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Abstract. Asymptotically free quantum field theories with planar Feynman
diagrams [such as SU(oo) gauge theory] are considered in 4 dimensional
Euclidean space. It is shown that if all particles involved have non-vanishing
masses and if the coupling constant(s) λ (or g2) are small enough (λ^λcrli\ then
an absolutely convergent procedure exists to obtain Green functions that
uniquely solve the Dyson-Schwinger equations.

1. Introduction

In two previous papers [1,2] this author explained his interest in planar diagram
field theories. To date no analytic method for summing planar diagrams is known,
although interesting exact features of the corresponding JV—>oo field theories were
displayed [3]. We now suspect that convergent calculational procedures do exist
in these theories, but we are unable to prove this for the most interesting case:
SU(oo) QCD. The problem is the fact that the gluons are massless. In this paper we
consider a closely related set of theories. The Feynman rules may be as in planar
QCD, except that we take all particles involved to be massive, and the coupling
constant must be smaller than a certain limit. Furthermore, our theory must be
asymptotically free. Since we only look at the Feynman rules and are not
concerned about unitarity or positivity of the energy, the signs of the couplings can
always easily be arranged in such a way that asymptotic freedom is possible. For
such a theory we will construct an absolutely convergent calculational procedure.
In another publication [4] we already indicated how this may imply absolute
Borel summability of the perturbation expansion of this system. Since the mass of
the particles will only be needed in the very end of our argument we will also be
able to draw certain conclusions about the Borel functions in massless SU(oo)
QCD. Further details are postponed to a future publication. There may be some
optimism that SU(co) QCD may also be rigorously constructed sometime, but
prospects for finite SU(iV) theories seem to be much more remote.

Our technique will be that of [2]. There it was shown that if we sum only the
ultraviolet-convergent planar diagrams then this sum has a finite radius of



2 G. 't Hooft

convergence1. What has to be done here is to replace the bare propagators,
3-vertices and 4-vertices of [2] by dressed propagator and vertex functions. It is
easy to convince oneself that then all (planar) Feynman graphs are generated. The
planar diagram expansion of [2] then is called "skeleton expansion," and an
important ingredient of our present argument is that the transition to dressed
propagator- and vertex functions still leaves the skeleton expansion convergent,
provided that the 2-, 3-, and 4-point functions fall within certain limits.

We will call the 2-, 3-, and 4-point functions the "basic Green functions," in
contrast with Green functions with 5 or more external lines, which can be
expanded in series of skeleton graphs ("expandable Green functions"). Inside a
skeleton graph only basic Green functions occur.

As a first Ansatz (which will be justified in the end, Sect. 6), we assume that the
basic Green functions are sufficiently reasonably behaved (Sect. 4). We then
deduce from the field equations certain relations ("difference equations") that
express the difference between basic Green functions at different external momenta
in terms of expandable Green functions, for which we write down skeleton
expansions.

We then solve the difference equations iteratively (Sect. 6) in order to find
improved expressions for the basic Green functions, in which the only unknowns
are the values of these basic Green functions at their symmetry points. One can
check that the ansatz in the beginning is indeed correct. After applying some Ward
identities one finds as the only unknowns some floating coupling constants g^μ),
as arbitrary functions of a parameter μ with dimensions of a mass. For these one
can also write down the difference equations which then take the form of
renormalization group equations with correction terms. One then shows that these
higher order correction terms are sufficiently small as to not disturb the
uniqueness of the solutions of these renormalization group equations, and that
indeed non-trivial solutions exist (Sect. 8). This means that we must verify that the
floating coupling constants g(μ) obtained do not exceed the radius of convergence
for the skeleton expansions, and that an iterative procedure to obtain a solution
converges.

For actual calculations (of the mass spectrum for instance) the procedure we
sketched may not be very practical. But from its existence one will be able to prove
that the technically much more convenient Borel resummation procedure for the
perturbation expansion also converges and analytic properties of the Borel
functions F(z) may be derived [4].

2. The Basic Green Functions

In planar diagrams it is convenient to label external momenta not by one but by
two consecutive indices:

Pi,i+i=Pi-Pi+i> (/cyclic). (2.1)

1 The author was informed that this result can easily be derived from the results of de Calan and
Rivasseau [5], who write down more general bounds for massive, non-planar renormalized divergent
graphs. Some rewriting must be done however because direct application of their main theorem gives a
too divergent high-momentum behavior
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This way momentum conservation (Σpi>i +1 =0\ is automatic. Here p. are defined
\ i I

by (2.1) up to an arbitrary overall translation in momentum space. All planar
channels (the only ones in which planar theories can have resonances) then always
have momenta given by the difference of two pv Thus in a 4-point function the
s-channel momentum is P\3~P\ — P3 a n d the ί-channel momentum is
P24. = P2~P4.' Since the indices here refer to loops adjacent to our diagram, pt will
be called external loop momenta, and p. i + 1 are external line momenta.

The symmetry point (actually a line) of an amputated irreducible [6] 4-point
function: (j 4(p 1,p 2,p 3,p 4) is defined by

Pi 2 =P223 =PII =Pll =P213=P224 = P2 > ( 2 2 )

and for a 3-point function: G3(pvp2,p3),

P2

ί2 = P2

23=Pli=P2- (2-3)

If more than one particle type is involved these functions may have indices
labeling the particles in the external lines, and in gauge theories these may be
Lorentz indices2. We can enumerate all possible Lorentz covariant ways in which
these Lorentz indices are linked to the external momenta. This way we get a
number of Lorentz-invariant structure functions at the symmetry points. These
functions then still depend on one momentum-squared p 2.

