6 is a Roth
number, (see 2.3), with a continued fraction expansion

0=[a,ay....a,...] (3.15)

for which limsup a,=A(6)=10. As is true for almost all irrational numbers, A(6)

may be infinite.
The following theorem insures the existence of point spectrum at high coupling
for the special case of the almost Mathieu operator, namely

V(x)=2cos2nx. (3.16)

Theorem 3. Under the assumptions above, there is a constant A, such that for p =1,
the almost Mathieu operator HY has, for almost all xe T (with respect to Lebesgue
measure ), an infinite set of eigenvalues whose closure has positive Lebesgue measure.
The corresponding eigenvectors have exponential decay.

More precisely, for almost all xe T, the set

K, (x)=uE(Kyn{2x+2n0,neZ}, u} (3.17)
is in the closure of the set of eigenvalues and has positive Lebesgue measure.

3.4. The Case where 0 is of Non-Constant Type

For a set of full Lebesgue measure, the constant

A(f)=limsupa, (3.18)

turns out to be infinite. In that case we can give an improvement on the size of the
sets of the spectrum of the almost Mathieu operator described in Theorems 2 and
3. Actually in that case their Lebesgue measure is very close to that of the entire
spectrum.

Theorem 4. With the same conditions as in Theorem 3, if 0 is a Roth number for
which A(8)= oo, then for any £>0 there is .,>0 such that, for almost all xe T and
U=<A, (respectively u=1/1,) the absolutely continuous part of the spectrum
(respectively the closure of the set of eigenvalues) of the almost Mathieu operator
H"™ has a Lebesgue measure greater than 4—¢ (respectively (4—e)u).

We remark that 44 4|y is a trivial upper-bound of the Lebesgue measure of the
spectrum of H®. In [2], André and Aubry gave numerical evidence for the
Lebesgue measure of the spectrum of H® to be 4|1 — p.
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4. The Linearized Equation

In the proof of Theorem 1, the main point is concerned with the solution of a
linearized equation and some related estimates.

Let F and G be given in Z(K, T,, M,(C)), r>0 and let M be the 2 x 2 matrix-
valued function, defined by

2 -1
M($) =M (2 cosn) = ( Cols”‘j’ . ) @4.1)
As in (3.1), 0 is an irrational number such that
[mO) =zQ(m), Vm>0. (4.2)

Associated with the equation of Theorem 1, we consider the following linearized
equation:

W($, x—0)M(¢)— M(P)W(¢, x)=F(¢,x)+ G(¢,x—0) ' A($)G(¢,x).  (4.3)

The rest of the section is devoted to the proof of the existence and properties of the
solutions W and A of this linearized equation.
Denote by E the linear subspace of M ,(C) of those matrices of the form

(g §>’ o, peC. (4.4
Proposition 5. Under the previous assumptions, there is 0<ey<1 such that if
1G—1],<eq, and 0<g<r, the linearized equation (4.3) has a solution (W, A) with
We L(K, T, _ ,, M,(T)) and Ae L(K, M ,(T)). Among all the solutions, there exists a
unique one such that

(1) A(p)eE, V¢eK, (4.5)

(i) jtr(W(d), x))dx=0; j tr(W(¢p, x)M(¢))dx=0. (4.6)
Furthermore, in that case, the solution satisfies

(a) 14l =C,|F],, 4.7)

(b) |F+G, 'AG|, 2 G, Fll,, (4.8)

(c) IWll,-,=C32,2n0)| FI,, (4.9)

where C,, C,, and C, are constants depending only on &, R, ¢,, and G, denotes the
function

Gy, x)=G(p, x—0). (4.10)

In order to prove this result, we first introduce for Fe (K, T,, M ,(C))
E,(F)(¢)= [ dxexp(—2innx)F(¢,x), (4.11)
T

and for Ge Z(K, T,, M ,(0)), I}; denotes the operator acting on #(K, M,(C)) by
I[(A)=E,(G, 'AG). (4.12)
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Now the proof proceeds in three steps, the first dealing with A, the second with
E(W) and the third with W.

Step 1. Computation of A and related estimates.
Lemma 6. Let = ||G—1|,<1, then I is bounded on ¥ (K, M ,(C)) and
o—=1l,=2n/1—n; [IgI<1+n/l—n. (4.13)
Proof. Since
(I=DA=Eo(Gy "A(G—1)) +Eqo((Gy * ~1)A),

and
IG™ =1, =1 +(G—-1)~ ' =1, =n/1—n,

we get
G, =1/1—n,

which proves the lemma.
We now prove (a) and (b) of Proposition 5. Integrating over x, we see that (4.3)
is equivalent to the following two equations:

tr(Eo(F) + Iy(A4)) =0, (4.14)

and
tr(MEy(F)+ MI4A))=0. (4.15)

But, if A€ E, we get:

ame (0 46, wie

0 0

where (4,(F), A,(F)) is the image of (tr E,(F), tr ME,(F)) by the inverse A; ' of the
mapping

AG:(oc,B)—>(trFG<g g) trMFG(g g)) 4.17)

Note that by Lemma 6, A5 " exists in (K, C) provided ||G— 1|, is small enough.
From (4.16) (a) and (b) of Proposition 5 follow immediately

Step 2. Existence and Properties of Ey(W).

