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Local Stability and Hydrodynamical Limit
of Spitzer's One Dimensional Lattice Model
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Abstract. An infinite system of ordinary differential equations is considered,
the right hand side is just the negative gradient of potential energy of a one-
dimensional system of unbounded spins interacting by a symmetric and convex
pair potential. Constant configurations are stationary points and the mean
spin is conserved. It is shown that each of these stationary points has its own
domain of attraction, the initial distribution need not be translation invariant.
As a consequence we obtain that the mean spin satisfies the heat equation in
the hydrodynamical limit.

0. Introduction

One of the most striking difficulties in the study of temporal evolution of large
physical systems is certainly the existence of whole families of stationary states.
Although degeneracy of the stationary state is usually associated to conservation
principles, relaxation to equilibrium is as yet poorly understood. Perhaps the
simplest but not exactly solvable model of this kind is the following gradient
dynamics of one-dimensional systems of unbounded spins. Let 1R denote the real
line, let 7L be the set of integers, and suppose that we are given a continuously
differentiable, symmetric and convex function (7:IR-+[0, +00). Elements of the
product space 1RZ are represented as doubly infinite sequences ω = {ωk)kφΈ, i.e. ωk

denotes the kth co-ordinate of coeR2. The purpose of this paper is to investigate
asymptotic behaviour of solutions to the Cauchy problem for

-^β- = - U\ωk(t)-ωk_Λt))- U'(ωk(t)-ωk+1(t))9 (0.1)

where ί^O, keZ and U' denotes the derivative of U. Of course, (0.1) will be
considered only in an appropriately chosen subset of 1RZ. Let us remark that
symmetry of U implies a conservation law for the mean spin, and configurations of
type ωk = μ + λk are stationary points of (0.1).
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The study of first order systems like (0.1) has been initiated by Spitzer [1].
Assuming that the initial configuration is random with a translation invariant
distribution, convergence to equilibrium was proven by Garcia and Kesten [2] for
lattice models, and by Lang [4] for point systems. Fairly general models of this kind
were investigated by Fichtner and Freudenberg in [5] and in a series of related
papers. In all proofs, however, it is very important that the initial configuration is
random, and its distribution is translation invariant we are going to remove these
restrictions. Unfortunately, we are able to prove local stability and the related
hydrodynamical limit only for the constant configurations.

1. Main Result

Besides differentiability and symmetry of U, we are assuming that

l T O - T O 0 0 i f

L x — y

and

hold with some constant L. Notice that if U is four times differentiable at x = 0 and
l/"(0) = §, then (1.2) follows by the symmetry property U(x)=U(-x) of U.

The infinite product space IRZ is certainly too large to be the phase space for
(0.1). It will be convenient to assume that the initial configuration belongs to
Ω = [ωelR z ; |ω |<oo], where | | is a norm defined by

ω

i m + n

= sup sup Y ω\. (1.3)sup
«^i/|m| + l

It is easy to check that Ω is a Banach space with this norm, and | | is measurable
with respect to the product σ-algebra, &z, of IRZ, thus Ωe3%π. We are going to
consider probability measures only on j / = Ω n f z , the Borel σ-algebra of Ω is too
large because Ω is not a separable Banach space. Let us remark that Ω is of full
measure with respect to a wide class of probability measures on (IRZ, 0F).

Let F{ω) = (Fk(ω))keZ denote the right hand side of (0.1), then we have |F(ω)|
SM\ω\ and \F{ω)-F{ώ)\<,M\ω-ώ\ in view of (1.1)and of l/'(0) = 0. Therefore, for
each σeΩ there exists a unique solution ω(ί, σ) of (0.1) such that ω(0,σ) = σ and
\co(t9σ)\^\σ\eMt, see e.g. [11]. The construction implies also that each coordinate,
ωfe(ί, σ), of the general solution is a measurable function of σ, consequently (0.1)
induces a flow in the space of probability measures on (£2, si\ too.

