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Brownian Motion in a Convex Ring and Quasi-Concavity

Christer Borell

Chalmers University of Technology, S-41296 Gδteborg, Sweden

Abstract. Let X be the Brownian motion in IR" and denote by τ M the first
hitting time of M Q W1. Given convex sets K Q L Q1R" we prove that all the level
sets

are convex.

1. Introduction

The background of the present paper is a very beautiful theorem of Gabriel [3, 4]
and Lewis [5] stating that the equilibrium potential of a convex body in R"
relative to a surrounding convex body is quasi-concave. Below we will show the
same property for the solution of the corresponding heat conduction problem with
zero initial data. Here recall that a real-valued function / defined on a convex set is
said to be quasi-concave if all the level sets {/^A}, AeR, are convex.

Throughout, X denotes the Brownian motion in R" and, for each M Q R", τM

stands for the first hitting time of M, that is, τ M = inf{£>O;X(ί)eM}.

Theorem 1.1. Suppose K.LQW1 are convex sets such that KQL. Then the function

vφc, ή = Px[τκStΛ τLC] , (x, t)eW x [0, + oo[,

is quasi-concave.

Here, for short, Π means W\L.
To prove Theorem 1.1 there is no loss of generality to assume that (i) K is a

convex body in R", (ii) L is the interior of a convex body in R", and (iii) d(K, Lc)>0.
In what follows, we always assume (i)—(iii) are fulfilled. Then, in particular,

\Δw = 2w't in (L\K)x]0, + oo[

w = 0 on {(L\X)x{0}}u{aLx[0, + oo[}

|w = l on dKx[0, + oo[
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and, hence, vφc, + oo) is the equilibrium potential of K relative to L (see e.g.
Friedman [2]).

The proof of Theorem 1.1 is divided into three steps. In the first step we use the
isoperimetric inequality of Brownian motion to obtain a certain differential
inequality, which is basic for the subsequent arguments. Theorem 1.1 then follows
from Step 1 exploiting the same main line of reasoning as in the time-stationary
case (Step 3). There is just one new difficulty, namely to handle the discontinuity
points of w (Step 2).

2. Step 1: A Differential Inequality

Suppose (x, t)e(L\K) x ]0, + oo[ and yeK are fixed.
We claim that

(y-x) P>(x, t)-2tw't{x, t)^φ,Kc)(2πt)~1/2exp[-(Φ">(*,ί)))2/2] , (2.1)

where d(x,y) = \x — y\ = ((x — y) (x — y))ίl2 is the usual metric on 1R" and

x
Φ{λ)= J exp(-s2/2)ds/(2π)1/2, - o o ^ A g + oo.

— oo

Before the proof of (2.1) let us remark that the weaker differential inequality
(y — x) - Vxw(x, t) — tw't(x, t) ̂  0 is a corollary to Theorem 1.1.

In the following, let Ω be the standard Frechet space of all continuous
functions of [0, + oo[ into 1R" and assume X— X(0) is represented as the identity
mapping on Ω. Stated otherwise, we choose the Wiener picture of Brownian
motion. The isoperimetric inequality of Brownian motion may then be described
as follows.

Suppose U denotes the class of all absolutely continuous ωeΩ such that
ω(0) = 0and + o o

J |ω'(ί) l 2 Λ^l.
o

Then φ-1(Px[XeA + εU])tφ-1{PxlXeA~]) + ε,ε>0, for each Borel set AQΩ
(Borell [1]).

To prove (2.1) we may set y = 0 and, of course, it suffices to treat the special case
when 0 belongs to the interior of K. If 5(0 r) denotes the closed ball in 1R" of centre
0 and radius r>0, then ω([0,s])£5(0;s1 / 2) for each (ω,s)e[/x]0, + oo[, and,
hence, for any fixed ε > 0,

We now define ρ = l/d(0 \KC) and have M + 5(0;ε)£(l +ερ)M, M = K,L, because
K and L are convex. Thus

and by scaling the time,

Φ " \w(xl(l +ερ\ t/(l+ερ)2)^Φ~ x(w(x, ή) + ε Γ

which immediately proves (2.1).
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3. Step 2: Analysis of the Points of Discontinuity of w