Since E (W) appears only in [E,(W), M], W can be chosen in such a way that
(ii) of Proposition 5 is verified. Then, it is a simple matter of computation that we
can write:

Eo(W)=(tr(M)? = 4) '[Eo(F) + [5(4), M]. (4.18)
Lemma 7. For e K=K, 4 p, we have
IEo(W)I= K, F, .

Proof. Since 4— tr(M)?=4sin’*n¢ and for |[Red|<1/2, we get [sinng|>2|¢|. For
¢eK, ||¢] = Q(0)>0, thus K, exists and depends only of Q0), R, | M|, and C,.
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Step 3. Computation of W.
In order to compute W, we use a Fourier expansion and a ¢-dependent change
of basis diagonalizing M(¢). From (4.3), we get:

exp(— 2inn0)E, (W)M($) — M($)E (W)=E (F+G; *AG). (4.19)
The matrix

S(h) = (exp(lingb) exp(;ian))) (4.20)

gives the desired change of basis. The following is elementary:

Lemma8. Let A be in L(K,M,(C)) and let a;; be the matrix elements of
S(¢) "1 AS(¢). Then

Ky sup Jla;l| = A =2K5 sup fla,ll . (4.21)
iy tJ

where

Ky=|S(¢) [S()~ " - (4.22)

The rest of this section is devoted to the proof of (c) of Proposition 5. Let
Wi(¢,n) and H,(¢,n) be the matrix elements of E,(W) and of E(F+G, 'AG).
Writing ¢, = +1 and ¢,= —1, from (4.37), we get

Hy, (¢, n) exp(in(n0 —¢,p))

4.2
2i sinwnl) (423)

k=1,2, n=£0, Wod.n)=

and

H, ¢, n) exp (innl)
k=/.  Wlp, n)= —2C- . 4.24
* A ) 2isin (e, ¢p — nl) (4.24)

Lemma9. Let He Z(K,T,,C) and let |H|, , denote the supnorm of H on K x T,.
Let H(¢p,n) be the Fourier coefficient of H(¢, -) of order n and let

H(¢, njexp(2innx)

, X)= . , 4.
V... ,,EZZ sinm(ed — no)* (4.25)
where e=1,0, —1 and aeN,, then

IV, o, = oS )/ 7 +29,2n0) | H , ,.» (4.26)

for 0<o<r.

Proof. If |Im x| £r— ¢ one gets

|H(¢, n)lexp 2nln|(r— o))
e S 2 S o - m

123/ ¢ lﬁ(cb,m)lexp(znlmlr)) PN
§2mgo(=z_m ioh—m] | ©xP(=2mem)—exp(~2mg(m+1)).(4.27)
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But by Schwarz’s inequality and the proposition in the appendix together with
Parseval’s formula

Z |H(q,’) m)|exp (2xn|m|r) <2 |/n+ jd H(é, x+7)2

p=om led—mo]
§2| Qmy ||H|| (4.28)

Finally, since  is a decreasing function, we have

oo}

(exp(—2mom) —exp(—2mo(m + 1))

= Q(m)*
1 2no(m+ 1)
e *ds
mz Q(m)a 2nom
<[ ds=d,2mp), (4.29)
0

S 24

fo ]
(2n9>
and (4.29) together with (4.28) proves the lemma.

Lemma 10. Under the assumptions of Lemma 9, for 0<g<r, the following in-
equalities hold :
Fore=+1

I,

l.i”l o=

I/TC‘*“) l+7TxChTER) ot 1(27TQ)”H‘|r’

and
H M/(LIHI 4,_1/7'["*“)(15 ”H“ ‘430)

Proof. We only need to estimate the extra term

W)= W($'. )

N Pl -
But 5
0H(¢, @',
W(e,¢',x)= Y. exp(2nny) {é_iﬁ%%%%

H(¢', n)d(sinn(e — nb) (¢, ¢')

. sinm(ep—nO) 1K

x sinm(ep — nf)* } , (432

where ¢= + 1.
By the previous lemma and Holder’s inequality, one gets:

6W (e, ¢', x)| < |/m+2{I16H |, ,P,2m0) + | H] ., ,n ch(tR) P, , ,(2m)} ,(4.33)

and thus
[ W ,u_l/?TJr’HHH.{flj ng)+n(chnR)x®,, |(2ro)} . (4.34)

and since Q(s) <Q(0)=||n0|| <1 one gets ¢, <@, , and (4.30) follows.
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For ¢=0, the second part of (4.32) does not occur and so (4.30) follows directly
from Lemma 9, so that Lemma 10 is proved.

