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Abstract. The finite difference Schrodinger operator on Zm is considered

1

where Σ D2 is the difference Laplacian in m dimensions. For ε sufficiently
v = l

small almost periodic potentials q. are constructed such that the operator H
has only pure point spectrum. The method is an inverse spectral procedure,
which is a modification of the Kolmogorov-ArnoΓd-Moser technique.

1. Introduction

There has been recent interest in the nature of the spectrum of the Schrodinger
operator endowed with an almost periodic potential. In contrast to the periodic
case, in which there is the classical band structure and the spectrum is all
absolutely continuous, there is a wide range of other possibilities. For example the
spectrum could be nowhere dense, [1, 12], and pure point or singular continuous
spectrum could occur [2]. Somewhat more is known about the spectrum of finite
difference Schrodinger operators on /2(Z), [4, 17], especially in the "almost
Mathieu" case, in which the potential is given by a pure cosine with period
incommensurate with the lattice period. However the existence of pure point
spectrum, that is, of ί2(TL) eigenvectors, has only been demonstrated in several
special cases, for example [4, 16]. In this paper I construct, via an inverse spectral
procedure, finite difference Schrodinger operators

(Hu)Γ Σ uj jj

(U)
m

1/1= Σ l/vl.
v = l
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which, for λ sufficiently large, have spectrum which is entirely pure point. In these
cases the ί2(7Lm) eigenfunctions decay exponentially at a rate given in terms of
ε = l/λ, and there is one distinct eigenfunction localized near each lattice site.
Examples are given both in which the spectrum (the closure of the set of
eigenvalues) is an interval, and in which the spectrum is nowhere dense. Other
examples of spectral properties, and properties of the integrated density of states
are demonstrated.

There is an intuition that goes along with large coupling constant λ, which
states that to a wave function the potential appears as deep wells, separated by high
barriers, which should tend to localize solutions. However spatially separated
lattice sites with identical values of the potential should resonate, and sites with
almost identical values should almost resonate. We start the inverse spectral
procedure for the discrete operator (1.1) with a given sequence dj of eigenvalues as
the elements of an infinite diagonal matrix. In order that almost resonant sites be
widely separated we ask that

|d,-d k |> C l O([/-fc |), (1.2)

where the function Ω(s) is one of the typical controls of small divisors. For
instance [15],

Ω{s) = s~\ s ^ l , τ > 0 , (1.3)

or

{S) lexp(-c oβ),

Although Theorems 1 and 2 could be proven with this condition alone, in order to
keep track of the almost periodic nature of the problem we ask the following. For
some function D(x) which is 2π periodic in m variables, and for some ω^ t = 1... m,
independent vectors in IRm, all of whose coefficients are irrational multiples of 2π,
the sequence dj is given by

dj = D(ω j), jeZm, ω-j= £ ; > , . (1.4)

Unfortunately if the function D(x) is continuous the sequence (1.4) violates
condition (1.2). Instead we ask that for a certain K-norm to be described in Sect. 4,
\\D(X)\\R< oo. If m= 1 a possible K-norm is the bounded variation norm. Sequences
dt are not necessarily uniformly almost periodic, but are /^-almost periodic
(Theorem 3), which is a somewhat weaker sense.

Theorem 1 is the main theorem of this paper. Its proof is the construction of a
potential, and a convergent infinite product of bounded invertible transformations
of ί2(Zm) which transforms operator (1.1) into diagonal form. At each iteration
step there is a loss of decay in the off diagonal direction of these transformations,
controlled by requirement (1.3). In addition each matrix multiplication involves an
infinite sum, and contributes a loss of decay as well. Both these losses are
overcome by the use of a rapidly convergent iteration scheme, which is a variant of
the Kolmogorov-ArnoΓd-Moser technique. It is a curious fact that we are able to
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handle the inverse problem, that is spectrum -^potential, as the linearized operator
is fixed. The more usual potential -+spectrum in this case seems more difficult.