Assume K satisfies the following additional conditions (iv) K is strictly convex and
(v) K = Ko + 5(0 r0), where Ko is a convex body in 1RM and r0 > 0. Let 0 < T < + oo
be fixed and set D-{(x, ί )e lR n ;0^ί^T}, w = w,D, and

ύ(ξ) = sup{u(η)Λu(ζ);ξelη,ζlη,ζeD}, ξeD.

respectively. Finally, suppose βe]0, l [ and let sup [u — ι/ε] = β > 0.
We claim there exist ξ*,η*, ζ*e{L\K)x ]0, T] such that «(<!;*)-«'(<!;*) = β,

£ * e ]>?*>£*[> a n d «(£*) = Φ * ) = "(£*)•
To see this, first note that the function ύ — uε is non-positive on

{(KuLc)x[0,T]}u{(L\i()x{0}} and choose for each zeN a <^e(L\K) x]0, T]
with gf = #(£*) — wε(ξj)>0 and such that g f->β as z-> + oo. Without any loss of
generality we may assume the sequence (ξf)ίe]N converges to a point

[0, T\. Next choose η^ζ^D satisfying ζ . G ^ ζ J and so that
M(Q = ίί(ξ f)-δ i, where 0g^.-^0 as i-^ + oo. If η.eKx[0,T]9 then by

(2.1) the function uiζi + λty. — ζ.)), 0^/1^1, increases and a similar assertion is true
if C G K x [0, T]. In view of these facts it may be assumed that η., ζ.e(L\K) x]0, Γ].
In the following ^ = (x(ί7, ), ί(ή, )) denotes the point in K x ]0, 7"] which is closest to η.
and we let H(x(ήJ) be the supporting hyperplane of K at x(^). Analogous
conventions will be used below with f\i replaced by ζt and ξi9 respectively. Then, to
begin with,

that is u(f]^Ψ{d2{x{η^K)lt{η^\ where

H λ

Ψ(λ)= J (2πs3Γ1/2exp(-l/(2s))<is,
o

and, in a similar way, w(Q ^ Ψ(d2(x(ζi), K)/t(ζJ). We now use that Ψ decreases and
that the function d2(x,K)/t, (x, ίJelR" x]0, T] is convex to obtain the inequality
M ^ Λ M K ^ ^ ) , where A, = d2(x(^, K)/i(^). In particular,

qi-δi + uiξJSΨiλd (3.1)

and, accordingly, the sequence (λi)ieN must be bounded. Now set d(K, Π) = Ro and
choose Bίy^r^QK such that x^eBiy^r^). Then

M(̂ i) ̂  ^(^[τso,,; Γo) ̂  ί(ί i) Λ τBc{yι: ro + Λ o )]

and introducing μi = r0/t1/2(ξi), this means that w(̂ f) does not fall below the
probability

); 1 ) = * Λ

Here, if t{ξ^) = O, the same probability becomes arbitrarily close to *F(/l ) for large i,
which contradicts (3.1). Thus ί(ξϊJS)>0.

From now on we assume without any loss of generality that the sequences

(*7f)/e]N and (Q / e N both converge to the limits η^e(L\K) x [0, T] and ζ ^ e ^ K )
x [0, T], respectively. If ^^ or ζ% = ξ^ the continuity of M at ξ^ implies the
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contradiction u{ξ^)-uξ{ξ^Q. Hence ξ^η^ζ^L If x(^) = x(QeK, then
Φ7*) o r ί(CHί)>ί(^X and by using the continuity of u off dKx{0} we again
obtain a contradiction. From these results and the strict convexity of K
it follows that η^ or ζ^φKx[0,T]. Assuming η^φKx[0,T], we have u{η#)
~u\ξ^Q and, in particular, ^e(L\K)x]0, T]. If ζ#eKx[0,T], then by
(2.1) the function u(η^ +λ(ζ^ — η^)), O^Agl, increases and we get u(ξ^)
— uε{ξ^)^Q, which is absurd. Consequently, ζ^φKx[0,T] and, as above, u(ζ#)
-uε(ξ^Q and ςe(L\X)x]0,Γ]. From these facts, SO**)-ue(ξ*) = β, and by
eventually moving η^ or ζ^ closer to ξ^ we have u{ηj} = u(ζ^) = ύ(ξ^)9 which
completes the proof of the claim at the beginning of this section.