For example in a pure gauge theory we have at the symmetry point

Gμ

3

vλ(Pv P2> P3) = ί

+ ίC(p2) {q2

μqUl + qtfql + fate )
where

Of course there are similar expressions for other 3- and 4-point functions.
At lowest order in the coupling constant we have:

A°(p2) = ig; B°(p2) = C°(p2) = 0. (2.6)

The function A(p2) for the dressed vertex can be related to a running coupling
constant g(μ) as follows:

312 μ2 = |p | 2 , (2.7)

where Z(μ) is the "field renormalization factor," coming from the two-point
functions:

G^(p, 0)=- Z(μΓ \p2δμv - pμPv) - φ Γ 1 pμPv, (2.8)

where α(μ) is an arbitrary gauge parameter.

2 Of course, the color index which runs from 1 to N, where N tends to infinity in planar theories, was
already removed by absorbing N into the coupling constant [7]
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Again we keep in mind that these expressions must be generalized for the more
complicated massive theories. Notice that in our formalism, Z(μ) is finite. Only
renormalized, subtracted expressions are considered.

The running coupling constant(s) will satisfy a modified version of re-
normalization group (Gell-Mann-Low [8]) equations, which will be of the form

Q(μ) P?%{μ)) β^KQiμ)) + % ( μ ) f ( 2 . 9 )

where either β{0) is essentially quadratic in the gj^μ), β{1) cubic and iV = 4, or β ( 0 ) is
cubic, β{1) a fifth power and JV = 7, depending on the nature of the coupling
constants.

Here Θ(g(μ))N contains all higher order effects, and it will be defined later we
indicated explicitly the negative sign of the first coefficient. The coefficients β(0),
β{1\ and sometimes even more are known from standard perturbation theory [9].
In all but the simplest theories these coefficients are tensors. We then only consider
a solution of (2.9) that converges to zero at μ-*oo (asymptotic freedom). The
functions B and C of Eq. (2.4) must go to zero faster than 1/μ2.

The solution of Eq. (2.9) has the form

(2.10a)

or

gi(μ) = ξί(μ)yΊΐμ) (2.10b)

in the two cases mentioned before, where |ξ|2 = l and ξi(μ)^ξί as μ-^oo, and λ
satisfies

f ^ = -βθ(μ)λ2-β\μ)λ3 + Θ(λA), (2.11)

with definitions of the form

(2.12)

(2.13)

Here £ is a solution of
βoξι = β?®, (2-14)

and A is an integration constant. There is no need for the solution given by
(2.10)-(2.14) to be stable, and besides A there could be more free parameters
hidden in the functions £f(/i), although we do not know of examples of such
multiple parameter asymptotically free theories relevant to nature.

We have for the field renormalization factor Z(μ) an asymptotic form that
usually goes like

^ Z{μ)-^^[lθg{μ/Λ)Y, (2.15)

where σ is a gauge dependent coefficient, to be determined from one-loop
perturbation theory.
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We consider (2.10)—(2.15) as boundary conditions for our theory. A crucial
point of our argument will be to derive equations that replace (2.9) at finite μ with
increasing accuracy, and to show that the boundary conditions (2.10)—(2.15)
determine the solution uniquely. It will turn out that we must require inequalities
of the form

λ^ (2.16)

for all μ, where λcrit is a small positive number related to the radius of convergence
derived in [2]. This forces us to consider massive theories only because otherwise
λ(μ) necessarily becomes too large.

3. Difference Equations for Basic Green Functions

The Feynman rules of our set of theories must follow from a Lagrangian, as usual.
From this Lagrangian one can derive Dyson-Schwinger equations. These are
equations that relate Green functions to other Green functions in such a way that,
formally, all Green functions should be determined by solving these equations
iteratively. Now the problem with the Dyson-Schwinger equations as they are
usually written is that they require subtractions of infinities. This makes iterative
estimates of magnitudes of amplitudes difficult, so we decided to use altered
versions, more suitable for expansions in skeleton diagrams.

For brevity we ignore the Lorentz indices and such, because those details are
not of much concern to us. Let the dressed propagator be

P{p)=-G2

ί(p), (3.1)

and let the corresponding zeroth order expressions be indicated by adding a
superscript 0. In massive theories:

Define

) = G2μ(p\k)kμ

so that

(3.2)

(3.3)

(3.4)

This gives us the "Feynman rule" for the difference of two dressed propagators,
depicted in Fig. 1. (Note that, in this section only, p and k denote external line
momenta, not external loop momenta.)

p + k p +k

Fig. 1. Feynman rule for the difference of two dressed propagators. The 3-vertex at the right is the
function G2 (p\k)
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p+k+q P

Fig. 2. Difference equation (3.6) for G2μ

+ P P

Fig. 3. Some arbitrarily chosen terms in the skeleton expansion for G2μ

We have also this Feynman rule for bare propagators. There G 2 μ follows
directly from the Lagrangian:

G°2μ=-2pμ-kμ.

Continuing this way we define

with

(3.5)

(3.6)

c

— ~°μ (3-7)

In Feynman graphs this is sketched in Fig. 2. Differentiating once more we get

v(P I k \q + r) - G2μv(p | k \q) = G2μv λ(p \ k \q | r) rλ
(3.8)

Of course G 2 μ v A can be computed formally in perturbation expansion.
Considering the corresponding Feynman graphs and substituting the expressions
(3.4) and (3.6) for the bare propagators, we find a set of Feynman rules for
computing Gμ, Gμv etc. directly. The bare functions G2 μ, etc. occur at one edge of
the planar diagram. We see that the power counting rules for divergences in G 2 μ v A

are just as in 5-point functions in gauge theories. Since the global degree of
divergence is negative we can expand in skeleton graphs. See Fig. 3, in which the
blobs represent ordinary dressed propagators and dressed vertices or dressed
functions Gμ and Gμv.