Inequality (1.2) suggests that (0.1) should be considered as a perturbation of the
linear system

keΈ. (1.4)
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Let w(t,σ) denote the solution of (1.4) in Ω with initial configuration σeΩ, then

nJt>°)=Σh(t)°m-k> (1.5)
keΈ

where

e - t π

Ik(t)= — § exp(t cosx) coskx dx, keZ. (1.6)
π 0

Since Ik(t) = wk(t,σ) if σo = l, σt = 0 otherwise, we see that

where Xt is the symmetric random walk on Έ with continuous time. Further, if

ck(ω)=-b(ωk-ωk_1)-b{ωk-ωk+1), (1.7)

then iterating the linear part of (0.1) we obtain

t

ωm(ί,σ) = wM(ί,σ)+ J £ Ik(t-s)cm_k{ω(s,σ))ds. (1.8)
0 feeZ

In view of uniqueness of solutions, (1.5) and (1.8) can be verified by a direct
calculation. Our principal result is the following inequality.

Proposition 1.9. There exists a universal constant K such that

[ωm +«(ί, σ ) - ω m ( ί , σ)] 2 < V σ? exp -==
m + l V m " 1 + ίteί L K ] / Ϊ T

Comparing (1.2), (1.8), and (1.9) we obtain that (0.1) is an asymptotically
negligible perturbation of (1.4), at least for σeΩ.

Theorem 1.10. For each meΈ and t>0 we have

\m\
log(e + t)

i J/l + ίJ
with a universal constant Λ>0.

Since the mean spin is a conserved quantity, we expect that solutions with a
Cesaro-summable initial configuration converge to the corresponding constant
configuration as time goes to infinity. Let Ωμ denote the set of such ωeΩ that
(2n+l)~1S0(ω,n)->μ as n-> + oo, where

n + 1 + ... +ωm+n.

Observe that |ωk | g2|ω|(l + |/c|)1/4, thus ωeΩμ implies

\im{2n+l)~ιSJω,n) = μ

for each m. Each Ωμ is an invariant set of our dynamics, i.e. ω(ί, σ)e Ωμ for all t > 0 if
σeΩμ. Asymptotics of wm(ί, σ) is easily calculable, thus (1.10) yields
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Theorem 1.11. Let σeΩμ, then for each rneTL we have ωm(ί, σ)->μ as ί-» + oo.
Moreover, if

limsup []/nlogή] ~ 1\Sm(σ, n) — [In + l)μ| < + oo ,
n—> + oo

then

ί1/4

lim sup -—- |ωm(ί, σ) - μ\ < + oo .
ί-> + oo l O g ί

If the initial configuration is not Cesaro-summable, then asymptotic behaviour
of solutions may be very complicated. An intuitive picture can only be obtained in
the hydrodynamical limit. We are going to rescale space and time according to
m-+m/h, t^t/h2, where h>0 goes to zero. The scaling parameter h can be
interpreted as the real distance of neighbouring lattice sites. Of course, (0.1) is a
lattice approximation of the linear heat equation, thus the above procedure turns
to be an approximation of the associated semigroup of linear operators, see [12]
with some further references. Due to (1.9), however, we can prove somewhat
stronger results than consequences of the general theory.

Suppose that we are given a family Ph,h>0 of probability measures on (Ω, jtf),
and let

Ph(dσ). (1.12)

We are assuming that for each xelR we have

(1.13)
h-*0

where ρ :IR->IRis a continuous function, [u\ denotes the integer part of u. Let φt(x)
denote the fundamental solution of the heat equation, i.e.

(1.14)

and set M(ft) = (M£(ft))mel, where M2Jh) = $\σm\3Ph(dσ).

Theorem 1.15. Suppose that |μΛ(O,[x/Λ])|^gf(x) and M(h)eΩ for each h>0. If

\(l+x2)~1g{x)dx< + oo and lim ]/h\M{h)\2 = 0 as ft->0, then (1.13) implies

lim μh(t/h2, [x/fc]) = j φt(χ - y)ρ(y)dy

for each xe]R and ίΞ>0.

