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Abstract. Let m(x), i=1,...,d, xeZ% satisfy m(x)=a>0, and
7,(X) + ... + my(x) = 1. Define a Markov chain on Z¢ by specifying that a particle
at x takes a jump of + 1 in the i* direction with probability 7,(x) and a jump of
— 1 in the i direction with probability 3m,(x). If the m;(x) are chosen from a
stationary, ergodic distribution, then for almost all = the corresponding chain
converges weakly to a Brownian motion.

1. Introduction

Let Z¢ be the integer lattice and let ¢;, i = 1,...,d, denote the unit vector whose i

component is equal to 1. Let
S={(py,---,P)ER:p;Z0,p; + ...+ p, =1},
and suppose we have a function 7:Z?—S. Then a Markov chain X, (j) on Z% is
generated with transition probability
P{X,(j+ 1) =x+e]X,(j)=x} =3m(x), (L1)

and generator
d

L.g(x)= Z %ni(x){g(x +e)+g(x—e)}.

i=

If the function 7 is chosen from some probability distribution on S, this gives an
example of a random walk in a random environment.

For any &, we can consider the limiting distribution of the process X, satisfying
X,(0)=0 and (1.1). Let «>0 and set

S*={(py,...,Ps)€S:p; =},
and let C* be the set of functions 7:Z%— S°. The main result of this paper is:

Theorem 1. Let pu be a stationary ergodic measure on C* Then there exists be S* such
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that for u—almost all neC?*, the processes

X0(0) = %Xn([nm
n

converge in distribution to a Brownian motion with covariance (b; 9;;)

A special case of this theorem occurs when the n(x) are independent, identically
distributed random variables taking values in S*

A similar theorem for diffusion processes with random coefficients was proved
by Papanicolaou and Varadhan [3], and a considerable portion of this paper is only
arestating of their proofin the context of discrete random walk. The crucial new step
is Lemma 4, which replaces Lemma 3.1 of their paper. This is a discrete version of an
a priori estimate for solutions of uniformly elliptic equations. The ideas of Krylov [2]
are used in the proof of Lemma 4; properties of concave functions are used to
estimate solutions to a discrete Monge—Ampere equation.

2. An Ergodic Theorem on the Space of Environments

Fix an environment neC* and assume X, (0)=0. Let Zj=(Z},...,Z;?)=
X,(j))—=X,(j—1), and let 7;=0{Z,,...,Z;}. Let Y;=n(X,(j)). Then Y, is
measurable with respect to . ;, and

P{Zj:eilyj—l}ZP{Zj= _ei|9~j—1}=%y§'

Then X, (n)= ) Z;is a martingale and

j=1
. 0 i, #1i,
EZHZP\T ;) ={ LT
i -1 le—l i\ =i,
n—1 .
Let Vi = ) Y. Then theinvariance principle for martingales (see e.g. Theorem 4.1
j=0

of [1]) states that W,(t)=(W,(t),..., Wi(t)) converges in distribution to the
standard Brownian motion on R?, where

[nt]
Wl(t —(V —-1/2 Z Zz

Now suppose there exists a be S* such that

lim lnf X, (j)=b as..

n=wh j=0

Then by the above argument we can conclude that

XO(1) = X ([nc])

NG

converges in distribution to a Brownian motion with covariance (b; é;;). Therefore,
in order to prove Theorem 1 it is sufficient to prove:
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Theorem 2. Let p be a stationary ergodic probability measure on C*. Then there
exists beS* such that for y—almost all neC*,

ln 1
lim —~ Z X, ()=>b as.. (2.1)
n—*oo j
This is clearly an ergodic theorem and the idea of Papanicolaou and Varadhan
[3] is to find a measute on C* so that a standard ergodic argument can be used.
We define the canonical Markov chain with state space C* to be the chain whose
generator & is given by

E’g(n _Z % 1(0) {g(TeiTC) + g(‘[—e, 77:)},

where 1,7(y) = n(y — x). In this chain, the “particle” stays fixed at the origin and
allow the environment to change around it (rather than having the particle move
around a fixed environment). If we define g,:C*— R? by g,(n) = 7(0), and let ¥'=
denote the (random) environment at the j® step of this chain, then (2.1) is equivalent
to

n—1

lim - 1 Z go(Zm)=b as. p. 22

n—>oo j=

By standard ergodic theory we can prove (2.2), and hence (2.1), if we prove:

Theorem 3. Let u be a stationary ergodic probability measure on C*. Then there
exists an ergodic probability measure A on C* which is mutually absolutely continuous
with u and which is invariant under the canonical Markov chain & .