Notice that one might also need G3μ(pί,p2\k) defined by

In short, the skeleton expansion expresses G2μvλ but also G 3 μ v etc. in terms of the
few basic functions G2 μ, G 2 μ v, G 3 μ and the basic Green functions G2 3 4. Also the
function G4 μ, defined similarly, can thus be expressed. The corresponding
Feynman rules should be clear and straightforward.
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4. Inequalities as Ansatze

As a starting point for an iteration procedure we must use some rough
approximation to the basic ( = primitively divergent) Green functions including
G3 μ, G2μv etc. They should be inserted in the skeleton diagrams at the right hand
side of the difference equations such as Fig. 3. Then by solving Eqs. (3.8), (3.6), and
(3.3) (in that order), under boundary conditions determined by the asymptotic
form of the renormalization group, we find new approximations to the elementary
Green functions. Our claim is that under certain conditions (to be specified) this
iteration procedure converges.

The first trial must be chosen sufficiently carefully. The elementary Green
functions at their symmetry points are assumed to obey the renormalization group
equations asymptotically, at least up to and including the two-loop coefficients.
This is because even the two-loop β coefficient can affect the asymptotic behavior
such that an error in that coefficient would cause expressions at low energy-
momenta to diverge. In most cases the three- and more loop coefficients would at
most give small finite corrections and can therefore be ignored at the first trial.

But we also need the elementary Green functions away from their symmetry
points. In particular we must require that they do not diverge too wildly at
exceptional momenta (with exceptional momenta we mean the case that the
momentum-squared in one channel is much larger than in another channel, for
instance p^^Pls)-

The two-point functions have no exceptional momenta. Suppressing Lorentz
indices we require that at low momenta

. (4.1)

At high momenta,

G2(p)=-\p\2z(pΓ1; (4.2)

shorthand notation, to be used throughout, for momenta:

(4.3)

Z(p)~(\ogίl + ̂ \) for large \p\. (4.4)

Here σ is the same coefficient as in (2.9) and m is some finite mass which as yet we
need for removing infrared divergences. (Whether or not our Feynman rules are
unitary, include ghosts and the like, is irrelevant for this discussion.) Since we will
arrive at one unique expression for the sum of all Feynman graphs, this sum will
obey all relevant Ward-Slavnov-Taylor identities if the original Feynman rules
and boundary conditions do. The sign of σ might differ from one theory to an-
other.

For the three- and four-point functions we have to specify precisely what
happens at the exceptional momenta. There are quite a few ways in which the
external momenta can be exceptional, and so we devised a compact notation.
Remember that we only work in Euclidean space. Let p 1 ? . . . , p 4 be the four
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external loop momenta. The momentum in any channel is given by the difference
of two of these. The case

(4.5)

with A1^A2^A3, is indicated as:

3)^4)^, or just as (((12)13)24)3. (4.6)

If

\Pi~P2\ = A19 \P3-PJ = A2, \pί-p3\ = A3 (4.7)

with A14tA3\ A2<ζA3, then we write:

, or just: ((12)1(342)3. (4.8)

And so on. The use of Schwartz' inequality for the absolute value symbol (4.3)
allows us to conclude in the latter case that also

So in our notation A1 2 3 indicate the order of magnitude of any pair inside the
labeled brackets. Table 1 now expresses the bounds that our trial functions must
satisfy at exceptional momenta. The next chapter explains why they were chosen
this way, and we will derive that if our trials are improved by iteration then the

Table 1. Bounds for the 3- and 4-point dressed irreducible Green functions. Zfj. stands for Z(pf —p7). All

other exceptional momentum values can be obtained by cyclic rotations and reflections of these

((n)^)2 Kι(Zι2Z23Z31Γ
i/2A2 (4-2) η

\A)

3 4 Z 4 1 ) - W ^ ) ' ( ^ ) g\A3)

((12)1(34)2)3 K 3 (Z 1 2 Z 2 3 Z 3 4 Z 4 1 ) - ι'2 ( - A - ) ' g2(A3)
\AAJ

1A2

«(13)12)24)3 K^Z21Z23Z34Z41Γ^2l^)η ' g\A3)

((13)1(24)2)3 K 5 ( Z 1 2 Z 2 3 Z 3 4 Z 4 J - W ^ V ' g\A3) if A1<A2

((i23)14)2

K 7 ( Z 1 2 Z 2 3 Z 3 4 Z 4 1 ) - 1 / 2 ( ^ ) l g\A2)
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new trials will again satisfy these bounds. Here η and ζ are coefficients that must be
chosen somewhere within the range

0<w<0.038,
(4.9)

9

Actually, ζ could be chosen negative, with ζ > — η, but that would cause an
unnecessary complication of our proofs. Then g2(μ) is the running coupling
constant which asymptotically approaches (2.8), and is assumed to be bounded by

\g(μ)\^g0 for all μ. (4.10)

The numbers K1-KΊ are some universal constants. The bounds for the difference
functions G2μ, G2 μ v, and G 3 μ are the same as for ordinary 3- and 4-point functions,
except that G2 μ and G 2 μ v have no factors g, and G3 μ only one factor g(Λ3).
Furthermore Z factors for the newly generated external lines with the Lorentz
indices are all chosen to be equal to 1.