2. Proof of Proposition 1.9

A method of Liapunov functions will be used. Sums like £ ω^ and £ U(ωk+1 — ωk)
are known to have some nice properties, see [1,4]. Since the initial distribution is
not necessarily a translation invariant one, a uniform estimate of boundary effects
should be given, cf. [3, 8].
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Let/:lR->[0,1] be a continuously differentiable non-increasing function such
that f(x) = l if x ^ l , / i s concave if x ^ 3 , / i s convex for x ^ 2 and f(x) = e2~x if
x ^ 3 . Then / is linear for 2 ^ x ^ 3 , and f(x)^e2~x, further 0 ^ - / ' ( x ) ^

), and

\f(x)-f(y)\£-(f'(x)+f'(y))\x-y\ if \x-y\^l (2.1)

hold, too. Our auxiliary functions, Q and H, are defined for ωeΩ, rneZ, r ^ l by

[r)ω2, (2.2)

I _J_ III fiΛ f/Λ I I / Λ I

keZ

where

(2.4)

Notice that 0 <fk(r) < 2, /fc(r) > 1 if \k\ ^ r, each fk is a non-decreasing function of r,

and for r ̂  1 we have /fc(r) ̂  exp 13 . Only the last inequality needs a proof, we

have

as r ^ l and — |fe — i\^ — |fc| + |i|. The proof of (1.9) is based on the following
property of fk(r).

^ 2 - [ Λ ( r (2.5)

Indeed, from (2.1) we obtain that

(2.6)

thus by - / ' ^ / w e get

β"21"

-ίfk(r)+fk+1(r)-]-

On the other hand,

ieΈ

(2.7)

(2.8)
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as |fc—x|^r if/'(Ifc — i | r ~ 1 ) Φ 0 , and

ίeTL \ r I

Applying (2.8) and (2.9) to the product of (2.6) and (2.7) we obtain (2.5).
Suppose now that ω = ω(t) is a solution of (0.1), then

U i keΈ

=—2 y r/t+1 mw^+i—/fr-mW^j^x^+i—cθk)
' i >~J KT 1 —/tl\ / (Ct 1 J K — IR\ / /C-l V /C T 1 ft/

fceZ

_ _ V r f (r)—f

ZJ Ufe+l-mV/ Jk-r,

-ΣCΛ+l-mW+Λ-,
te* (2.10)

Since |ί/'(x)| ^L |x | andxί/'(x)^ — x2 follow from (1.1), in view of au— - u2^a2/2b
-LJ Z*

we have

J . (2.11)

Therefore (2.5) and {u + v)2^2u2 + 2υ2 imply

;).r) + Σ Λ-»W K + 1 ~ ω t)ί/'(ωJk+! - con) ̂  4e2L3 - — βm(ω(f), r)
rδr ( 2 1 2 )

by a direct calculation.
A very similar argument applies to H. We may (and do) assume that U(0) = 0.

Then from (1.1) we obtain that U'2(x)S2L3U(x). Let

Fk{ω)= - t / ' K - α v J - U'(ωh-ωk+1)

denote the right hand side of (0.1), and let Zk = [jeZ;\j— fc| = l ] . Exploiting
symmetry of U we obtain

IHJωit), r) = Σ fk-Jr) Σ U'(ωk- ω} lFk(ω)- F/ω)]

V 17 ί \ V V -C ί \ -C

keΈ jeZk

JrKF^ω)]2- Σ Σ /;-
fceZ feeZ j e Z k
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^ Σ CΛ-mMΓ1 [ Σ Wk-J.r)-fJ.Jr))U'(ωJ-ωl)
 2

0 LZ

Σ Σ u ( ω t ω ^ ( 2 . 1 3 )

fceZ jeZ k /fc - ml' ) "•" // - mV )