Finally, I would like to mention that if one considers the sequence

a modification of Theorem 1, [3] and the Aubrey-Andre duality demonstrate that
for s sufficiently small the operator (1.1) on Έm with

7 , jel™

has some pure point spectrum.

Note. A preprint of this work has stimulated some additional research which I
would like to mention. Pδschel [14] has constructed uniformly almost periodic,
limit periodic sequences satisfying condition (1.2) and has constructed by these
methods examples of uniformly almost periodic potentials with entirely pure point
spectrum. These include cases both where the spectrum is an interval, and where
the spectrum forms a Cantor set. Also Bellissard et al. [3] have give examples of
functions D(x) satisfying (1.2), (1.4) such that the nonresonant condition (1.2) is
preserved under perturbation, so that the forward problem can be done. The
localization results of Sarnak [16] and of Fishman et al. [10] are recovered for
sufficiently large coupling constant.

2. Main Results

The discrete Schrodinger operator on Έm with potential λq. can be written

We use the notation that
m

W = Σ \K\,
k= 1

11*11= sup \kv\.
k = 1 ...m

For ε = 1/λ we multiply through to express the spectral problem

j = Euj, (2.1)

where

Mtj= Σ δij + k, Qij = qjδij diagonal.

The principal result of this paper is that we are able to construct potentials Q with
entirely pure point spectrum via an inverse spectral procedure. The method is to
fix a diagonal matrix Dtj = d δip where the sequence dj satisfies

\dj — dt\ > c 1 Ω ( \ i — j\), (2.2)

d, = D(ω j), (2.3)
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for some function D{x) 2π-periodic in m variables. An additional condition is
imposed on D{x) so that the sequence dj will be almost periodic, that is we ask that
I | M I I < 0 ° f° r a n i^-norm described in Sect. 4. An example of the i^-norm for

m = 1 is given by the total variation of the function D(x). The points ω j = £ ωjv

v = l

form an irrational lattice in IRm; ωv are mutually independent vectors all of whose
coefficients are irrational multiples of 2π. Anticipating the potential q. = d + z for
some sequence z to be determined,

Zj = Z(ω j), Z(x) 2π-periodic, (2.4)

we construct a unitary transformation of ί2(7Lm) such that (2.1) is transformed into
the diagonal matrix D.

Theorem 1. Given a matrix D satisfying (2.2), (2.3), with | |D(x)||R<oo, for ε
sufficiently small there exist G unitary on *f2(Zm) and Z diagonal satisfying (2.4) such
that

(2.5)

Furthermore

\\Z(x)\\R^ε2c0,

and the matrix elements of G satisfy

where σ= — Iog2mε —c 3 >0. The constants are independent of ε.

The proof of the theorem is in Sect. 5.
Using directly the unitary transformation G of Theorem 1, we see that all

solutions \peί2{Έm) of

εM\p + {D + Z)ψ = Eψ (2.6)

are given by

ψk = GδOk, Ek = D(ω - k).

Theorem 2. The operator (2.1) with potential Q = D + Z has spectrum exactly the
closure of the set of eigenvalues

Ek = D(ω k).

The associated ί2(7Lm) eigenvectors ψk form a complete orthonormal set.
Furthermore xpk decay exponentially they satisfy the estimate

\(ψk)j-δjk\<εc2exp(-σ(ε)\j-k\). (2.7)

Theorems 1 and 2 state that there exist almost periodic potentials q ̂ d^ + z
with entirely pure point spectrum. The estimate (2.7) implies that all eigenfunctions
are exponentially localized, and that there is one eigenfunction corresponding to
each lattice site. However since D(x) cannot be a continuous function without
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violating the nonresonance condition (2.2), the sequence q. = D(ω -j) + Z(ω j) is not
uniformly almost periodic. On the other hand, if the vectors ω are sufficiently
irrational, then q is /^-almost periodic. (For the reader's convenience the standard
definition is stated in Sect. 4.)

Theorem 3. Assume that for each v = 1... m the vectors ω satisfy

| (ω.j) vmod2π|>c 1 l/Γ r (2.8)

for 0<r<m/(m— 1). If | |D(x)| |Λ<oo the sequence

is £v-almost periodic.