5. Type III Planar Feynman Rules

We now show that if the basic Green functions lie within the bounds given by
Sect. 4, then the skeleton expansions for the 5-point functions converge. Actually
we also wish to derive certain bounds for these 5-point functions at exceptional
momenta. We will get these bounds as we go along. First of course we notice that
the factors Z± i/2(p) in the propagators and vertices cancel. All we have to look at
in this section is the powers of Ai in Table 1. Our argument goes much along the
lines of [2]. Reference [2] would apply if ?7 = C = 0. There type I and type II
Feynman rules were defined. Because of the extra powers of Ai we now define
type III Feynman rules in a similar way. Because we require a proof of some extra
bounds, our procedure is slightly more sophisticated than in [2]. Type III is
defined as follows:

1. There are only 3-vertices. They carry a factor 1. Associated to them are
three coefficients ρv ρ2, ρ3, belonging to the three lines. They are always in the
range

-

and at each vertex we require

2. The propagators carry a factor

\k\~\ γ = l-2η + ρi + ρj, (5.3)

where ρ. and ρ. are the ρ coefficients of both vertices connected by the propagator.
Again we use the notation \k\2 = k2 + m2. For practical reasons we must also
require that there is a number μ > 0 such that

y^μ (5.4)

with in our case μ^4η-\-4ζ.
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3. There are no subgraphs with only two external legs. All subgraphs must be
convergent by power counting. This degree of convergence, Z, must obey Z ^ μ ,
and

μ^ί-6η-4ζ. (5.5)

The relation with the ά coefficients of [2] is:

Qi = <*i + 1. (5-6)

Theorem 1. The degree of convergence Z of any irreducible type III diagram is
given by

4 - £ e e x t , (5-7)

where E is the number of external lines, and ρe x t are all coefficients that belong to
external lines.

The proof is by trivial power counting.

Theorem 2. A planar skeleton graph with basic Green function insertions that obey
the bounds of Table ί is bounded by a type 111 planar graph.

This is how Table 1 was constructed. The proof goes as follows. For the
3-point function the powers of Ai are absorbed into the connecting propagators.
We get as ρ coefficients 0, 0, \ + 3η, or permutations thereof. The 4-point functions
are rewritten as pairs of 3-vertices connected by propagators with γ ^ 2ζ — 2η. Now
the functions of Table 1 are connected by propagators with y coefficients equal to
2, but we absorb some of the powers of At into these external propagators.
Consequently we get external ρ coefficients ranging between

$-ζ^ρnt^ + 3η. (5.8)

By inspection we find that all cases of Table 1 can be bounded by tree graphs with
external ρ coefficients satisfying (5.8).

The internal ρ coefficients satisfy

ζ-^Qi^V + X-ί- (5-9)

Now all non-trivial triangle sub-graphs that may enter from a skeleton graph must
have at least two vertices that arise from 4-point elementary Green's functions and
therefore have external ρ coefficients satisfying

ζ-^ρQXt^rj + 2ζ-l (5.10)

Similarly, quadrangle graphs must have at least one original 4-vertex, and
pentagons are allowed to have only 3-vertices from the start.

The degrees of convergence derived from (5.7) are therefore bounded by

(5.11)
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This proves that requirement No. 3 for type III diagrams is met, and so Theorem 2
is proven. Note that the coefficients Kt must also be absorbed into the "coupling
constant."

Theorem 3. There is a constant C<oo, such that a diagram of type III, with L
loops, is bounded by CL times a type III tree diagram whose external ρ coefficients
are either the same as those of the original diagram or ^\ — ζ. (The choice of
diagram and internal ρ coefficients may depend on the external momenta,)

This is a crucial theorem for our paper. Its proof is lengthy because of
bookkeeping, but goes much along the same lines as the argument of [2]. We defer
the discussion of the proof to Appendix A.

6. Finding the Elementary Green Functions at Exceptional Momenta

In this section we regard the elementary Green functions at their symmetry points
as given, and use the difference equations of Sect. 3 to express the values at
exceptional momenta in terms of these. If p{ — p. is the momentum flowing through
the planar channel ι/, then in our difference equations we keep

μ=mγ,\pi-pj\ (6.1)

fixed. So we express the exceptional Green functions in terms of those at the
symmetry point μ.

The right hand side of these difference equations again contain the elementary
Green functions, also at exceptional momenta. But these only come at higher
orders, and the effect of exceptional momenta is relatively small. So at this point
one might already suspect that when this definition is used recursively it might
converge. This will indeed be the case under certain conditions as we will show.

We wish to check whether after every next iteration the bounds of Table 1 are
still obeyed. First we do this with the 4-point functions, and we consider all cases
of Table 1 separately. The right hand sides of the difference equations contain
5-point functions, to which we apply Theorem 3. It says that we can replace those
functions by type III tree graphs with the same external ρ coefficients. The internal
structure of those graphs can still be anything as long as it obeys the type III
Feynman rules. We need bounds for the absolute values of these graphs in various
exceptional regions. Table 2 lists the results. The external ρ coefficients satisfy
Ineq. (5.8). The power of g2(Λ3) in the table anticipates that we consider the
function G4 μ. Other functions such as G 3 μ v and G2μvλ have one and zero powers of
g(Λ3), respectively. In front of all this comes a power series of the form

Σ Cgl^Cg&l-Cgl)-1, (6.2)
n = 1

which converges provided that we postulate:

1 / 2 . (6.3)
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Table 2. Bounds for irreducible 5-point function at some exceptional momentum values

«(12) I53)24)3 YlZ^A-^Άf^'Ά^-^gHA,)

((12)̂ (34)2)3 Π ZΓ^A^-A^ Άf- lg2(A3)
i

(((513),2)24)3 ΠZ,ί +

1 ' 1

2 / lΓ 1 " 4 "" 4 ^l" + 2 ^ i " + 2 ζ 9 2 (^3)

((135)1(24)2)3 Y\znlJiA^~^^At" + 4V(A3)
i

((1235),4)2 Π Z i ί + W + 2 ^ Γ 3 ' " 2 ! - ' ί V J

We find, by shifting the momentum p2 towards p5, away from p2:

G4{(((12)13)24)3} = G4{((523)24)3}+(p1-p5)AIG4μ{(((12)153)24)3}. (6.4)

In this and following expressions the tilde (~) indicates which quantities are being
replaced by new ones in the iteration procedure.