Clearly,

b= | go(m)di(m).
Cc*

To prove Theorem 3 we need some lemmas. For each n> 0, let T, denote the
elements of Z* under the equivalence relation

o1
(2152 ~ (WesennsWy) 1f5—(zi —w;)eZ for each i.
n

Then |T,| = (2n)". If x: T,,— S*, we may think of 7 as a periodic environment in C*.
Let C denote the set of such periodic environments. For 7eC%, let R} denote the
resolvent operator

Rig)= 3. (1= fLiato)

If g:T,— R we define the usual L? norms (with respect to normalized counting
measure on T,,),

lgll,=1@n)~" Y (gex)P1H?

xeTy

gl = sup |g(x)]

xeTyn
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Lemma 4. There exists a constant ¢, (depending only on d and o) such that for every
neCy, g:T,— R,
IR S cin?llglla

The proof of this lemma is delayed until Sect. 3. The next lemma follows from our
assumption that y is stationary (see Parthasarathy [4]).

Lemma 5. For each n, there exists n,e C% such that if u, is the probability measure on
C* which assigns measure (2n)~? to 1,7, for each xeT,, then

U, — U weakly.

Proof of Theorem 3. Let m,eC;, be a sequence as in Lemma 5 with u, — p. Let ¢, be
the density, with respect to normalized counting measure on T, of an invariant
probability measure on T, for «,, ie. L, ¢,=¢, and ||¢,|[; = 1. If R, =R} is the
resolvent corresponding to w,, then R,$, =n?@,. If we consider R, as a map from
LYT,) to L*(T,), then Lemma 4 states that the map is bounded by c,n?. Therefore
R} :LY(T,)— LY“~Y(T,) is also bounded by c,n?. Since R*¢, =n’¢,, we get

n2 “ ¢n ”d/(d— 1)§ clnz ” ¢n ” 1= clnza

I &, ”a/(d—l)é Cy.

Let A, be the probability measure on C?%,

An(Tm,) = (2n) "4, (x).
Then A, is invariant under the canonical Markov chain % and
2y <e,.
Ay |l asea-1)

Since u, — 1 weakly, standard arguments give that 1, has a subsequence converging
to a probability measure 4 which is invariant under .#. Also 1 < u and, in fact,

d
cj« du

d/jd—1) _
du < -,

Let E = {d)/dp = 0}. Since A is invariant, A(ZE) = A(E) =0, and hence E < E
(a.s. p). Since p is ergodic and 4 < p, u(E) =0, and hence pu < A. Since p and 1 are
mutually absolutely continuous and y is ergodic, 4 is ergodic.

Example. Let d =2 and u be product measure with p{n(x) =0} = u{n(x)=1—o} =7,
where 0 < o <. Then y is not invariant under &, if B = {n(e,) = a}, then u(B) =73,
but u( ZB) =%+%. Although it is not easy to describe A in this case, symmetry

considerations give that b = (3,3).
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3. Proof of Lemma 4
It remains to prove Lemma 4. Let
D,={(zy,...,2)€Z% |z, |+ ... + |2z4| En},
0D, ={zeD,:|z,|+...+ |z, =n},
intD,=D,/dD,.
Let neCs. If f: D, — [0, o0) with f(x) =0 for xedD,, let
Q/W)=E, 3. fX.0)

where t =inf {j:X,(j)edD,}, and E, denotes expectation assuming X ,(0) = x. We
will prove the following:

Lemma 6. There exists a constant c, (depending only on d and o) such that for every
f:D,— [0, ),

1Qf 1w S can® [ fllas

where

1
(f(x))".
D15,
To get Lemma 4 from Lemma 6 is routine using the fact that the expected time until
hitting 6D, is of order n?.
Fix n,and write D = D,. Ifu:D — R, we define the second difference operators on
int D by

Ifla=

Au(x) = ulx + e;) + u(x — e;) — 2u(x).

