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Abstract. Let (A, G, α) be a C*-dynamical system with G a topological group.
Let π be a representation of A. We will show that there exists a quasi-
equivalent representation π to π which is a covariant representation, if and
only if the folium of π is invariant under the action of G and this action is
strongly continuous.

I. Introduction and Notation

Symmetries are one of the most powerful concepts in physics. Many of the
classification schemes of physical objects are based on symmetry-groups.
Therefore it is no wonder that one finds a vast amount of literature on this subject.
In earlier times most of these investigations focused on the classification of group
representations. In the last 11/2 decade, however, the interest has changed more to
the investigation of the interplay between the symmetry-group and the algebra of
observables or the field-algebra. This subject now goes under the name of
C*-dynamical systems. Although this name is unsatisfactory from the physical
point of view, because usually only the kinematical possibilities are studied, we use
this name in this paper. The main tool of this subject is what has been called by
Doplicher et al. [8] the covariance-algebra and which is now known as the crossed
product between a C*-algebra and a group. For a good survey on this subject see
the book of Pedersen [11], where one also finds a list of references. One of the
objects of this theory is to characterize the representations in which we have also a
continuous representation of the symmetry-group implementing the automor-
phisms. This problem has been answered modulo problems of multiplicity by the
author [3, 4].

Looking at this part of the theory of C*-dynamical systems, one finds that
there are two assumptions which are unsatisfactory. The first assumption is the
continuity assumption, which says that the expressions g-^apc) have to be
continuous functions on the group with values in the C*-algebra furnished with
the norm topology. However, in quantum field theory or statistical mechanics one
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usually starts with a local net of von Neumann algebras, which means that the
continuity assumption is violated. The standard argument out of this dilemma is
usually that one postulates the existence of a sub-algebra fulfilling the continuity
assumption. Since such a sub-algebra, if it exists, generally will not be dense in the
norm topology, one cannot be sure whether one investigates the original object, in
particular when different representations are involved. Existing theory shows that
the norm topology on the dual space A* of A, rather than the norm topology on
the algebra A, is important for the representation of the group (see e.g. [3]). The
assumption of the continuity of the action of G on A is therefore only a technical
assumption used in order to have easy access to the problem of covariant
representation.

Existing theory has a second defect, namely it can handle only locally compact
groups and not arbitrary topological groups. The restriction to the case of locally
compact groups was again dictated by mathematical convenience because the
mathematical theory for such groups exists, but not for general topological
groups. At the time covariance algebras were invented, it was enough to study
locally compact groups, because all global symmetry-groups in physics were
locally compact. During the past few years the emergence of gauge theories
indicates we need to deal with topological groups which are not locally compact.

Because of these arguments, I feel it is necessary to study the problem of
covariant representations again in a more general setting. This is done in this and a
forthcoming paper. We assume that we are dealing with a C*-dynamical system
(A, G, α), this is a C*-algebra A, a topological group G, and a mapping α of G into
Aut(A). It is now no longer assumed that the action ag on A is continuous in any
topology on A. As mentioned before, what counts is the continuity property of the
group action on the dual-space v4* of A The action of G on A* should be denoted
by oc'g or α*, but since there is usually no confusion possible, we denote the
transposed and the double transposed of ag again by ag. We denote by Af the set of
functionals φeA* such that the function g-+(xgφ is a continuous function on G
with values in A* furnished with the norm topology.

Since the dual-space A* of a C*-algebra is at the same time the pre-dual of the
enveloping von Neumann algebra ,4**, and since our object of investigation is a
subspace of ,4*, it turns out that we deal exclusively with the dual pair (A*9A**).
Therefore it is natural to forget about the original C*-algebra A and work in the
theory of von Neumann algebras. Thus we deal with (M^, M), where M is a von
Neumann algebra and M^ its pre-dual.