The proof of the theorem is essentially Lemma 4.4. In one dimension if
II^WIIΛ < °° it is easy to show that q is /^-almost periodic without condition (2.8),
and the only requirement imposed upon ω is that (2.2) must hold.

With the discrete Schrδdinger operator (2.1) we may compute the integrated
density of states. A convenient definition is

k(E)= lim ^
L

where P^^ E](H) is the spectral resolution of H, and χL is the projection

j L J (θ otherwise.

For ε = 0 the quantity

ko(E)= lim

is particularly easy to compute; for D satisfying (2.3),

ko{E) = μ{xeTn; D(x) ̂  E}, (2.9)

where μ is normalized Lebesgue measure on the m dimensional torus T™.

Theorem 4. For H = εM + (D + Z) the operator of Theorem ί, we know k(E) = ko(E).

This is a corollary of a general fact about self adjoint operators on ^2(Zm)
possessing a complete set of exponentially localized eigenfunctions.

Lemma 2.1. Suppose for H self adjoint that G~1HG = D, for G unitary and D
diagonal Suppose further that the matrix elements of G satisfy

Then for any f a bounded measurable function on the spectrum of H,
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Proof. It suffices to consider smooth functions /. Then

= tΐ(G-1χLGf(D))

= tr(χ L /(D)+[G- 1 ,χ L ]G/(ί))).

To finish the proof we demonstrate that

Compute the matrix elements

ίO if ||i|| and II;|| > L ,

0 if ||i|| and \\j\\ ^ L ,

gβ if ||i|| SL and \\j\\>L,

— gji if ||i|| > L and lljH ^ L .

We denote the elements (Gf(D))ij = cίp and use only that ||c£j ||̂ oo is bounded

Σ \Qifi4 if

£\\>L

Σ \9ίi<>
The decay of the terms g^ allows us the estimate

\triG-\lL]Gf(D)\S\\cJ^ Σ Σ W^ Σ c ^
\\ί\\<L

3. Examples

Since the inverse spectral procedure of Theorem 1 produces a potential q. given a
spectrum dp it is straightforward to generate potentials with varying spectral
properties. Here are some examples.

Example ί. On the m-dimensional torus 7™ consider the function

ί Σ *v.
<

It is easy to check for any 1 ^

>'J)-D{x)\ =

Denote the components of ωv by ωvt, if the sums
rationally independent, we have

— < v = l

[ periodically continued.

that | |D(x)| |Λ<oo. Furthermore

xv + (ω j)v)mod2π —x vmod2π .

ovj, / = 1... m, are sufficiently
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thus

\D(x + ω j)-D(x)\^ClΩ{\j\)9

and condition (2.2) is satisfied. By Theorems 1 and 2 we may construct a potential
qj = Q(ω -j) such that (2.1) has pure point spectrum which, being the closure of the
set of eigenvalues, is the interval [0,2πm]. Now k(E) can be computed from (2.9), it
is m — 1 times differentiable, and strictly increasing on (0,2πm).

Example 2. Given C(y) a Cantor function on [0,1], increasing, and normalized
such that C(0) = 0, C(l) = 2πm, define (C"1)^) so that at possible jump discon-
tinuities it takes on some value between its left and right limits. Now set

m \

X xvmod2π .
v = l /

By a simple argument it can be shown that for any increasing bounded function
I m \

B(t\ ίe[0,2πm], J5 £ xvmod2π has finite K-norm.
\ v = l /

Suppose now that C(y) were Hδlder-α continuous (the usual Cantor function
involving removal of the middle thirds of intervals has α = log2/log3). Then

if again ^ω V ί f are sufficiently rationally independent. For α>0, D(x) satisfies
V

condition (2.2) with an admissible Ω(s\ and the hypotheses of Theorem 1 are
satisfied.