4. Step 3: The Gabriel-Lewis Argument

To prove Theorem 1.1 there is no loss of generality to assume that the conditions
(i)-(v) are fulfilled. Let u be as in the previous section. Of course, it is enough to
show that the function u is quasi-concave.

Suppose contrary to this that u is not quasi-concave and choose an εe]0, l [
with sup[w — wε]>0. Let η%,ζ%, and ξ^ = θη^ + (l — θ)ζ^ be as in Step 2. This will
lead us to a contradiction as follows.

First recall that Fxwφ0 in (L\K) x ]0, T] by (2.1) and suppose /ie!Rn = (IR" x {0})
satisfies the inequality h Vxu{η%) > 0. Then for all small s > 0, u(η^ + sh) > u(η^) and,
hence, ύ(ξ^-\-sθh)^u{ξ^ yielding u(ξ^Λ-sθh)^u{ξ^) and h-Vxu(ξ^)^0. From this
follows that the vectors Vxu(ξ^) and Vxu(η^) are parallel and in the same way we
conclude that the vectors Vxu(ξ%) and Vxu(ζ%) are parallel.

Set a = \Vxu
ε{ξJ\, b = \Vxu(η^)\9 c = \Vxu(ζ^)\9 and v = {Vxiί

ε(ξJ)/a, respectively.
Suppose /zeIR" and κ = h vή=0. For each S E R close to the origin there exists a
unique r = r(s) with \r\ minimal and such that u(η^. + sh/b) = u(ζ:¥ + rh/c). Writing ξs

= ξ:i: + (θs/bJr(l — θ)r(s)/c)h, we now have uiη^ + sh/b)— uε{ξ^u(η^) — u\ξ^). In
particular,

\Lf~\uyη^-rsn/o) — uε(ξs))|s = o ^ 0 .

Moreover, introducing

u(η^ + sh/b) = u(ηj + KS + fe2 + o(s2) as 5-̂ 0

and

u(ζ^ + sh/c) = M(C#) + KS + Cs2 + o(s2) as s->0,

it follows that

φ ) = s + κ~1(β-C)s24-o(s2) as s->0.

By now setting λ = θ/b + {l-θ)/c and

we(^ + sh) = u\ξ^) + Kas + As2 + o(s2) as s->0,

the above yields

u\ξs) = u\ξλ + λxas + [λ2yl + (1 - θ){a/c)(B - C)]:
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as s->0. Thus from (4.1), a = λ~1 and

B - \λ2A + (1 - θ){a/c)(B - C)] ̂  0.

To simplify the last inequality we define μ = θ/{bλ)<ί and so we have μB
+ ( l - μ ) C - A 2 A g 0 , that is

Σ [W&X*,fo*) + ( U " μ)/c2)u:iXj(ζJ - λ\u%ιXβJ] h.hj £ 0.

Of course, the same estimate is true for all ZielR" and, accordingly,

(μ/b2)Δu(ηJ + ((1 - μ)/c2)Au{ζJ - λ2Δuε(ξJ g θ .

Since JMe(ίJ = 2(uβ);(^) + ε(ε-l)ue-2(ί ] | t)|Fxtt((ϊ ϊ | ()|2 and \Vxu{ξJ>09 necessarily

μβ/b2 + (l-μ)y/c2-λ2a<0 (4.2)

with oc = (uε)'t(ξj, and where β>u't(ηj and y >MJ(C#) are sufficiently small. But then

l-α(0/J8 + (l-0)/)O^O, (4.3)

as the derivative

+ (0, s/β)) A u(ζ^ + (0, s/y)) - u\ξ+ + (0, sψ/β + (1 -

is non-negative. It is readily seen that (4.2) and (4.3) are non-consistent. In fact, by
(4.3) the left-hand side of (4.2) does not fall below

μβ/b2 + (1 - μ)y/c2 - λ2/(θ/β + (1 - θ)/γ)

where, by the Holder inequality,

(θβ/b3 + (1 - 0)y/c3)(0/j8 + (1 - θ)/y) ̂  (θ/bV2 + (1 - 0)/c3/2)2 ^

From these estimates we have that the left-hand side member of (4.2) is non-
negative, which is a contradiction.

This completes the proof of Theorem 1.1.
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