If the Ansatz holds for G4{((523)24)3}, then

Cπ2 IA \2η/Λ \2ζ

7 7 7 r 1 / 2 g° Ω2(Λ ) 3 3

5 z , 1 2 z , 2 3 z , 3 4 j 2 g {Λ3) \A
1 C A \^Choosing

and considering that Z45 = Z4V we find

)

17 \1/2ίΛ \2η \

k) © κ-)
Let

xί2 = \Pl2\/m^U (6.8)

and

/(x1 2) = (log(l+x 1 2)r / 2 ^ 2 . (6.9)

For

x1 2>exp(-σ/4^) = x0 (6.10)

this is an increasing function, so that if

(6.11)
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then

The range 1 ̂ x ^ x 0 is compact, so there exists a number L such that

TM^L (6.13)

if

x 1 2 < x 5 2 . (6.14)

We find

K2^a + K6L. (6.15)

Similarly we derive

KΊ^oί + L, (6.16)

and we use

G4{((12)x (34)2)3} = G4{(5 2(34)2)3} + (Pl - p 5)μ G^U), 5(34)2)3} (6.17)

to derive

K 3 ^ α + K 7 L ^ α + αL + L 2 , (6.18)

and for the three point function,

K^K^L^a + lL. (6.19)

The remaining coefficients K4 _ 6 must be computed in a slightly different way.
Consider K4. We replace p 1 by p5 now in such a way that

\P5-P3\^\Pί-p3\; AX^2A19 (6.20)

and work with induction. Then

G4{(((13)12)24)3} = G4{(((53)X2)24)3} + (Pι -p5)μ G4μ{(((513)12)24)3}, (6.21)

and we find, again inspecting Table 2,

X 4 ( l - 2 - 4 / ? - 4 ζ ) = α (6.22)

[actually there might be an unimportant extra factor close to one here, and (6.22)
holds unless the bound given by i£ 4 would become smaller than the one given by

κ6l
Applying the same technique we compute a bound for K5, but we must

separate in turn px from p3 and p2 from p4. This makes the rate of convergence
slower:

X 5 ( l - 2 - 4 " - 4 ζ ) = 2α. (6.23)



14 G.'tHooft

Finally K6 is achieved by widening the separation between pv p2, and p3, in
successive steps of factors of 2:

G4{((123)14)2} = G4{((563)14)2}

+ (P5-Pi)μG4μ{((1235)14)2}

+ (P6-P2)μG4μ{((2356)14)2}, (6.24)

(where \p5-p6\ = 2\pί-p2\;\p6-p3\ = 2\p2-p3\; \p3-p5\ = 2\p3-pι\)

2n+2ζ

2log(A2/A1) I 7( A \ \

Σ 2-<2"+2»" 2 ^ ^ - +|G4{(1234)2}|. (6.25)

The sum certainly can be bounded:

X ^ L / ^ 2 L ( l - 2 ~ 2 ζ ) - 1 . (6.26)

Therefore:

K 6 ^max(l,αL'). (6.27)

Thus all coefficients Kt have been determined. Note that these coefficients may
blow up if η,ζ—>0, and this would have to be compensated by choosing g0 small
enough. So at finite but small enough g0 we find some non-vanishing coefficients
η, C, Kt that bound our amplitudes, and only if g2->0 then η, ζ-+0. It will be clear
from the above arguments that our bounds are only very crude. Our present aim
was only to establish their existence and not to find optimal bounds.

What has been shown in this section is that if our first trials for the elementary
Green functions obey the bounds of Table 1, and if Eqs. (6.4), (6.17), (6.21), and
(6.24) are used to find other trial functions, then these again obey the bounds.

In Sect. 8 we show that the series of trial Green functions thus obtained
converges geometrically to a certain limit.

7. Non-Exceptional Momenta

In order to formulate the complete recursion procedure for determining the basic
Green functions we need relations that link these Green functions at different
symmetry points. Again the difference equations are used:

4

= ... = G 4 ( 2 p 1 , . . . , 2 p 4 ) - Σ PiλG4λ(P{i> ->P{5)' C7-1)
i= 1

Here p. and pf are external loop momenta. They are non-exceptional. We use a
shorthand notation for (7.1), writing p2 ^(pt — pj)2 ~μ2:

G4(μ) - G4(2μ) = - μ Σ G^(2^ A (7 2 )
i= 1
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Similarly we have

G2,*(μ)~ G2t3{2μ) =-μΣ G%3λ(2μ,μ). (7.3)
i

These are just discrete versions of the renormalization group equations. The right
hand side of (7.2), [not (7.3)!] is to be expanded in a skeleton expansion which
contains all basic Green functions at all μ, also away from their symmetry points.
There we insert the values obtained after a previous iteration. We wish to show
now that all diagrams that make up the right hand side of (7.2) decrease sufficiently
rapidly as μ->oo. Since G4 at the symmetry point is defined by our running
coupling constant(s), Eq. (7.2) can be expected to yield an equation of the form

~9i(μ)=- Σβ?l..JιθjM-9j,(μ)+\g(μ)\NQi(μ), (7.4)
°\i 1 = 2

where β{l) are the first k coefficients, which coincide with the perturbatively
computed β coefficients [with an apology: the definition of / is not the same as in
Eqs. (2.9) and (2.11)]. Usually only odd powers occur, so that k = N — 2. The rest
function ρ satisfies

\()\QN, (7.5)

for some constant QN< oo. This inequality must hold in the sense that \g(μ)\N g(μ)
must be a convergent expansion in the functions g(μ'\ with

μ'^m (7.6)

(so that μ! may be smaller than μ), in such a way that the absolute value of each
diagram contributes to QN and their total sum remains finite.

Now clearly Eq. (7.2) is a difference equation, not a differential equation such
as (7.4). Up till now differential equations were avoided because of infrared
divergences. Just for ease of notation we have put (7.4) in differential form because
the mathematical convergence questions that we are to consider now are
insensitive to this simplification.