The spectrum in this case is nowhere dense it is a Cantor set, the compliment
of the open intervals of constancy of C(y). Furthermore, for m = 1 the integrated
density of states is

0, £ < 0 ,

1,

The spectrum in this example may have either zero or positive Lebesgue measure.
It is known [11, 5] for uniformly almost periodic potentials in one dimension

that in any interval of constancy of k(E), the value of k(E) is in the frequency
module,

Cύj
k(E) = — mod 1

2π

for some integer j . That this is not necessarily the case for potentials q. which are
almost periodic only in a weaker sense is demonstrated by the following.
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Example 3 (a counterexample to the gap labeling theorem). For any 0 < b < 2π set

x + 1 ,

periodically continued.

Again, for ω satisfying (2.1) Theorem 1 is applicable, and one constructs a
/^-almost periodic potential such that the spectrum, which is entirely pure point,
consists of two intervals, [0,b]u[b+l,2π + l] . For ί><E<b + l, fc(E) = ί>/2π.

Remark. Bellissard and Scoppola have given another counterexample to the gap
labeling theorem [6].

By modifying Example 3, setting b<D(b)<b + l for b = ωk for some fceZ,
potentials with isolated eigenvalues are constructed. However under translations
on the hull D(x)^D(x + α), the essential spectrum of (2.1) is preserved; while for
only Haar measure zero of such translates α will there exist this isolated
eigenvalue.

It is known [8] in one dimension, (and suspected in more than one) that the
integrated density of states is at least log-Holder continuous. That is, for
\E-E'\<\

In both the discrete and continuous periodic cases, k(E) is actually Holder-^. By
using Rϋssmann's approach to the control of small divisors, where

Ω ( s ) = {
|exp(—coe), 0 < s < e ,

almost periodic potentials can be constructed for which k(E) is not Holder
continuous for any α. This is one of the conclusions of Theorem 5.

A function k(E) is Hδlder-α continuous, 0 < α < 1, if for every E,E',

\k(E)-k(ETaSc1\E-E'\. (3.2)

Similarly the definition (3.1) of log-Holder continuity may be restated; for

These are to be compared with (3.4) in the following.

Theorem 5. Let k{E) be an increasing function on [0,1], normalized so that fc(0) = 0,
fe(l) = l, and satisfying the following continuity assumption for \E — E'\<\

Then k(E) is the integrated density of states for an almost periodic Schrδdinger
operator in Έm.
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Proof. Set

{
[continued 2π-periodically in x,

where at possible jumps of k~~ *(ί) assign a value between its left and right limits. If
cov are irrational vectors satisfying

Γ\ (3.5)

then for |/| > 1,

( ~~c°^
x ω j x = c i e x P \ v ( l o g [ / |)i-

and (2.2) is satisfied. Furthermore, since k(E) is increasing, D(x) can be shown to
have finite R-norm, and Theorem 1 through 4 are applicable. •

4. Several Lemmata

The proof of Theorem 1 involves the construction of a convergent iteration
scheme for the matrices G and Z. Since we wish to keep track of the almost
periodic structure of these matrices induced by the periodic nature of D(x), the
problem is rewritten in terms of functions on the m torus T". In this section we
present the notation, and prove several lemmata about almost periodic matrices,
including estimates on products and inverses.

Recall first that p-summable norms of almost periodic sequences are defined in

the following manner [7]. For;eZ m , |/ |= £ [/v|,

||α,.||,P= lim

v = l

i ^ . N 1 / p

A sequence a^ is /p-almost periodic if given ε there exists a relatively dense set of
translation vectors τ such that

Function Spaces

We consider 2π-periodic functions of m variables for which evaluation on an
irrational lattice defines a /^-almost periodic sequence. Take the case m = 1 first for
simplicity. For A(x) a function on S1 and Δ finite partitions of 51, define

\\A{X)\\R=\\A{X)\\L~ + SM Σ \Λ(xq+ι)-Λ(xq)\p)1/p.
Δ \xqeΔ I

F o r p = 1 this is the bounded variation norm.

