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Brownian Motion in a Convex Ring and Quasi-Concavity
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Abstract. Let X be the Brownian motion in R" and denote by t,, the first
hitting time of M CIR". Given convex sets K< LS IR” we prove that all the level
sets

{(x, ) eR"x [0, + o[ ; P [ty St AT] 24}, AeR,

are convex.

1. Introduction

The background of the present paper is a very beautiful theorem of Gabriel [3, 4]
and Lewis [5] stating that the equilibrium potential of a convex body in R”
relative to a surrounding convex body is quasi-concave. Below we will show the
same property for the solution of the corresponding heat conduction problem with
zero initial data. Here recall that a real-valued function f defined on a convex set is
said to be quasi-concave if all the level sets {f =1}, A€ IR, are convex.

Throughout, X denotes the Brownian motion in R" and, for each M CIR", ,,
stands for the first hitting time of M, that is, t,, =inf{t>0;X(t)e M}.

Theorem 1.1. Suppose K, LSR" are convex sets such that K< L. Then the function
wx,t)=P [txStArte], (x,0)eR"x[0,+ o[,
is quasi-concave.

Here, for short, L' means IR"\L.

To prove Theorem 1.1 there is no loss of generality to assume that (i) K is a
convex body in IR”, (ii) L is the interior of a convex body in R*, and (iii) d(K, L) >0.
In what follows, we always assume (i}—(iii) are fulfilled. Then, in particular,

Aw=2w, in (L\K)x]O0,+ cof
w=0 on {(L\K)x {0}}u{0L %[0, + oo}
w=1 on 0K x[0,+oof
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and, hence, w(x, + c0) is the equilibrium potential of K relative to L (see e.g.
Friedman [2]).

The proof of Theorem 1.1 is divided into three steps. In the first step we use the
isoperimetric inequality of Brownian motion to obtain a certain differential
inequality, which is basic for the subsequent arguments. Theorem 1.1 then follows
from Step 1 exploiting the same main line of reasoning as in the time-stationary
case (Step 3). There is just one new difficulty, namely to handle the discontinuity
points of w (Step 2).

2. Step 1: A Differential Inequality

Suppose (x,t)e(L\K) x 10, 4+ co[ and yeK are fixed.
We claim that

(v =) Vow(x, 1) = 2twilx, 1) 2 d(y, K)Y2mt) ™2 exp[— (@7 H(wlx, 1)))*/2], (2.1)

1/2

where d(x, y)=|x—y|=((x—y)-(x—y))"'* is the usual metric on R" and

2
()= | exp(—s?/2)ds/2m)'?, —w=A<+ 0.

Before the proof of (2.1) let us remark that the weaker differential inequality
(y—x)-V wlx, t)—twj(x,t) =0 is a corollary to Theorem 1.1.

In the following, let @ be the standard Fréchet space of all continuous
functions of [0, + oo into IR” and assume X —X(0) is represented as the identity
mapping on Q. Stated otherwise, we choose the Wiener picture of Brownian
motion. The isoperimetric inequality of Brownian motion may then be described
as follows.

Suppose U denotes the class of all absolutely continuous we such that
w(0)=0 and too
[ o' (t))Pde<t.

0

Then & 1P [XeA+eU)=d (P [XeA])+ee>0, for each Borel set 4CQ
(Borell [17).

To prove (2.1) we may set y=0 and, of course, it suffices to treat the special case
when 0 belongs to the interior of K. If B(0;r) denotes the closed ball in R" of centre
0 and radius r>0, then ([0,s])SB(0;s?) for each (w,s)e U x 10, + o[, and,
hence, for any fixed ¢>0,

O NP [Tk 5oy SEA T+ Bosope ) 2 @7 1w, )+t 12,

We now define o=1/d(0; K¢) and have M + B(0;¢)C(1 +¢e0)M, M=K, L, because
K and L are convex. Thus

> 1(Px[-5(1 +eok SEA Tt 4eqrye]) 2P Hw(x, ) et 2,
and by scaling the time,
O (wlx/(1+e),t/(1 +20)) Z @~ H(w(x, 1) +e-1 12

which immediately proves (2.1).
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3. Step 2: Analysis of the Points of Discontinuity of w

Assume K satisfies the following additional conditions (iv) K is strictly convex and
(v) K=K+ B(0;ry), where K, is a convex body in R" and r, >0. Let 0<T< + 0
be fixed and set D={(x,1)e R";0=t =T}, u=wp, and

&) =sup{u(n) nu);teln,(1,n,(eD}, EeD.

respectively. Finally, suppose ¢€]0, 1[ and let sup[&i—u*]=Q>0.