We will call u concave on D if 4,u(x) < 0 for all xeint D and all i (note this is weaker
than the usual definition of concave). We define the discrete Monge—Ampere
operator M on int D by

we will prove the following:

Lemma 7. Let f:D— [0, c0) be a function with f=0 on 0D. Then there exists a
concave function z:D — [0, o0) such that

() z=0o0n dD,
(i) (— 1Mz =f* on int D.

Moreover, there exists a constant ¢, (depending only on d) such that
(i) 1120 < €3n? [ f o

Suppose that we have Lemma 7, and let us derive Lemma 6. Fix xeint D, and let
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X, (j) be the Markov chain induced by 7 with X, (0) = x. Then
d

Y 4m(x)d;z(x)

i=1
< — o Mz(x)|"

= —30f(x).

Here we have used the inequality (a,b, +... +ab,)*=(a;...a;) (by...b,).
Continuing as above we may deduce

E(z(X (1)) — 2(X,(0))

(J—1)At

E[2(X,(j A 7)) — 2(X4(0) + 30 k;) S(X,(k)]=0.
Letting j go to infinity,

19010 =Ed ¥ f(X,0) ).

and Lemma 7 then gives the required bound.
To prove Lemma 7, let .« be the set of all concave functions u on D satisfying
(i) u=0 on 0D,
(i) (= 1)*Mu=f? on int D.
We first note that ./ is non-empty: let h:D — [0, c0) by
h(x) =n(n + 1) — |x|(Ix] + 1),

where |(x,,...,x;)| =|x;|+ ... +|x,|. One can check that (— 1)?Mh =2 and hence
Pheof for B sufficiently large.
It is easy to check that if u,,u,€.o7, then min (u,,u,)eo/; in fact, if we let

z(x) = inf u(x),
uesd

one can verify that ze.o/. It remains to be shown that (— 1)*Mz =f“. Suppose
(= 1) Mz(x) > (f(x))* for some xeint D, i.e.

d
(= D TT (@x + e) + 2(x — ;) = 22(x)) > (f ()"
i=1

Let y < z(x) be such that

d

(= D IT (= + e) + z(x —e) — 2y) = (f (x))".
i=1
and set

_lAdy) y#Fx
v(y)—{y y=x

Then again one can check that ves/, contradicting the minimality of z.
We now wish to estimate z. For xeint D, let

Ix)={(ay,...,a;)eR*:z(x + ¢;)) — z(x)
Sa;Sz2(x) —2x —e;) ).
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Note that meas (I(x)) = (— 1)* Mz(x) = (f(x))*. We state the next easily provable fact
as a lemma:

Lemma 8. Let acR% b >0, and let r be the affine function r(x) = a-x + b. Suppose
r(x) = z(x) for every xeD and r(x,) = z(x,) for some x,eint D. Then acl(x,).
Now let z=| z||,, and let Xxeint D with z(X) = Z. Assume Z > 0. Let

A ={aeR*:|a| £ z/4n}.

Fix aeA. If b= 3%, then a-x + b > 7 = z(x) for every xeD. Therefore there exists a
least b (depending on a) such that a-x + b = z(x) for all xeD. It is easy to see that
a-xqo+ b =z(x,) for some x,eD, and since

axotb=ax+b+a(x,—X)24z>0,
xo€int D. By Lemma 8, ael(x,). Therefore

Ac U I(x),

xeintD

meas(4) < meas (| ) I(x)),
= Y (f)

xeD

Since meas(4) = (z%)(c,n) "¢ for some c,, we get

Z=eunl Y (f())]H

xeD
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