Let M^)C denote that part of M^ on which the group acts strongly continuous.
We show in Sect. 2 that M^ c is generated by the positive elements in it. In Sect. 3
we use the theory of the natural cone based on Tomita's theory of modular Hubert
algebras to prove the main result on covariant representations. The short version
of the proof is due to H. Araki and replaces my own version using covariance
algebras. In the last section we remark on the structure of M^ c which we plan to
elaborate in the future.

II. Continuity of the Map φ-+\φ\

Let M be a von Neumann algebra and M% its pre-dual. For φeM^ denote by Sz(φ)
and Sr(φ) the left and right support of φ. If xeM, then xφ, respectively, φx denotes
the functional y->φ{xy\ respectively, y-^φ(yx). Tomita [13] has shown that to
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every φeM^ a positive functional exists, denoted by \φ\, and a partial isometry
VeM such that φ = V\φ\ holds. Here V can be chosen to fulfill the relations
yy* = Sr(φ) and V*V = Sι(φ). If these relations are fulfilled, then V and \φ\ are
uniquely defined by φ. Later Effros [9] has shown that the map φ-+\φ\ is
continuous, if the initial space is furnished with the norm and the final space is
furnished with the weak topology σ(M^,M). Here we want to give an estimate for
the convergence in the norm topology.

II. 1. Theorem. Let M be a von Neumann algebra and M^ its pre-dual. Assume
and \φ\ and \ψ\ are absolute values in M * , then we get the estimate:

Proof. We first restrict our attention to real elements. The general case will then be
reduced to the special case by the 2 x 2 matrix method.

Let xp = φ*, ψ = ψ*, and A = φ — ψ. Let ψ = φ+ — φ~,ψ = ψ+ — ψ~, Δ=A+ — Δ~

be their canonical decomposition into the positive and negative parts. Moreover
let e + ,e~ be two projections with e+ +e~ = 1, e+e~ =0, e + φ+ = φ + e+ = φ +, e + φ~
= φ~e+ = 0, e~φ+ =φ + e~ = 0, e~φ~ =φ~e~ =φ~. This means e+ majorizes the
support of φ+ and is majorized by 1 — (support of φ~). In the same manner define
/ + and / " fulfilling the same relations with ψ+ and ψ~. From / + + / " = 1
follows:

φ+-ψ+=f+φ+f++Γφ+Γ+f+φ+f-+f-φ+f+-ψ+, (1+)

and
φ--ψ-=f+φ-f++f-φ-f-+f+φ~Γ+Γφ-f+-ψ-- (r)

Multiplying the defining equation for A on both sides with / + , respectively, with
/ " , we obtain:

+ + + + Δf+, (2 + )

Γφ+Γ-f-Af-=f-φ-f--ψ-, (2")
Inserting Eqs. (2) into Eqs. (1), one finds:

φ+-ψ+ =f+φ~f+ +Γ<P+Γ +f+φ+Γ +Γφ+f+ +ΓΔΓ ,

and

φ--ψ-=f+φ-f++Γφ+Γ+f+φ-Γ+Γφ-f+-ΓΔΓ,

and by adding them:

\φ\-\ψ\ = f+Δf+ - Γ Δf~+2(Γφ~Γ + ΓΨ+Γ)

+f+φ+f~+Γφ+f++Γφ-Γ +f~φ~f+ • (3)

In order to get an estimate of the norm of (\φ\ — \ψ\), we take the sum of the norms
of each term of the right hand side of (3). For the first two terms we get:

\\f+Δf+1| + WΓΔΓW S \\f+Δ+Γ\\ + | |/+zΓ/Ί! + \\f-Δ+f-\\ + \\f-Δ-f-\\
f+) + Δ~(f-)

(4)

For treating the last four terms of (3) we need the following
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Π.2. Lemma. Let M be a von Neumann algebra and let ωeM^ be a positive linear
functional Let e^e2 be two orthogonal projections in M and define ωίjί = eiωek.
Then we get the estimates:

l | ω l f 2 | | 2 ^ | | ω l f l | | | | ω 2 f 2 | | .