Thus from (2.5) we have

j t Hm(ω(tl r) S 4e2L3 ~ ~ Hm{ω{t\ r). (2.14)

Therefore, if r = r(ί) = [l + 8 e 2 L 3 ( Γ - ί ) ] 1 / 2 for t^T, then HJω(t\r{ή) and
Qm(ω(ί), r(ί)) are decreasing functions of ί^ T, and (2.12) turns into

ί Σ fk-Mt))ίcok+ί(t)-ωk(t)-]Uf(ωk+ι(ή-ωk(t))dt
0 fceZ

3 Γ ) 1 / 2 ) . (2.15)

On the other hand, xU'(x)^2L~2U(x), and HJω(t),r(ί)) decreases. Consequently

THm(ω(T), l)^eL 2 β m (ω(0),(H-8e 2 L 3 Γ) 1 / 2 ). (2.16)

Since U(x)^x2/2L and/Λ(r)^exp 1 3 - — I, (2.16) implies (1.9), at least if t> 1. For

small values of ί, however, (1.9) follows directly from the monotonocity of
βm(ω(ί),r(ί)).

3. Proof of Theorem 1.10

Observe first that (1.9) implies

(3.1)

by an easy calculation that is the same as the proof of (2.17) in [8]. We are going to
estimate the integral on the right hand side of (1.8) by means of (3.1).

Since c{ω) = (ck{ω))keΈ, see (1.7), is an element of Ω, (1.8) can be rearranged as
follows

0 M =
Un(t-s)-In+ί(t-s)-]Sm(c(Φ,°)U)ds, (3.2)

where, just as earlier, Sm(c,n) = cm_n + cm_n+1 + ... +cm + n. To evaluate (3.2) some
simple properties of the In(t) are needed. Expanding the exponential function into
its power series we obtain

( 3 3 )
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for n^O, and I_n(ή = In(t\ see 8.445 in [10]. Hence it follows easily that /π(ί)^0
and

Σ'»W=i, (3 4)
neΈ

the series in (3.4) converges faster than exponentially. It will be very useful that

In+Imin(t)> if n^O. (3.5)

Though I could not find (3.5) in textbooks on Bessel functions, the following proof
is due to Elbert [9]. The inequality for arithmetic and geometric means implies
that

)\ ~ 2m\(n + m)\

whence, by summing over m we obtain (3.5). Aymptotics of In(t) is also interesting;
since cosx- 1 ̂  -x2/16 if O^x^π, from (1.6) we obtain that J0(ί)^2/j/ί for t>0,
and the best lower bound is (2πt)~1/2.

Now we are in a position to conclude (1.10). Since b(x)= —b{ — x), we have

n-ωm_n_1), (3.6)

but \b(x)\^(L+ l)x2 in view of (1.1) and (1.2). Thus (3.1) results in

|Sm(c(ω(5, σ)), n)\ S K2\σf(l + s)~3/4 (3.7)

n, cf. (1.2), while

,σ)),n)\^K3\σ\2 ^ ^ + n (3.8)

otherwise; K2 and K3 depend only on L. Since In(t — s)^In+1(t — s) if rcΞ>0 and
O^s^ί, / 0(ί-5)^2(ί-5)~ 1 / 2 if O^s^ί, and

ί(ί-5)- 1 / 2 (l + 5)-3/4rfs^9(l + ί ) " 1 / 4 (3.9)
o

if ί^O; the case (3.7) yields a contribution not larger than 18X2|σ|3(l + ί)~ 1 / 4 to
(3.2). Therefore, it suffices to estimate

7_Γ y rτ(t_A_τ (t ΛΊ V "*"' ' //P Π10^
0 AJ = O 1 i «S

Let u = [ 1/7], then

0 n=0

t oo

+ J . Σ + 1

[ / - ί ί - β ) - / - ( ί - s ) ] J ^ τ S ± ! L
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t

+ί
0 n

< l/i
= ( / - « • • "

00

Σ [
! = M+ 1

l_ IJΛΛI _J_ .