Lemma4.1. \\AB(X)\\R£\\A(X)\\R\\B(X)\\R
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Δ \xqeΔ
\AB(xq+ι)-AB(xq)\pVlp

I

+ 1)-^<,)lp)1 / P •

Given ω, and A(x) of bounded R-norm, we define the sequence ai — A(ωj).

Lemma 4.2. a} is ^-almost periodic.

Proof. Given £ choose translation numbers τ such that

|ωτmod2π|< inf |ω/mod2π|.

Kronekker's theorem insures that the set of such τ is relatively dense. For L = Mί

< L I M I Mk

y Σ K + , - « / = T7 Σ 7 Σ \A(ω{j + τ))-A{ωj)\p

k = 1

For £ large the right hand side is small. •
We are given a function D(x) and an irrational ω such that the sequence

d = D(ωj) satisfies the nonresonance condition

\
xeS1

The following lemma is useful.

Lemma 4.3. // ^ inf \D(x)-D(x + ωj)l then
xeS1

1

D{x)-D(x + ωj)
£ 2\\D(x)\\R

~ Φ2(\j\) '

Proof.

D(x p + 1)-D(x p + 1+ω/) D(xp)-D(χp

D(xp)-D(xp + (QJ)-D(xp+ι) + D(xp+ι

(D(x p + 1) - D(xp + , + co/)) (D(xp) - D(x p + ωf))

1
Ol' •

For the case m > 1 the R-norm is a little more detailed. Take any finite set of
points xk of the period cell P of A(x) in IRm, and consider all hyperplanes in the
coordinate directions through each xk. Denote by A the set of all m-dimensional
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open right rectangles Rj defined by these hyperplanes, such that \jRj = P,

RjnRk = 0 if k φj. Denoting the volume \Rj\ and any adjacent vertices χq9 yφ define
the K-norm of the periodic function A(x) to be

\Rj\ Σ
j R

The norm is multiplicative, for Lemma 4.1 and its proof remain virtually
unchanged.

Define an irrational lattice by fixing a set of m independent vectors ω1... ωm all
of whose components are irrational multiples of 2π. For integer vectors je Έm, we
consider the lattice

... +ωm/m .

Given A(x) of bounded Λ-norm we form the sequence

If an assumption is made on the rational independence of ω, this sequence is
/^-almost periodic.

Lemma 4.4. Assume for each v = 1... m that

|(ω 7)vmod2π-(ω /c)vmod2π|>c1l/-/cΓr, 0<r<m/(m-1).

If \\A{x)\\R<vo, the sequence aj = A(ω j) is £p-almost periodic.

Proof Given / > 0, translation vectors τ are chosen so that for each v = 1... m

|(ω τ)vmod2π|< inf |(ω (/-/c))vmod2π|. (4.1)
\j\\k\*t

Then
sup|(ω τ)vmod2π| m

i Σ ^ j — — -ΓΓT Σ ΠKω τ)μmod2π|
Y\\(ω)moά2π\

\j\*ί Y\\(ω τ)μmoά2π\ v=2 μ

μ

v / v - 1

A{ω-j+ Σ (ω'τ)μ) — A\CQ'j+ X (ω
μ = l V μ = l

|(ω τ)vmod2π|

Consider the points ω (j'< + τ) and (ω j), |/| g { as the point xfc defining A. Under the
hypothesis on the vectors ω,, we may choose a relatively dense set of translations τ
satisfying (4.1) and as well

^-(2/)"r<inf|(ω τ)vmod2π|<c1(2/)- r.
2 v

Hence

sup|(ω τ)vmod2π| 1
1 A

(2/Γ m-r(m-
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and the exponent m — r(m— 1) is positive. The quantity

Σ ΠKω τ)μmod2π| Σ { ^
v = 2 I

and the lemma is proven. •
Finally, if D{x) and ω are such that

inf
xeΓm

then the conclusion of Lemma 4.3 is true for m> 1, by virtue of the same proof.