Proof Since ω is positive it follows that ω* 2

 = ω2,v Let ω i 2 ~ ^ l ω i 2I ^ e ^ n e

polar decomposition of ωί 2, then V*V^e2 follows and F F * ̂ ev For AeC define
x = F F * + /ίF+XF* + |/l|2F*F. Since F is a partial isometry it follows by easy
computation that x2 = (1 -\-\λ\2)x (using the orthogonality of eι and e2). Since x is
selfadjoint, it follows from this that x is positive. Hence we obtain again by
orthogonality:

Since ω l f 2 ( F * ) = | | ω 1 > 2 | | by definition of V9

follows.

Continuation of the Proof of the Theorem. Using this last lemma we obtain from
(3) and (4):

and hence by Schwarz' inequality:

\\\φ\-\ψ\\\m^\\+2{φ + (f+

•{Άφ+(Γ)+φ-(f+)}m

= \\Δ\\+2]/2]fW\{φ + (Γ

Interchanging the role of φ and ψ, we find also:

Taking the average of these two equations and using Schwarz' inequality again, we
obtain:

-) + ψ-(e+)}112. (5)

To estimate the expression in the last bracket we remark:

= A(e+-f+)S\
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If φ and ψ are both positive or negative, then one can choose e+ =f+ = 1,
respectively, e+=f+=0. This means that in this case the expression vanishes.
Therefore it should be possible to find an estimate taking this into account. But we
work with this simple estimate and obtain:

]/2{\\φ\\ + ||V||}1/2|/JMF. (6)

This proves the theorem for the case where φ and ψ are real functionals.
For generalizing this result to arbitrary functionals we start with:

Π.3. Lemma. Let M2 be the two by two matrices with values in M; that is x = (xt k)
with xίkeM. For φikeM^ define the functional Φ = (\pik) by Φ(x) = Σφi k(x k).

Then we have

and hence

for Φ =

φ+ -
\f —

C
1

2

, o,

(\φ\,

)

φ*

\φ* ' 2\-φ, \φ*

|Φ| = ('o'' | ° |)
Proof. Let φ=V\φ\ be the polar decomposition of φ. Then we get

This allows us to write

0, V\(\φ\, 0
Φ \v*9 o A o , \<p*

Now the matrix U= J satisfies U=U* and (U2)2 = U2. Furthermore we

have U2 = 5 Λ , ,̂ . In order to show that this is the polar decomposition of
\0, \φ*\)

Φ, it is sufficient to show that Φ ( l / * ) = | | φ | | holds. F r o m Φ(U*) = φ*(V) + φ(V*)
= 2\\φ\\ it follows that | |Φ | | ^ 2 | | φ | | . On the other hand | | x | | ^ l implies | | x i > k | | ^ l ,
and hence from

it follows that | |Φ|| ̂  \\φ\\ + | |φ* | | =2 | |φ | | . This gives | |Φ | |=2 | |φ | | and hence

° ]. From Φ + = | { Φ + |Φ|}, Φ " = i { | Φ | - Φ } the lemma follows.

Proof of the Theorem. Put Φ = ( ' Ψ \ Ψ=\' W \ and Δ = \ °' Φ *
\<p, 0 / \ψ, 0 J W-Ψ, 0

Then we get

| , and \\Δ\\=2\\φ-ψ\\=2\\Δ\\.
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From Lemma II.3 we have |Φ|= ( '? ' , ° A |2Ί= ('? ' , ° Λ So we obtain
fromEq.(6): ^°' ^ " °̂> ^

This proves the theorem.
Next we want to apply Theorem II. 1 to our problem of continuous covariant

representations. First we need some notation.

11.4. Definition. Let G be a topological group and {M, G, α} a FK*-dynamical
system. Then we denote by M^ c = {φeM^ agφ is continuous in the norm
topology at g = l}. (This means \\oίgφ — φ\\-^O for g-^ί.)

Π.5. Proposition. Let {M, G,α} be a W*-dynamical system (G a topological group).
Then M^ c is a norm-closed linear subspace of M^ with the additional properties:

a) M^iC is invariant under ag for all geG,
b) φeM^c => \φ\ and <p*eMi|f>£5

c) M^ c is generated by its positive part M*>c.