We can now end up with (c) of Proposition 5. Applying Lemmas 9 and 10 to
(4.23) and (4.24), we get

IWall,— o= | Hyll, exp (@R (1 + 7, Qro))/ m+2., (4.35)
and
KK [ Wllo- o S IH ol (1 + 7 chnR) D, (2mo)]/ T +2 . (4.36)
Therefore, putting
K,=Max(]/n+2(1 + nchnR),exp(nR) (1 +7) /7 +2), (4.37)
we have
sup [[Wyell- o = Ky ®5(2me) sup || Hyg |l (4.38)

and finally
W —Eo(W)|, - ,S2K3K,@,2n0)l H |,

S2K3K,Co0,2m0)||F |, , (4.39)

where we use (4.8) for the last inequality.
From Lemma 9 we can write

IEoW)ll = KL Fll, = K,0,2m0) [ F (4.40)

so that, taking
C,=2K3K,+K,, (4.41)

(4.9) follows and Proposition 5 is proved.

5. The Recursion Process

This section is devoted to the proof of Theorem 1 using a recursion process
applied to the linearized equation. We introduce at each step matrix-valued
functions Z,(u, ¢) and matrix-valued functions G(y, i, ¢), sufficiently close to 1, so
that

(1) Nyt d)=M(D)+ON (v, pt. @)+ Gy = 0. . @)~ Zy (1 P)G (). 1. $) . (5.1)
(2) 5Nk(y9 [.l, 0)=07 as H—)O, (52)

where yeT,, ue D,. For, we start with Z (1, ¢)=0 and G,=1, so that

NO(y9ﬂa¢)=M(¢)+5NO(yaﬂ’ ¢)’ (53)

and to be explicit, we write

ONo(y, 1, )= poN(y). (5.4)
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Now the results of the previous sections still hold when we replace #(K, T,, B)
by X(K, T, xD,,B), Bbeing € or M,(C); in that case ue D, appears as an extra
parameter and all the estimates are uniform in it. At each step r and 1 will be made
precise [see (5.18) and (5.19)].

From Proposition 5, we get W, , (), i1, @) and A, (i, @) as solutions of the
equation

Wi = 0. 1. 9)M(p) = M(P) Wiy 1 (1, 1. )

=N 1 Q)+ Gy =0, 11, §) ' Ay (D, 0G0, 1 @) (5.5)
Therefore, putting

N0 @)= {1+ W =0, 1. 9)} "Ny, @) L+ Wiy (i, )} 'L (5.6)

it is not difficult to see that N, , , verifies the same relation (5.1) as N,, with

Ziiil, @)=Z (1. ) — Ay 1 (1, D) (5.7)
Gy ) =G i Q) UL+ Wi 1 (0, 1 )} (5.8)

ON (0 e @)= {1+ Wi (=0, 11, @)}~ H{ON (), 1 §)
+ G =01, 9) " Ay (@, WGy 1§ Wiy (0 . D) (5.9)

Following Proposition 5, we shall also get

VV;(+ 1(y’ ,l.l, ¢)=0(:u2k) >

and as u—0, .
Ay o 1(1 9)=0(*), (5.10)

so that we can expect the recursion process to be convergent as k— co to some N
satisfying

N, (3, 1 ) =M(P) + G (y =0, 11, §) ' Z (1, $)G (v, 11 B) 5 (5.11)
with
Gl d)= [ (14 W09, (5.12)
and .
Z. (1 )=~ z W ). (5.13)
Now, from (5.6), we get
N1, 0)=G o (y =0, 1. 8) "No(y, 1t, )G o (v, 1. ), (5.14)
and comparing (5.11) with (5.14), it follows that
No, 1t @)= Z (1, ) =G o (y — 0, 11, )M(D)G o (v, 11, §) " (5.15)

which will prove Theorem 1 if we are able to show that Z  is of the form

a 0
(0 0). (5.16)
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This is more precise than Z_(u, ¢)e E, which is a consequence of Proposition 5.
We shall come back later to this problem.