Matrix Multiplication

We consider infinite matrices A mapping sequences on TΓ to sequences on ΊΓ.
Given an irrational lattice ω j , ;eZm, we say that A is covariant with respect to
translation by ω if there exist functions Ape) on 7™ with bounded R-norm such
that

that is, the / t h row is generated from the zeroth row by translation by ω £. Matrix
multiplication of two covariant matrices takes the form

We are concerned with matrices Ajix) whose coefficients decay in norm as
increases. Typically

The following lemmata will be used to control this decay.

Lemma 4.5. Assume that

Then
(i) i

(ii) ifρ =

( 1 1

- + —
Q ye
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Proof.

An integration completes the proof. •

Remark. There is polynomial loss of decay in the off diagonal direction for each
multiplication. This as well as the loss due to small divisors must be overcome in
the iteration procedure of Sect. 5.

Lemma4.6. Assume j|i4/(x)||Λ^c1e~βl /Ί, where cί<l, ρ + σ>l, 0 < ρ - σ < l . Then
λ \m(n-l)

(i) \\Λ%x)\\R^dl
Q-σ

ί 4 \m 1
// we further ask that cx < -, then

\ρ-σj 2

(ii)
n = 0

Proof (i) uses Lemma 4.5 repeatedly, (ii) follows by applying (i) to the Neumann
series for (I + A)'1. •

Lemma4.7. If Afic)=0 for 1/lΦl, and \\Aj(x)\\R^ε<l/2m, then

where

ρ(ε)= — In2mε.

00

Proof (I + A)-Γ1(χ) = δOj+ Σ (~AYj(x) ^"(*) = 0 unless n^\j\, hence

ΓHxi-s ii < — y

5. Proof of Theorem 1

The proof involves the convergence of an iteration scheme similar to that of the
Kolmogorov-ArnoΓd-Moser theorem. The unitary matrix G is successively approx-
imated by solutions of a linear equation, with a quadratic error term. In this case
the linearized equation for G is a commutator relation whose solution involves
small divisors introduced by the quantities (D(x)—D(x + ω j))"1. The effect of the
small divisors is a loss of decay in the terms \g(j\ in the off diagonal directions.
Because each matrix multiplication involves infinite sums, each multiplication
introduces an additional loss of decay. Both are controlled using the rapid
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convergence of the iteration. Since we are doing the inverse spectral problem, D(x)
spectral generating function ->Q(x) = D(x) + Z(x) potential generating function, we
know the linearized operator at the solution, namely

The forward problem, in which 5£ varies, seems more difficult to handle by these
methods.

The First Iteration Step

Consider Z(x) arbitrary, with ||Z(x)||R<oo, we seek a transformation

approximately diagonalizing the operator

D + Z + εM, (5.1)

where M is the matrix ]£ δj j+k, and Z is the diagonal matrix with elements

We find that if VΓ(1) satisfies the commutator relation

[^ 1 >,D]=εM, (5.2)

and if (/+ P0U) is invertible, then

with

There is the obvious compatibility condition M0(x) = 0 for (5.1), which is satisfied,
and we write

ΰ(x)-D(x + β) j ) ' l f W = 1 '

0, otherwise.

Using Lemma 4.7, and assuming for \j\ = 1 that

inf

we estimate

l l ί ^ I I * ^ ^ - , when |/| =
Zm
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where

σ(l)=-ln(2mε).

This establishes the exponential decay with respect to |/| which will be used to
compensate for the small divisors in further iterations. Finally

Subsequent Iteration Steps

Assume that after the vth iteration the Hamiltonian has the form

D + εM ( v ) + (G(v))~ ιZ{v)G{y>), (5.3)v

satisfying the following estimates:

ρ(v)>σ(v),

and Z(v)(x) is a diagonal matrix, with

To construct a transformation (J+ P0 V + 1 ) ) approximately diagonalizing (5.3)v we
solve the commutator relation

[*0V + 1\ D] = ε M ( v ) + (G ( V ))- XA{V+ υ G ( v ) (5.5)v

for Wjv+ί)(x) and Λ ( v + 1 )(x) with finite R-norm. Given that a solution exists, the
new operator has the form