Proof. It is clear from the definition of M^ c that it is a linear space. Let now φ. be a
norm convergent sequence with φ.eM^. c and with limit φ. Let ε>0. Then there

exists n0 such that \\φ — φno\\ < -. Since φnQeM^^c there exists a neighbourhood U

of the identity in G with \\φno—oίgφno\\ ̂  - for ge U. Hence we get for ge U

This shows M^c is norm-closed. Next from

it follows that M^tC is invariant under oig.
Since the norm is invariant under the involution it follows that M^c is

invariant under involution. Since the map φ^\φ\ is continuous in the norm
topology by Theorem Π.l, it follows that with φ e M ^ , \φ\ also belongs to M^fC.

III. Quasi-Covariant Representations

In this and the following section we will work with C*-algebras. Everything which
is said here is true in the context of von Neumann algebras if one replaces the
concept of representation by that of normal representation.

Let A be a C*-algebra, then we denote by S(A) the set of states. If (π, H) is a
representation of A (which is always assumed to be nondegenerate), then we
denote by Fπ the folium of π. These are the normal states of π(A). Here Fπ is
convex and norm-closed and invariant under the map ω^>xωx*/ω(xx*) for all
XEA with ω(xx*)φθ. Two representations π 1 ? π 2 of A are called quasi-equivalent if
πγ(A) and π2(A) are normal faithful representations of each other. It is well known
that πx and π 2 are quasi-equivalent to each other if and only if Fπi=Fπ2:
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///./. Definition. Let (A, G,α) be a C*-dynamical system with G a topological
group. Then

a) A representation π on H is called covariant if there exists a unitary
continuous representation U(g) of G on H with

b) A representation π is called quasi-covariant if there is a representation πx

which is quasi-equivalent to π and which is at the same time a covariant
representation.

We now want to generalize a result which is known for locally compact groups
and the additional assumption that ag acts strongly continuous on A.

III.2. Theorem. Let {A, G, α) be a C*-dynamical system with G a topological group,
and let π be a representation of A. Then π is quasi-covariant if and only if

1. Fπ is invariant under the action of ag,
2. (xg acts strongly continuous on Fπ this means for ε > 0 and ωeFπ there exists

a neighbourhood N C G of the identity such that

\\ocgω-ω\\<ε for geN.

Proof. This theorem will be proved with the help of Tomita's theory of modular
Hubert algebras [14] (see e.g. Takesaki [19]) for a representation of this subject. In
particular the theory of the so-called natural cone and standard representation of
positive functional is needed. This theory of the natural cone has been developed
by Araki [1, 2], Connes [6, 7], and Haagerup [10]. In the papers of Araki and
Connes one finds the case where the von Neumann algebra M has a separating
state. The general case which uses weights instead of states is treated by Haagerup.
Since we have in mind that our von Neumann algebra is the double dual of a
C*-algebra we need the general case, since, except for special situations the double
dual of a C*-algebra will not have separating states. For an introduction into the
theory of the natural self-dual cone, see e.g. the textbook of Bratteli and Robinson
[5, Vol. I, Sect. 2.5.4] for the case where M has a separating normal state, and Sect.
2.7.3 for the general situation.

We now apply this theory to the von Neumann algebra π(A)". It is well-known
that a central projection E in ,4** exists (the enveloping von Neumann algebra)
such that EA** and π(A)" has the characterization

where one can choose either the right or the left support of φ since E belongs to the
center.