We shall follow Riissmann [23]. Using (2.10) and (2.11) we build a sequence
{0 en With 0< ... <94 <@, <...<g<rand ) g,=g such that
N

s

¥,2n0)= [] ®,2mo)" """ (5.17)
h=0
We define
oo 1=Fe—Qxs To=F (5.18)
and
Aev1=4bk,  Ao=4, (5.19)

where the 0,, 0< 0, < L. arc chosen in the following way:

dp=1 (5.20)
D210, +)

57 =(1+e0) 1Cy 1~
O =0 +e0) G = = o

, for k>0, (5.21)

so that
1 D,(2mg,)

5 =
kI:[O g (L+&9)C, ¥,(2m0)

(5.22)

From Schwarz’s principle (see [23] and Proposition 5) we get the following
inequalities

O I =T SUHIG =T, ) U+ W, ) (5.23)
2) Wil i S C30Z 10N, ®(270) (5.24)
©)) HAHIII,,HSC NN, (5.25)
@ ON S ColWl =Wl )™ 08 IONG s (5:26)

As in [23], these recursion estimates can be solved provided

p W(znmuNnm_ﬁc—c— (5.27)
0

and |u|<A,=1,]]9, The condition on 2 in Theorem 1 follows from (5.27).

Now, in order to finish, we just need to prove that the matrix [see (5.3) and
(5.13)]

NO(.V: H, d)) - Zoo(lu" d)) (528)

is of the form announced in Theorem 1, namely

M2 cosnp +alp, p),y, d). (5.29)
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But, since Z_(u, ¢)€ E, we have

(5.30)

No(y o)~ Z., (11, )= (2 cost +iV(+olg.) 1+ B0 u)) |

1
From (5.30) and the existence of G, we can compute

logdet(N,—Z,,)=log(1— (¢, 1))
=logdetG (¢, x— 0, u)—logdetG (¢, x, 1). (5.31)

Integrating over x on T one gets
log(1—- (¢, w)=0 if ful=4, (5.32)

or f(¢,u)=0, since [ is analytical in u. Finally, it also follows that
logdetG (¢, x, p) is independent of x, and, therefore, modifying G, if necessary,

we can assume
detG (¢, x, 1)=1, (5.33)

which completes the proof of Theorem 1.

6. Absolutely Continuous Spectrum: Proof of Theorem 2

The matrix-valued function G(¢,x, ) in Z(K, T, xD;,M,(C)) of determinant
one, which we get by means of Theorem 1, can be viewed as an “intertwiner”
between the interacting transfer matrix M(E(¢, ), x, 1) and the free transfer matrix
M (¢), where

E(, u)=2cosne+o(¢, ) (6.1)

provided pe K=K, ; , and |u[<A. From that, it is natural to define the following
functions f, and g, in Z(K, T, _xD,,T), for e= %1, relating the solutions of the
free model and such of the interacting one:

(fa(qﬁ, X, W)

IV
ge(¢,x,u)):G(¢’x’u) ( ) (62)

exp —ine¢

Lemma 11. The functions f, and g, satisfy:

(1) 9P, x, p)=exp(— ined) f(¢, x+0, ), (6.3)
2 {E(, )= uV(x)} f{d, x, 1) = g (b, x, ) = exp(ime) f(p, x— 0, 1) . (6.3))
The proof is easy.

Corollary 12. The sequences {p(n)},.z €= 11 defined by
() =exp(inend) -fi(p,x—nb,p), neZ (6.4)
are generalized eigenfunctions of H'" for the eigenvalue E(¢, w).

Proof. Combine Lemma 11 with Theorem 1.
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Corollary 13. The Wronskian of the solutions v, and yp_ is
Wy, ,p_)=2isinng. (6.5)
Proof. Since the Wronskian

¥+ (n) ¥-(n) )
Wy, w_ :det< 6.6
(Wip-) poi—1) p_(1—1) (6.6)
is independent of n, for n=0, we get
fvo f- a1 1
W<w+,w,>=det(g: RSl e
=2isinng, (6.7)

where we use Lemma 11 and the fact that detG(¢, x, )= 1.
We come now to the computation of the resolvent of H%, and first remark that

. (I </ 2(1 +e0) exp(—enn(Im @) , (6.8)
since, using (6.2) and Sect. 5, we have
Uil 2=V 206G, <)/ 201 +e). (6.9)

Here ¢, is a numerical constant introduced in Proposition 5, and depending on R,
provided they are small enough.

Lemma 14. Let ¢pe K be such that Im¢ >0, then for all ye/*(Z), we have

HY— E(¢, 1))~ x(m)= 2isinme

'{%(m) i w-(P)x(p)+p _(m) i w+(p)x(p)}- (6.10)

p=— p=m+1

Proof. This is a well known formula, see e.g. [27].
We now prove that if ye /!(Z) the right hand side of (6.10) remains bounded as
Im¢—0.

Lemma 15. If ye/NZ)n(*(Z), e K, then

(1 +e)

00 (6.11)

Il (HY = E(, )~ "ol < xli?