We claim there exist &,,n,, (,e(L\K)X ]0, T] such that a(¢,)—u“(,)=0,
&€, &L and G(C,) =uln,)=u(l,).

To see this, first note that the function #—u® is non-positive on
{(KuL)x [0, TI}O{(L\K) x {0}} and choose for each ielN a &,e(L\K)x 0, T]
with ¢;=(&,)—u’(¢)>0 and such that ¢;—Q as i— +oco. Without any loss of
generality we may assume the sequence (&), converges to a point
o e(L\K )x [0, T]. Next choose #,,{;eD satisfying ¢,e[#;,{;,] and so that
0<u( JAu(l)=1(E)—9,, where 0=0,—0 as i—+ 0. If n,e K x[0, T], then by
(2.1) the function u({; + An;— {;)), 0S A=< 1, increases and a similar assertion is true
if {;e K x [0, T]. In view of these facts it may be assumed that #,, {;e(L\K) x 0, T].
In the following #, = (x(#},), 1(#},)) denotes the point in K x ]0, T'] which is closest to #,
and we let H(x(7};)) be the supporting hyperplane of K at x(fj,). Analogous
conventions will be used below with #; replaced by C and é respectively. Then, to
begin with,

u(n) = Px(n,)[TH(x@)) <t(n,)],
that is u(n,) < W(d*(x(n,), K)/t(1,)), where

1/4

Y(i)= [ Q2ns®)"Y?exp(—1/2s))ds, 21>0,
4]

and, in a similar way, u({;) < Y(d*(x({,), K)/t({,). We now use that ¥ decreases and
that the function d?(x, K)/t, (x,t)eIR"x 0, T] is convex to obtain the inequality
u(n,) Au(l) S P(A,), where A, =d*(x(&,), K)/t(&,). In particular,

—0;+u(&) = P(4) (3.1)

and, accordingly, the sequence (4; )[e\, must be bounded. Now set d(K, L)=R, and
choose B(y;;7,)S K such that x(¢,)e B(y;;r,). Then

U(C) Z P [0, r0) S UC) A Thegryir+ Ro)
and introducing w;=ry/t*/*(£,), this means that u(¢;) does not fall below the
probability

Piaro,. ol TuB=1,0,..0: D=L AT@B(=1,0.....01+ Rofropel -

Here, if #(¢,) =0, the same probability becomes arbitrarily close to ¥(4,) for large i,
which contradicts (3.1). Thus #(&,)>0.

From now on we assume without any loss of generality that the sequences
(1)ien and ({,),.n both converge to the limits nxe(L\K)x [0, T] and (,, e(L\K)
x [0, T], respectively. If n, or {,=¢,, the continuity of u at &, 1mphes the
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contradiction u(¢,)— (é*)>Q Hence ¢,.eln,, ([ If x(n,)=x({,)eK, then
tn,) or t({,)>t(&,), and by using the continuity of u off JK x {0} we again
obtain a contradiction. From these results and the strict convexity of K
it follows that n, or {, ¢Kx[0,T]. Assuming n,¢K x[0,T], we have u(n,)
—u’(¢,)=Q and, in particular, #,e(L\K)x]0,T]. If {,eKx[0,T], then by
(2.1) the function u(y,+A({,—n,), 0SA=1, increases and we get u(¢,)
—uf(é )= Q, which is absurd. Consequently, {, ¢ K x [0, T] and, as above, u((,)

u¥(¢,)=0 and {,e(L\K)x]0,T]. From these facts, w(¢,)—u(¢,)=0, and by
eventually moving n, or {, closer to ¢, we have u(n,)=u(l,)=i(¢,), which
completes the proof of the claim at the beginning of this section.

4. Step 3: The Gabriel-Lewis Argument

To prove Theorem 1.1 there is no loss of generality to assume that the conditions
(i)—~(v) are fulfilled. Let u be as in the previous section. Of course, it is enough to
show that the function u is quasi-concave.

Suppose contrary to this that u is not quasi-concave and choose an ¢€]0, 1[
with sup[#—u]>0. Let n,,{,, and &, =0y, +(1—0){, be as in Step 2. This will
lead us to a contradiction as follows.