Consider the skeleton expansion of Gfλ in (7.2). At each of the four external
particle lines a factor g(μt) occurs with μ f ^μ, so it may seem easy to prove (7.4)
from (7.2) with N = 3 or 4. However, we find it more convenient3 to have an
equation of the form (7.4) with iV^7, and our problem is that the internal vertices
of the G(l\ might have momenta which are all less than μ. We will return to this
question.

In proving the difference equation variant of (7.4) from (7.2) we have to make
the transition from G4 to g2 and G3 to g, and this involves the coefficients Z(μ),
associated to the functions G2, by equations of the form

G2(μ)=-μ2Z~1(μ);

μ); (7.7)

3 Closer analysis shows that actually N = 3 or 4 is sufficient to prove unique solubility. Only if we
wish an exact, non-perturbative definition of the free parameters we need the higher N values. Note
that not only QN but also gQ may deteriorate as N increases
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where g3, g4 are just various components of the coupling constant g . In the
following expressions we suppress these indices i when we are primarily interested
in the dependence on μ( = \p\ at the symmetry point). Now from (7.2) and (7.3) we
find not first order but third order differential equations for G2, basically of the
form

| U (μ)/μ), (7.8)

where G2<λλλ is just a shorthand notation for the combination of expandable
functions G2λftv obtained after taking differences three times. Write

* G2(μ)=-G2λλ(μ), (7.9)

(7.10)

2 ~ 2 v r 7 ^2λλ

then

and

μ2Z~1(μ)=](μ-μι)U2(μι)dμ1+Aμ + B. (7.11)
m

Here A and B are free integration constants A is usually determined by Lorentz
invariance and B by the mass, fixed to be equal to m. In lowest order:

A = mU2(m); B= -\m2υ2(m). (7.12)

This strange-looking form of the integration constants is an artifact coming from
our substitution of difference equations by differential equations. Using difference
equations we can impose Lorentz invariance by symmetrization in momentum
space, so that only one (for each particle) integration constant is left: the mass
term. We choose at all stages \ U2(m) = Z(m) = ί.

A convenient way to implement Eq. (7.12) is to formally define U2(μ) = 2 if
O^μrgm, and replace the lower bound of the integral in (7.11) by zero. Then after
symmetrization: A = B = 0.

Equation (7.11) has a linearly convergent integral, whereas (7.10) is logarith-
mic. Together they determine the next iterative approximation to G2. In fact we

t (7.13)

and in /({#}), Z occurs only indirectly. So the iteration converges fastest if we
replace (7.10) by

^ ψ { (7.14)

where the tilde denotes the new function U2(μ).
One can however also use (7.9) with U2 replaced by U2.
We find

^Z~' = - } dτ(l-τ)μG2fλλλ(τμ). (7.15)
Uμ m/μ

As stated before, the &[ — ] terms have been removed by symmetrization.

w
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This equation allows us to remove the Z factors from the functions G3 4 and
arrive at first order renormalization group integrodifferential equations for g.(μ).

For the 3-point functions we must write

— UJμ) = μG-,11(μ), (7.16)
dμ

G3(μ)=jμU3(μ)dμ+C3, (7.17)
m

μ 3fί = J dτμG3tλλ(τμ). (7.18)
0/* m/μ

A potential difficulty in writing down the renormalization group equation even
for iV = 4 is the convolutions in (7.15) and (7.18) which contain Green functions at
lower μ values, and so they depend on g{μ!) with μ! < μ. So a further trick is needed
to derive (7.4). This is accomplished by realizing that the integrals in (7.15) and
(7.18) converge linearly in μ. Suppose we require at every iteration step

μd , x

irg(μ) ^β\g(μ)\3 and \g(μ)\^g0 (7.19)

for some β< GO, g0 < oo. Then it is easy to show that if μ1Sμ, then

/ \ε

\g(βι)\^\g(μ)\ + cl—I \g3(μ)\, (7.20)

if

(7.21)

So with C large enough and g0 small enough we can make ε as small as we like.
Inequality (7.20) is proven by differentiating with μ. This enables us to replace
g(τμ) by g(μ) in (7.15) and (7.18) while the factor τ~ε does no harm to our integrals.

So we find bounds for -— Z " 1 and ^ ~ G 3 in terms of a power series of g(μ). We

must terminate the series as soon as the factors τ " ε accumulate to give τ " 1 . This
implies that N must be kept finite, otherwise go->O.

The same inequality (7.16) is used to go from N = 4 to N = Ί in these equations.
If in a skeleton diagram a vertex is not associated with any external line, then it
may be proportional to a factor g(μ') with μ! < μ. But using (7.16) we see that it may
be replaced by g(μ) at the cost of a factor {μ/μ^f. At most three of these extra
factors are needed. If the three corresponding vertices are chosen not to be too far
away from one of the external vertices of the diagram (which we can always

/pextY
arrange), then this just corresponds to inserting an extra factor at an

external vertex. This in turn means a replacement η-+η + ^ε, so if η was not chosen
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to be maximal, then Theorem 3 remains valid and the skeleton expansion still
converges.

From the above considerations we conclude that an equation of the form (7.4)
can be written down for any finite N, such that QN in inequality (7.5) remains finite.
We do expect of course that QN might increase rapidly with N, but then we only
want the equation for N ^ 7. We are now in a position to formulate completely our
recursive definition of the Green functions G2, G3, G4 of the theory:

1) We start with a given set of trial functions G2(μ), G3(μ), G4(μ) for the basic
Green functions at their symmetry points. These must satisfy the boundary
conditions of Sect. 2 at μ-»αo, and Eq. (7.19). We use the procedure of Sect. 6 to
determine G2 3 4 at the exceptional momenta, that is, we start with some trial
function at the exceptional momenta as well and apply the procedure of Sect. 6
recursively, to obtain better and better values. The convergence of that will be
shown in Sect. 8a.