Proof. Combining (6.9) with (6.10), one gets

’lm(m) Y w_(p)x(p)l S2l+gg) Y, exp(m Im(p—m))y(p)l
r

n=m p=m
S2(1+e0)lxllgs - (6.12)

The remaining terms in (6.10) are bounded by the same constant and the lemma
follows from the inequality:

4Q0) =4 ¢|| =12sinng| . (6.13)
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For ¢y Ky 4z and 0SB =R, we define two real functions &* and #* by:

(o B)— in“(bos ) = E(o + B, 1) — Elbos ). (6.14)
Let us remark that, by definition of K, 5  we get ¢, +iffie K.
Lemma 16. There is a A, and R, 0 <A, <A and 0<R, <R such that, if |p|< A, and

0<B=R,
(1) 184(¢o, P = 2mQA0)8, (6.15)
() nfsinnd, <n*(do, ) =3nfsinng, . (6.16)
Proof. Note that, by Theorem 1, there exists 4, such that
focll;, =m€(0), (6.17)
and therefore )
oo +1B, 1) — o, W = TRA0)B. (6.18)

On the other hand, by (6.1):
E(¢po+if, 1) — E(¢g, )= 2cosm(¢p, + if)—2cos o+ oo +if, 1) — oo, 1),

(6.19)
from which we get:
1€(¢o, Pl = 2|cos | {chnfp— 1} + m2(0)B. (6.20)
Since we can choose R, so small that
chrfp—1=3Q0)B, [BI=R,, (6.21)
(1) follows from (6.20).
In order to prove (2), we write
(o, f)=2sinnd, -shnf+Im{alp,+iff, 1) — (P, 1)} . (6.22)
Using [shx—x|< I3—Ifexp|x| we get
[7“(pg, B)— 21 sinnpy| S mQ(0)B+ 73 B3 exp(np) sinn,, . (6.23)

Again by (6.13), the right hand side is dominated by fnsinng,, provided R, is
small enough to have
in?R2exp(nR,) <1, (6.24)
which proves (2).
Combining Lemmas 15 and 16, we easily get the following

Lemma 17. Let u be a real number such that 0=u<2, and let a, be the spectral
measure of H¥ corresponding to the vector ye/NZ)NXZ). If ¢oeKg o x0T and
0<p <Ry, one has

(¢, P)

<
0:§{E—E(¢o,#) 5“‘1)0,[3)}2""7 (d’o,ﬁ)z 7x
un2“+%y
- Q(0)

o (dE)

(6.25)
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From the previous lemma we can conclude the absolute continuity of ¢, with
essentially bounded Radon Nikodym derivative on the set E(Kg, 4 xNT, 1). The
proof of this property is the object of the following three lemmas.

Lemma 18. For any Borel subset A of E(Kg 5 x0T, 1), we have

1+e,\2
<|xlz %) 4] .
oS5 (e 1 (626
Proof. The set # of measurable subsets of IR for which (6.26) holds is a monotone
family, so that we can take A to be any interval centered at a point of
E(Kgq g, x0T, w), of length smaller than some fixed constant, which we take to be
4nQ(0)R,,.
But for ¢oeKg o g T and 0<B<R,, denoting by I, the interval of length
4nQ(0)f and centered at E(¢,, 1), we can use Lemmas 16 and 17 to get
”XHZ (1+80)2 > j‘ ’7”(‘150,/3) G
©QO) T i, {E—E(de ) — (Do, Y +1"(¢0s
nf sin(ndo)o,(I)
= 1672Q(0)* B2 +9n* B2 sin*ng,, |

From (6.27), we easily conclude:

(dE)

(6.27)

1+e,)? 9
o W=7z g(f;;) | '(“ 49(0))

1 2
<5z (g 10 (628

It remains to prove that E(K, , xnT, 1) has positive Lebesgue measure:

Lemma 19. There is a Lipschitz homeomorphism E* from J=[€(0),1—Q(0)] to
convE(K, o g, 1), such that

A

(1) E'MKg g rOT=E(-, 1), (6.29)
(2) Yoeld, ¢'eJ such that p= ¢/,
3nQ(0)(¢' — §) < E“(d)— E“(§) Sm(2+ Q0)(¢' — ). (6.30)

Proof. If ¢' > ¢ are in J, we have:
2n(¢p" — ¢p)=2(cosmd — cosme’)
24nQ(0)(¢"— ¢). (6.31)
Furthermore, if ¢, ¢’€e K, o x0T, we get
Qn+ 0@ — @) 2| — ) — P, Wl + 2cosnp — 2cos g’

=E(¢, W) — E(¢', 1)

=2cosn +alp, W) —2cosmd’ — o', )

23nQ0)(¢" - ¢), (6.32)

where we use (6.17).
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Now K 4 x0T CJ is a Cantor set and there exists a denumerable family {I,},
of open disjoint intervals such that

J—{KgernT}=JI,. (6.33)

It 1,=]a,b,[ with a,,b,e K, , 5, we extend E(-, u) to I, by
E"¢)=(¢p—a)E(a, 1)~ (b,— ))E(b,, 1),  a,<¢<b,. (6.34)

Since E* again satisfies (6.32), this proves that E'isa Lipschitz homeomorphism.
We conclude with the following:

Lemma 20. For 0Su< 1, and a subset LCT of positive Lebesgue measure, the set
E(L, p) has positive Lebesgue measure, in particular for L=Kg 4 g0 T.