0 v + i ) ) ? (5.3)V+1

where we have defined

The next two lemmata estimate solutions to Eq. (5.5)v. The first shows the
existance of a diagonal matrix Aiv+ί) such that the right hand side of (5.5)v satisfies
the compatibility condition

The second lemma bounds Wjv+1)(x) itself.
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Lemma 5.1. Given (5.4)v and assume

C3(v) + c4(v) + 4* ^ ^ < i . (5.6)

Then there exists a diagonal matrix Λ ( v + 1 )(x) such that

(i) εM(

o

v>(x) + (G(v>)~ M ( v + υG (

o

v )(x)=0,

(ii) \\Aiv+1\x)\\R^2εc2(v).

Proof. Use Lemmata 4.5 and 4.6 to find that for a diagonal matrix A(x),

M&rUGξKxϊ-AWUύ (c3(v) + c4(v) + 4'"C3(J(

)

v

C

)f
v)) \\A(x)\\R.

Since the quantity

a contraction argument can be used to solve for a function Λ(x) satisfying (i) and

(ϋ). D

Lemma 5.2. There exists a covariant Wix+1) satisfying Eq. (5.5)v. If inductively

ρ(v)

then Wjv+ υ(x) admit the estimates

for c6 dependent only on m and \\D{x)\\R.

Proof The solution is given by

Using that ||v4 (v+1)Wϋ i ?^2εc2(v), we find from multiplication Lemma 4.5 that
forjφO

ρ(v)-σ(v)



Discrete Almost Periodic Schrodinger Operators 129

An application of Lemma 4.3 bounds the small divisor loss, and completes the
proof. D

We sacrifice some exponential decay to overcome the small divisors. Let
σ(v-hl)<ρ(v+l)<σ(v) be new decay rates, to be made explicit later. Using (5.7)v

we estimate the terms of the transformed operator in (5.3) v + 1 :

/p-(σ(v)-Q(v+l))\j\\

( ) " " ( 5 8 i )

Denote the constant on the right hand side by c7(v):

where we inductively assume ρ(v+1) and σ(v+1) have been chosen so that

(5.9)

where we also use (5.9).

^ v + l)y ι (G < v ) )- 1 A ( v +

where we use (5.6), (5.9), and σ(v) — ρ ( v + l ) < l as inductive assumptions.

(5.8v)

v). (5.8vi)

We define

C 2 ( v + i ) =

(σ(v)-ρiv+l)r(φ)-σ(v)r'

= c3(v) + c7(v) + 4 m C β \ r ' V

c4(v + 1 ) = c4(v) + 2c7(v) + 4 m + 1 c * ( v ) c ? ( v )

(σ(v)-<τ(v +
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following (5.8i) and (5.8iii)—(5.8v). The iteration scheme converges if there are
successive choices of the decay rates σ(v), ρ(v) such that

lim σ(v)= lim ρ(v) = σ(oo)>0, (5.10i)
v—* oo v - * αo

00

lim c2(v) = 0, Σ c2(v) < oo,

The inductive assumptions (5.6), (5.9) as well as
σ(v) - ρ(v +1) < 1 hold for all v. (5. lOiii)

For the function Ω(s) = exp(-s/(logs)1 + / ϊ), it is known [11] that one may take

ρ(v)-σ(v) = σ(v)-ρ(v+l) = c o v- ( 1 + / ϊ ) , where co> ( l o g 2 ) i + / r

If ε is chosen sufficiently small, (5.9) may be satisfied.
The matrices G(v) converge to a covariant matrix G(oo) which, however, is not

necessarily unitary. Its rows are eigenvectors of (2.6), and being self-adjoint with
distinct eigenvalues, all rows are orthogonal. If we normalize via a diagonal matrix

the transformation of Theorem 1 is given by G = G{co)T.
00

To complete the proof of Theorem 1 we set Z(x) = £ Λ{v\x), and the desired
v = l

form of the operator (2.5) is achieved. The estimate on | |Z(x)| |Λ arises from the fact
that the correction Λ(1\x) = 0.
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