2) Knowing how to compute the exceptional Green functions from G2 3 4, we
are now able to find the right hand side of the renormahzation group equation for
G2, or rather Z 1 , from (7.15), using (7.20):

^ Z - » = Z - » (yijkgj(μ) gk(μ) + g\μ) £ (μ)), (7.22)

where ^ (μ) is again bounded. Here yijk are the one-loop gamma coefficients. This
gives us the Z functions if $ (μ) are known. In Sect. 8b we briefly discuss existence
of solutions to (7.22).

3) This then enables us to compute the right hand side of Eq. (7.4). Before
integrating (7.4) it is advisable to apply Ward identities (if we were dealing with a
gauge theory) in order to reduce the number of independent degrees of freedom at
each μ. As is well known, in gauge theories one can determine all subtraction
constants this way except those corresponding to the usual free coupling constants
and gauge fixing parameters [10]. So the number of unknown functions #.(μ) need
not exceed the number of "independent" dimensionless coupling constants of the
theory4.

4) We now solve Eq. (7.4), by an iterative procedure, of which Sect. 8c
discusses the details.

We must find out under what conditions this recursive procedure converges.

8. Convergence of the Procedure

a) Exceptional Momenta

In Sect. 6 a procedure is outlined to obtain the Green functions at exceptional
momenta, if the Green functions at the symmetry points are given. That procedure
is recursive because Eqs. (6.4), (6.17), (6.21), and (6.24) determine the Green
functions G2 3 4 in terms of the symmetry ones, and G4 μ, G 3 μ v, G2μvλ. But the latter
still contain the previous ansatz for G2 3 4. Fortunately it is easy to show that any
error δG2 3 4 will reduce in size, so that here the recursive procedure converges.

4 We put "independent" between quotation marks because our requirement of asymptotic freedom
usually does give relations among various running coupling constants
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Let us indicate the bounds discussed in Sects. 4 and 6 as

,...,p I I), (8.1)

and assume that a first trial G{

n

1] has an error

, (8.2)

with some ^
Now G4 μ, G 3 μ v, G2μvλ also satisfy inequalities of the form (8.1). Furthermore

they were one order higher in g2. So we have

(8.3)

where C is linked to the universal convergence coefficient. We indicated a factor
g2(μ) explicitly, implying that B4μ may be independent of #2(μ), and with
|G 4 μ | ύB4μ one could prove the bound (8.1), as shown in Sect. 6. So the new error
will be bounded by

\δG(

n

2)\^ε{1)Cg2(μ)Bn. (8.4)

So as soon as

\Cg2

0\<U (8.5)

where g0 is the upper bound for g{μ), our procedure converges. We stress that the
above argument is only valid as long as the Green functions at the symmetry
points were kept fixed, and are determined by g(μ), with μ= max |p |.

channels

b) The Z Factors

Knowing that at any stage g(μ) satisfies Ineq. (7.19), we find that the solution of
(7.22) is

logZ f(μ)= jrflogμ 1(y ί /^ /(μ 1)^(μ 1) + όf4(μ1)^(μ1)) (8.6)

(8.7)

where the (9(g2) terms are again bounded by a coefficient times g2(μ). These
equations must be solved iteratively, because the right hand side of (8.6) contains
skeleton expansions that again contain Z(μ), hidden in the function ^ ( μ x ) . It is not
hard to convince oneself that such iterations converge. A change

(8.8)

yields a change in the function ^ ( μ j bounded by

I ^ Σ I ^ 1 ' ^ (8.9)

so that

with ε ( 2 ) <β ( 1 ) if g0 is small enough.
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We now consider the integro-differential equation (7.4). The solution is con-
structed by iteratively solving

ad k

--Uμ)^ Σ βt..Jh(μ) .-~gjι(μ) = \g(μ)\ΉQi(μ)> (8.π)
°μ 1=2

where the tilde denotes the next "improved" function g.(μ). Our first ansatz will be
a solution of (8.11) with ρ{g} replaced by zero. This certainly exists because the
^-coefficients, of which we only need the first two, are determined by perturbation
expansion and therefore finite. The integration constant must be chosen such that
for all μ^m we have

\g2(μ)\Sκgl;κ<l, (8.12)

with some boundary condition at μ=oo as given by Eqs. (2.10)-(2.14). (It is
instructive to consider also complex A.)

If we now substitute this g(μ) into the right hand side of (8.11) we find a
correction

(8.13)

We can require the boundary condition

\δg(μ)\£εA\g(μ)\N-2

9 for all μ, (8.14)

such that

A\g(μ)\N-2£\g(μ)\, forall μ. (8.15)

Under what conditions does a recursive application of (8.11) give a stable
solution? Let the first ansatz produce a change (8.14). The next correction is then,
up to higher order in δg, given by

ψ i3{μ) δgj(μ) = δftμ), (8.16)

where

To estimate δf(μ) we must find a limit for the change in ρ. Our argument that

|ρ |<C (8.18)

came from adding the absolute values of all diagrams contributing to ρ, so
therefore we can be sure that, from (8.14) and (8.15),

|<5ρ|<εC\ (8.19)

with C slightly larger than C, and

\δf(μ)\^ε(N + l)Cg(μ)N. (8.20)

Now asymptotically,

jy (8.21)
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where M? is determined by one-loop perturbation theory. If there is only one
coupling constant it is the number 3/2. In the more general case we now assume it
to be diagonalized:

M°j = M{ΐ)δij9 (8.22)

with one eigenvalue equal to 3/2. (Our arguments can easily be extended to the
special situation when M? cannot be diagonalized, in which case the standard
triangle form must be used.) The asymptotic form of the solution to (8.16) is

δgi(μ) = (\ogμΓMiί) } d\ogμ(\ogμ)m) δftμ), (8.23)
μ(i)

N
where μ(i) are integration constants. If M(i)< — — 1 then we choose μ(i)= oo. If

N
M(ί) > 1 we set μ(i) = m. Then in both cases we get

\δUμ)\ \g(μ)\N-2 , (8.24)

where C" is related to C and the first β coefficient. In a compact set of μ values
where the deviation from (8.23) is appreciable we of course also have an inequality
of the form (8.24).