Proof. Let F* be the inverse homeomorphism of E*. By Lemma 19 (2), one has for
any interval ICJ:

|FH(I)| <

= 3200) 1, (6.35)

and (6.35) is still true for any Borel subset of J; in particular

- 1
|L| = F*E(L, )l = 371—{2(0—)!15(& wl, (6.36)

and since ) Q(n)<1/4, we get

n=0

|Kg o g T[>1/2,
and the lemma follows.
Now lemmas 11-20 combine to give Theorem 2.

7. Pure Point Spectrum: Proof of Theorem 3
We are now able to prove Theorem 3 using Aubry-André’s duality [2, 6].
Proposition 21. Let i be such that 0Su=< 1, and ¢eT. Then for all meZ such that

1
¢+2mbeKy ;g ;E((b +2m0, 1) is an eigenvalue of the almost Mathieu operator :

(HYp) ) =ph+1)+pn—1)+ %cos 2n (% — nQ) y(n). (7.1)

Proof. If ¢ —¢'€2Z0,H}/i and HY}J5 are unitarily conjugate by a translation in
/?(Z), therefore we only nced to prove that, for ¢pe K, , &, ilE(¢, 1) is an eigenvalue
of (7.1). Now by Theorem 2 and Corollary 12, the functions

p(n)=exp(iennd)f(P, x+nb), 1), e==+1 (7.2)

are generalized eigenfunctions of H%, provided 0<u<2, and ¢eK, , r and the
corresponding eigenvalue is E(¢, 1). Therefore

exp(ing)f,.(x—0)+exp(—ing)f.(x+0)+2ucos2nx— E(p, w) f,(x)=0. (7.3)
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Taking the Fourier series for f, :

i)=Y f.(p)exp(2inpx) (7.4)

pel
we get

E(¢, 1) (p)=2c0s2n @ - p9) Je@)+uf(p=1)+ [ (p+1) (7.5)

or
~ 1 ~
Hfﬁl//sz+ = ; E(¢, Wf- . (7.6)

Now, we can prove Theorem 3. By Theorem 1 and Corollary 12, the functions
f. are analytic in x, in some band [Imx| < R. Thus we get an exponential decay of
the Fourier coefficients f +(p) as |p|— 0.

On the other hand, Lemmas 19 and 20 tell us that K n{¢ +2Z6} is mapped

1
into a set Z(¢, u) by ¢—>; E(o, ).

The Lebesgue measure of the set Z(¢, u) is positive, provided K,n{¢ +2Z0} is
also of positive Lebesgue measure.

Under this condition, Theorem 3 is proved. Therefore the remainder of this
section is devoted to the proof of the following

Proposition 22. Let 0=[a,,a,,...] be a Roth number such that

A(0)= limsupa,=10 (7.7)

nz1

(A(0) can be o), and let Q be an RAF verifying Lemma 23 with 6<1/30.
Then, for almost all ¢peT (with respect to the Lebesgue measure), the set
Kon(¢ +2Z0) has closure with a Lebesgue measure verifying :

—_— 9
IKOm(¢+2ZO)Ig(1—65)<1—35~ @) (7.8)

9
<A—(0)—>:0 fOl‘ A(@)ZOO .

The proof of Proposition 22 requires several steps. The first one gives a
restriction on the RAF introduced previously in (2.4) and (2.5).

Lemma 23. Let 0 be a Roth number — see (2.27). There exists a constant B such that
for any 6 >0, there is an RAF, Q such that

(1) 0= BQ0), (7.9)
®) Q0)=Q(1), (7.10)
3) Qiq)<dlqoll, forall geN. (7.11)

18

1

[
i
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Proof. We take Q as in (2.4) and (2.5) for which (2) is satisfied. Now we choose f in
such a way that

Q(s)_ﬁ_sgﬂ, $>0. (7.12)
By (2.27), there is a D;>0 such that
D
IIqHqu—,f, (7.13)

so that (3) and (1) follow.

In order to estimate the Lebesgue measure of Kyn{¢$+2Z(0} we need a good
knowledge of the orbit ¢ +27Z60 of ¢.