First recall that V.u=0in (L\K) x JO, T] by (2.1) and suppose he R"=(R" x {0})
satisfies the inequality h-V,u(y,)>0. Then for all small s >0, u(n,, + sh)>u(n,,) and,
hence, #(&, +s0h)=u(¢,) yielding u(¢, +s0h)Zu(&,) and h-Vu(&,)=0. From this
follows that the vectors V.u(¢,) and V,u(n,,) are parallel and in the same way we
conclude that the vectors Vu(£,) and Vu(l,) are parallel.

Set a=|Vui(C I, b=V, c=IVu(l,)l, and v=(Vu*&,))/a, respectively.
Suppose heR" and x=h-v+0. For each seR close to the origin there exists a
unique r=r(s) with |r| minimal and such that u(n,, +sh/b)=u({, +rh/c). Writing &,
=¢, +(0s/b+(1—0)r(s)/c)h, we now have u(n,, +sh/b)—u*(&) Zu(n,)—u(¢,). In
particular,

{Ds (Ul + sh/b) = u (€)= 0 =0 (4.1)

D (u(n, +sh/b)—u (€)= =0.

Moreover, introducing

u(n, +sh/b)=u(n,)+xrs+Bs*+o(s*) as s—0
and

w(l, +sh/e)=u((,)+Kks+Cs*+o(s*) as s—0,
it follows that

Hs)=s+x Y(B—C)s’+o(s?) as s—0.

By now setting A=0/b+(1—6)/c and

(€, +sh)=u(¢,)+ras+ As* +o(s>) as s—0,
the above yields

u(E)=u(&,)+ ixas+ [A2 A+ (1= 0)(a/c)(B— C)]s* + o(s?)
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as s—0. Thus from (4.1), a=/2"" and
B—[32A+(1—6)(a/c)(B— C)] 0.

To simplify the last inequality we define u=0/(bA)<1 and so we have uB
+(1— ) C—A2A <0, that is

> Lbu () + (1 = we?)ug o () — A2 w) (€ )T hihy 0.

iZn
Jjsn

WA TIA
IANIA

1
1
Of course, the same estimate is true for all he R" and, accordingly,

(u/b?) Au(n,) +((1 = p)/c?) Au(C ) — A* Au(,) 0.
Since Au“(&,)=2u?)(&,)+e(e— 1)u' (&) IVu(&,)I* and V&, ) >0, necessarily

uB/b*+(1—p)y/c* — A*a<0 (4.2)
with o= (u%),(£,), and where B> u;(n,) and y>u((,) are sufficiently small. But then
1—o(0/B+(1—-0)/y)20, (4.3)

as the derivative

D [uln, +(0,s/B) Al +(0,5/7) — ', + (0, 5(0/B+ (1= 0)/7))]js=o-

is non-negative. It is readily seen that (4.2) and (4.3) are non-consistent. In fact, by
(4.3) the left-hand side of (4.2) does not fall below

1B/b? +(1 = pyy/e® = 22 /(0/B+ (1~ 0)/)
=27HO0/B+ (1= 0)/y)'LOB/B>+ (1= 0)y/c*)0/p + (1 = O)/y)— 2°]
where, by the Holder inequality,
(OB/b>+(1—0)y/c*)O/B+(1—0)/y) Z(0/b°> + (1~ 0)/c*2)> = 2>.

From these estimates we have that the left-hand side member of (4.2) is non-
negative, which is a contradiction.
This completes the proof of Theorem 1.1.

References

1. Borell, C.: The Brunn-Minkowski inequality in Gauss space. Invent. math. 30, 207-216 (1975)

2. Friedman, A.: Stochastic differential equations and applications, Vol. 1. New York, San Francisco,
London: Academic Press 1975

3. Gabriel, RM.: An extended principle of the maximum for harmonic functions in 3-dimensions. J.
London Math. Soc. 30, 388-401 (1955)

4. Gabriel, R.M.: A result concerning convex level surfaces of 3-dimensional harmonic functions. J.
London Math. Soc. 32, 286-294 (1957)

5. Lewis, J.L.: Capacitary functions in convex rings. Arch. Rational Mech. Anal. 66, 201-224 (1977)

Communicated by B. Simon

Received February 16, 1982; in revised form April 16, 1982