Let w be a faithful, normal, semi-finite weight on π(A)" and (πvH) its GNS
representation. Let πί be the restriction of π 1 to A, then π1 and π are quasi-
equivalent. Let P be the natural cone in the Hubert space H. (The natural cone is
often denoted by P\) Then ξeP-+ωξ(x) = (ξ,xξ) gives a homeomorphic bijection
from P to Fπ. If α is any automorphism of n(A)"9 then there exists a unitary
operator Ua acting on H such that l/αξ(ω) = ξ(α*ω) holds for ωeFπ.
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Since ω-+ξ(ω) is a homeomorphism, it follows that the representation U(g)ξ(ω)
= ξ(α*ω) is continuous if Condition 2 of the theorem is fulfilled. Hence π1 is a
covariant representation and consequently π is quasi-covariant.

The converse of the statement is well-known and can be found in [3].

IV. Some Remarks on the Structure of M^ c

We end this paper with some additional remarks on the structure of M^ c. From
Sect. II we know the following properties:

(i) φeM^ c implies φ*eM^. c.
(ii) φ = φ*eMίiitC and φ = φ+ — φ~, the canonical decomposition of φ, then

φ+ and φ~eM^)C. Hence M ^ is linearly generated by its positive elements.
(iii) φeM^tC implies \φ\eM^ c.
In order to obtain more properties of M^ c, we look at the standard

representation of M and the natural cone P. We denote by Pc the representatives
{ξω; ωeM* c}, and by Hc the smallest sub-Hilbert-space containing Pc.

IV.1. Lemma. With the previous notations we have the following properties:
(i) Pc is a cone.

(ii) Hc is invariant under the canonical involution J.
(iii) Let H[ denote the vectors which are real in Hc. Then Pc is a selfdual cone in

H[ and Hc is generated by Pc algebraically.
(iv) Denote by ec the projection onto Hc. Then for every ξeP it follows that

ecξeP,

Proof (i) Let ξvξ2ePc. Then it follows from Theorem IΠ.l that the functional
x^(ξί,xξ2) belongs to M^)C. Hence the functional generated by ξλ + ξ2 is in M^ c,
which implies that Pc is a cone.

(ii) This follows from the fact that Pc is pointwise invariant under the
involution «/, and that J> is a continuous operator.

(iii) Assume ξf,f/.ePc, z = 0,... ,3.
/ 3 3 \

Then the functional x-MΣίO^fcsxΣίO^L) belongs to M^ c . Since M^ c is
\o o /

norm-closed, it follows that x^{ξ,xη)eM^c for all ξ,ηeHc. This in turn implies
that Pc = PnHcisa closed cone. Now let η e Hc with Jr\ = η, then (η9 η)eM*f c, and
hence a vector ξePc exists with (η, η) = (ξ, ξ) and consequently a partial isometry
W'eM' with η = W*ξ and ξ = W'*η. From J>ξ = ξ and Jη = η it follows with
W = J>W'J>eM also that η=Wξ, ξ=W*η holds. Without loss of generality we
may assume that W*W is the support of ξ. Now from Wξ = JWJξ, W2ξ
= WJWJξeP follows and for xeM

Hence by the uniqueness of the representing vector W2ξ = (JWJf)2ξ = ξ follows.
From the minimality of W it follows that W2 is the support projection of ξ or
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W= W*. Since (η, ξ) = W{ξ, ξ) it follows that (η, ξ) is selfadjoint and this formula
gives the polar decomposition. From this follows ξ+ = W+ξePc and
ξ- = W~ξePc and η = ξ+-ξ~9 ξ = ξ++ξ + . Hence P+-P+=Hr

c. Finally for
ξί,ξ2ePc, (ξvξ2)^0 follows, since Pc is a subcone of P. If ηeHr

c, then from the
previous result η = ξ+ — ξ~ follows, with ξ + ,ξ~ePc and (ξ + ,ξ~) = O. Hence if
(η9ξ)^O for all ξePc (η, ξ~)= - | | Γ I I 2 ^ 0 follows, which implies ξ~ = 0 and
consequently η^Pc.

(iv) Let ξeP. Then (ξ, ξc)^0 follows for all ξcePc, and hence (ecξ, ξc)
= (hξc)^O, which implies ecξePc.

These remarks show that the space M ^ c has some interesting structure.
Consequences of this will be treated in a forthcoming paper.
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