We define B,, (meZ) to be the open interval of T centered at m0 (mod1) of

radius Q(m|), and
4,= | B

Im[=q

> qEN. (7.14)
Thus, 4, is a union of 2g + 1 open intervals and by definition of K 5 xnT=K, we
have
Ko= () 45, (7.15)
0

q=

where A{ denotes the complement of A, in T. Note that (49, ., is a decreasing

family of closed sets.
In order to localize the orbit of ¢€ T by the action of the irrational rotation 6
we introduce the set €, of the intervals

I'=[j0,j0+¢,0] (mod1) (7.16)

such that 0<j<gq,., and I'nA4, =0. Here Pris the nth convergent of 6 and

n

4,0=a,0—p,

Proposition 24. Let n be positive and 1€ €,. Then
InK,|l=(1-65)1]. (7.17)

In order to prove the proposition above we need the following

Lemma 25. Let 1€ %, and denote by b, and b, the balls of radius €(q,) centered at the
extremities of 1. Then, if meZ, m0¢l (mod1), and InB,, %0, one has

1nB,, CIn(b, Ub,). (7.18)

Proof. We first note that, by definition of €,, if InB,, is non-empty, then |m|> g,
Assume ¢,0>0, the case ¢,0<0 being treated in the same way. Then either
mf <j(mod 1) or mf>j0+gq,0(mod1). In the former case since Q(jm|)<€(q,), for

any xelnB,,, we get
x—jo<CAq,). (7.19)

The latter case is treated in a similar way.
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Proof of Proposition 24. We have
InK§=1n { Bm={ U (ImBm)} u{ U (ImBm)}, (7.20)

meZ meNy neN

where Z=N,UN,, N, being the set of meZ for which mf¢I(mod 1) and InB,,+0.
By Lemma 25 the Lebesgue measure of the first term is dominated by

20(q,)=25llq,0] -

On the other hand, using Lemma 2.2 we can write N, as a sequence mj, je Z, in

such a way that
Alm;l) <€jq,), (7.21)

and by Lemma 23 the Lebesgue measure of the second term is dominated by

4y, Qjg,) <43,

ji=1

Proposition 24 follows.

Lemma 26. There exists a conull subset N of T such that, if e N and 1€ €, (n>0),
then

{p+220}nINKg 4 & (7.22)
is non-empty.
Proof. This is essentially a consequence of the individual ergodic theorem of

Birkhoff applied to the map ¢+—¢+26 on T.
The following is a useful division lemma for T:

Lemma 27. Let A be the union of at most k open intervals in T and let {1}, ;. bea
family of closed intervals of T with disjoint interior and covering T. Assume || <0,
0=<j<k'. Then for all K" <k', we have

YL 2|4 — (kK —K")o. (7.23)
I,Cc A°
0= j<k”

Proof. Since {I;} covers T, we get

k”"—1 k'—1
1= Y [+ Y L. (7.24)
j=0 j=k
Now
k"—1
Y=Y L+ Y L+ Y I (7.25)
Jj=0 j=sk"—1 FEL 2! jsk"—1
IcA T,C A° InFr(d)+0

The first term of the right hand side is dominated by | A|. The last one is dominated
by 4ké since Fr(A) has at most 2k points and each of these points belong at most to
two of the I;. The second sum in (7.24) is dominated by (k'—k")d. Therefore, the
lemma follows.
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We come now to the
Proof of the Proposition 22. By Lemma 26, for almost all ¢eT, the set Orb¢
=Kon{¢p+27Z0} is non-empty. Let U () be defined by
U(@)={peK,:dp,Orb)<e}. (7.26)

Now, for n=ny(0) we have |g,0| ¢ and, in that case

INnKq o rCU(9) (7.27)
for all Ie %,. Therefore, using Lemma 2.3, we get the following uniform estimate:
U (@) =(1—-60) . NI (7.28)

Ie%,

We use now the family of intervals I, I'"' of Lemma 2.3 in order to apply
Lemma 27 to A, with kK'=q,+q,., and k"=q, ;.
We get:

>, Mz[Kol—0g,+4)q,01. (7.29)

Ie%,

Finally, using (2.22), we get:

lim su 12K, — ——, 7.30
e % M=K (7.30)
and, since
IKgl= Y 2Q(ml) <36, (7.31)
meZ

Proposition 22 follows.

8. The Case of Non-Constant Type: Proof of Theorem 4

The present section is devoted to the special case of Roth numbers with A(6) = oo,
since in that case we got a better estimate of the length of the spectrum.

Let us first fix some notations. For each ¢>0, we choose ¢ >0 such that for a
fixed n .