Γ \Tn\ ~Γ

as j / l + x - J/

ί

0

x l̂/2

"+

1

" 1 + s u l

J/^ifx>0.

f d s

]/Ϊ4

1 ί 00

2L5
But

•|m| + n

/ " + l ( ί 5 ) (

/2(l+log(l

1

;H-s)]/l + |m| + n

+ ί))

, (3.11)

)i /Γ+7

and Σ ^ < ^ consequently

[^5[^1/% + M (3.13)

which completes the proof of (1.10).

4. Proof of Theorem 1.11

In view of (1.10) only solutions of (1.4) should be analyzed. From (1.5) we obtain

w^ ',*)= Σ Un(t)-In+1(mSJί°>n)
n = 0

Because of (3.4) we may assume that μ = 0. Then for each ε > 0 there exists a
positive integer AT such that for n^N we have \Sm(σ,n)\^(2n + ί)ε, while \Sm(σ,n)\
^KN< + oo if n<N. Therefore

(4.2)

\Sm(σ, n)\£Km(ί+log(l + n))]/ϊ+ϊι9 (4.3)

and let u = [ |/7], Λ(n) = (1+ log(l + ήj) ]/l + n since

which proves the first statement of (1.11).
Suppose now that

we obtain that

Σ
n = u+ 1

M))(l + M ) - 1 / 2 , (4.4)

which implies the second statement of (1.11).



372 J. Fritz

5. Proof of Theorem 1.15

This proof is essentially the same as that of (1.11). Let K(h) = (Km(h))meZ, where

K2

m(h) = \σ2

mPh(dσ) and observe that \K(h)\S\M(h)\2/3. Indeed, by Holder's in-

equality we obtain that for n ̂  ]/l + |m|

m + n \ 2 / 3

Σ M\{h)\
k = m — n I

U Σ
k = m~n k = m — n

S(2n+ί)\M{h)\4l\ (5.11)

which proves the statement. Therefore, taking the expectation of both sides of (3.2)

and following the proof of (1.10), we obtain from (1.9) for 0<h< ]/t that

ί\ωm(t/h2,σ)-wm(t/h\σ)\Ph(dσ)

i ^ l l ) (5.2)

where B depends only on L.
On the other hand, let vh{t,m) = $wm(t9σ)Ph(dσ), and notice that υh satisfies (1.4)

with initial condition vh(0, m) = μh(0, m). Therefore

vh(t/h\ [χ/ft]) = f Gh (t/h\ μφ, ly/K])dy, (5.3)

where Gh(s,ή)=-In(s). The local version of the central limit theorem, see [13],

implies that

lim GJi/ft2,
hO \

x-y
= φt(x-y).

Thus

GhU\
h

(5.4)

means that the convergence of the integrand of (5.3) to φt{x — y)Q(y) is a dominated
one consequently

= j Ψt{x-y)Q{y)dy. (5.6)

Comparing (5.2) and (5.6) we obtain (1.11). To show (5.5) let us consider (1.6). If
n > 0, then integrating by parts we obtain that

teteIn(t)= $sinxetcosxsmnxdx

π te
f cosx etcosx cosnx dx 5 — f sin 2 * etcosx cosnx dx
I n 2 π J

t2e~tπ

n2π 5

n2π

^ ] ( ) 0 ( ) ^
which proves (5.5) and completes the proof of (1.11).

(5.7)
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Remark 5.8. A nontrivial hydrodynamical limit is expected if the initial con-
figuration is close to ωk = μ + λk with AΦO. The method of (1.9) yields

limsup j/ί[2ωm(ί, σ ) - ω m _ ^ t , σ ) - ω m + :(t, σ ) ] 2 ^ K | σ | 2

t-* + oo

in such situations. This problem will be discussed in a forthcoming paper.
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