If M(i) = N/2— 1, then our first ansatz must be chosen slightly better than (8.14)
replacing N by a larger value.

Comparing (8.24) with (8.14), noting that C" is independent of A, we see that if

,8.25)

then our procedure converges. A is determined by imposing the bound (8.15). It
can be chosen large by choosing g0 small:

A = gl~N. (8.26)

So N > 3, and Eq. (8.14) can only be true if N > 5. Usually, N and / in (7.4) are odd,
so JV^7.

We close this section with a mere formality: Ineq. (7.19) has to be checked at
every iteration for g(μ). But it holds almost by construction, since our improved
versions g(μ) satisfy (8.11).

9. Discussion

What has been proven is that there are non-trivial values for the masses and
coupling constants for which a recursive procedure exists that yields solutions to
the imposed difference equations for the Green functions. All skeleton expansions
that are needed to produce this solution converge, and all convergence rates are
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geometric. The finite mass values were only needed in order to limit the growth of
g(μ) at small μ values, such that

\g(μ)\^g0 (9Λ)

everywhere. However, (9.1) can also be achieved by using complex solutions rather
than real ones because then the singularity in g(μ) moves to a harmless place in the
complex plane. In that case then the mass is not necessary and this enabled us in
[4] to draw some conclusions on the Borel functions for massless planar QCD.
However a complete convergent formalism for massless planar QCD is still
lacking.

Our convergence proofs were performed by deriving bounds on convergence
rates, but these bounds are still extremely crude (roughly at every estimate in our
paper gQ had to decrease by a factor of 2). We made no serious attempts to find the
tightest possible bounds or to actually estimate the true convergence rate.

Appendix A. Proof of Theorem 3

The proof goes by induction. We successively replace loops by trees. We begin by
removing all triangular loops, replacing them by single 3-vertices, until the only
subgraphs with three legs contain more than one facet. If such a subgraph appears
we replace it by a single triangle by applying the entire process described here to
that subgraph first.

The replacement of a triangle loop by a vertex goes as follows. Equations (5.4)
and (5.5) can be written as

(A.1)

The most divergent subgraphs adjacent to our triangle are labled 1,2,3 (see
Fig. Al).

Fig. Ala and b. Triangle loop with its most divergent surrounding subgraphs a. Here ytj are the powers
associated with the propagators shared by subgraphs i and;. It is bounded by the vertex at b, where the
new propagators have powers γij = yιj + δk (ij,k cyclic)
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/

< c

1 δ >

Fig. A2. Triangles with Z < 4 are bounded by vertices with J]δι

Let Zt be the degree of convergence of subgraph i
ZOi be the degree of convergence in the combined graph (i) + (0). Let Z t o t be the

degree of convergence of the graph made up by 0,1,2,3 together.
Then power counting gives us

Σ ZOί = Z t o t + 2Z 0 -h Σ la +1 = 3μ + Z o (A.2)
i

Here y 1 2 is the power attached to the propagator shared by 1 and 2, etc. The
inequality holds because all Z and y satisfy (A.I). Now the triangle is replaced
according to Fig. A2, the powers δ^O must satisfy [2]

Σδi = zo- (A3)

We choose them such that Z O ί ^ μ + (5f, so that the new divergences in diagram b)
still satisfy Z f ^ μ . (Here the bar refers to the diagram of Fig. Alb.)

Now the inequality of Fig. A 2 only holds [2] if also

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)

(A.9)

So if ζ>5η according to (4.9) there is no problem. After removal of triangles this
way Ineqs. (A.I) still hold.

Now before removing the quadrangle we first remove all negative ρ coefficients
except those at the external vertices of our diagram (or our triangular sub-
diagram), using the inequality of Fig. A3, where ρί<0. This is simply the
inequality

and permutations thereof. This can only be violated if

because only then

But

(A. 10)
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Pi "P2 P3 P2 + Pi P3 + P i

Fig. A3. Inequality (A 10). The coefficients gt are indicated

Fig. A4. Inequality for quadrangle loop with Z < 4

Fig. A5. Inequality ibi pentagons

Fig. A6. Special case: three quadrangles in a triangle

The new ρ coefficients at the right hand side are all non-negative. Inequality (A.I)
for quadrangular subgraphs remains valid. Replacement of quadrangular sub-
loops now goes exactly as in [2] (see Fig. A4). One is entirely free to choose the
new external ρ coefficients in the tree graphs either equal to or larger than those of
the loop. As in [2] chains of quadrangular graphs ("generalized ladder graphs")
are removed inductively. Also removal of pentagons is identical to the procedure
of [2]. The proof given there applies without important changes (Fig. A 5).

One complication arises because we might have negative ρ coefficients at the
boundary of the graph. These are simply kept unchanged. It is easy to verify that
quadrangles and pentagons that have propagators in common with the edge of
our graph can be handled without complications. We needed ρ^O only at least
two corners of the quadrangular graphs because then Z < 4 , so that Fig. A4 holds.
All ρ coefficients are always kept ^ — \ + ζ.

When these procedures are applied to a non-trivial triangular subgraph, one
might end up with a configuration pictured in Fig. A 6, where three quadrangles
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combine to from a triangle. This we had not yet discussed, but bounding it by a
vertex using the loop-tree inequalities of [2] is straightforward.
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