(1—65)(4—6n5)>4—§. (8.1)
Further let Q be an RAF as in Lemma 23 and
Koor: Ko=Kg, x0T, and Orb¢={¢+2Z0}nK,

as above. The main part of the proof of Theorem 4 is contained in the following:

Proposition 28. Let 6 be a Roth number with A(0)= o0 and let E be the mapping
E:¢peT—2cosme.
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There exists a conull set N CT such that, for ¢ N, we have:
|E(Orb )| = 4— % (8.2)

Proof. Take N as in Lemma 26 and #>0. For each ¢ N we can choose #, >0 such
that
|E(U,, )| —n=|E(Orb¢)l, (8.3)

where U, (¢) is defined in (7.26).
We now take n such that (7.27) is fulfilled and also

la,0l <llq,0lq,=n, (8.4)

which is possible according to the condition on 6.
Using (8.1) and (7.27), we get

n+EObg) = Y | 2rsin(ng)de. (8.5)

Ie%,, Konlk
For each interval I, we can choose ¢ €I such that
|sinmgp —sinmy| < w|l]. (8.6)
From Proposition 24 and (8.5), it follows that
n+EO1bg) 2 3 (2nsinmg,— 21T (INK )

14,

=(1-60) Y (2msinng,— 2*[I)1]. (8.7)

1e€,
Now let &, be the set of intervals I, 0<j<gq,., or I'"', 0<j<g,, for which
I7'nA, +0 [see (7.16)], ie. I7¢%,, then

‘4— Y [2=n sin(nd))d¢' < Y [2msin(nd)dg. (8.8)
1

1%, 1€%, 1

And, as in the proof of Lemma 27, the right hand side is divided into two parts.
The first is dominated by 676 and the second by 27(9¢, +4)l/¢,0|. It follows that,
for all n>0:

|E(Orb )| = (1~ 66) [4— 616 —2n(9q, +4)] 14,01l — 2n°q,, . 1 14,01> —n
>(1—66)(4—6m6—26mn—2n%n)—1. (8.9)
Proposition 28 is then a consequence of (8.1).

Proof of Theorem 4. Take ¢ and J as in (8.1) and choose 4, such that, for [u| < 4,, we
have — see Theorem 1 —

2
b )= 0 < S5 6= 1: 99Ky n. (8.10)

where B is the constant deduced from Lemma 23. Now

2nlsinp| = 4x| | g4n%, (8.11)
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where we use again Lemma 23 and [¢| = Q(0) for €K, 4 p. Therefore

2 B
lodh, 1) — (@', ) < -g- 804 IE(@)—E(@)

= §|E<¢>)— E(¢). (8.12)

Take ¢4, and therefore 5
E” 20 <7Q(0). (8.13)

From the proof of Theorem 2, we can see that E(K,, 4 ¢, ) is in that case in the
absolutely continuous part of the spectrum of H¥, and from the proof of
Theorem 3, 1/uE(Orb¢, p) in the spectrum of H{!/™,

Now, for each Borel set A:

EA, 0)=EA)+a(E"Y(A),p), (8.14)
and in view of (8.14), we obtain:
EA i 1 ) ECA. (5.15)
But
E(Orb¢)CE(K 5 z)- (8.16)

Therefore Theorem 4 follows from Proposition 28 along the same lines as in
Sect. 7, replacing Proposition 22 by (8.12).

Appendix
In this appendix, we prove the following:
Proposition A.1. Let 0 be an irrational number such that
sup {|n0||=Q(m), VYmeN, (A1)

0<|nl<m
and let ¢ be a complex number such that

inf In0+ | =Qm), VYmeN, (A.2)

the
4 n 1 < 247

,.;o In0+¢[>2 = Q(m)*?” (A.3)

Here, for any complex number z, ||z| denotes the distance to the nearest integer
number.

Although it is probably, well known to number theorists, we shall include a
proof here for completeness since we were unable to locate a suitable reference for
it. However this result is essentially an improvement of a Riissmann estimate [24].
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Proof. Let p,eZ such that
[n0+ ¢l =Inb+¢—p,l. (A4)

Denote by y,<y,<... <y, the m+1 values of nf+Re¢p—p, n=0,1,...,m
written in increasing order.
Since 0<|n, —n,|<m, for k7, we get

Y=yl 2 m). (A.5)
Define i by:
Vo< oo <y <0<y, <ol <Y (A.6)
and y=Im¢.
Then
m m 1
P |n9+¢!|2" =% 07 +v?y
i—2 1 1 1 m

R R Copen R e A N

Each of the two sums of the right hand side are estimated in the same way. For
instance, we have
< 1 < 1 « Yi—Vi-1
j=it1 (ng‘HPz)p = Q(m) ;T (ng‘l‘lpz)p ’

and then, replacing sums by integrals, we get easily:

m 1 T 1
<= A.
2 GER T S 2 e (A.8)

from which the proposition follows.
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