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Decay of Correlations for Infinite Range Interactions
in Unbounded Spin Systems*

Camillo Cammarota
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Abstract. In unbounded spin systems at high temperature with two-body
potential we prove, using the associated polymer model, that the two-point
truncated correlation function decays exponentially (respectively with a power
law) if the potential decays exponentially (respectively with a power law). We
also give a new proof of the convergence of the Mayer series for the general
polymer model.

1. Definitions and Results

In the finite subset A of Z* we consider the collection of random variables S,
={S,eR’, xe A} distributed with the Gibbs probability measure, ie.,
~B T, xS0

Z;le Me W,(dS.,), (1.1)

where @ is a given many-body potential,

WS )= ] W.(dS,),

xeA

W(dS,)=(] ndS,) exp—BO,(S,)” (exp— (S ldS),  (1.2)

where 1, is the a priori single spin distribution and f is the inverse temperature, Z
is the partition function and |X| is the number of points of X.
The finite volume correlation functions are

0A8x)=Z W, dS ) exp—PB ) Py(Sy). (1.3)

Xc4
|X|z2
Our first result is the following theorem:
Theorem 1. Let @ be a two-body potential such that
1D,,(SS)= e ®IJ(x, y)v,(S)v,(8,), (L4)
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where 8 is a metric on Z° such that

sup Y, e V=D, (1.5)

xeZ¢ yeZd\{x}

J(x, y) satisfies
sup Y Jx, )=, (1.6)

xeZ9 yezd\{x}
and v, is such that

sup [ W(dS,)expyJv,(S,)*=1(),

xezd

1(p)=0(1), B-0. (1.7)
Then there are two functions, I(B) and 1,,(B), both O( VE), B—0 such that, if
1(B)J)/BexpDI;(A<1, (1.8)
ﬂ'{sur;J(x, Y <1, (1.9)

X,

12 gi/4
I(f)—JJ/ﬁle = 2e1+1 ’ (1.10)
we have for each A

10.4(5:5,)— 04(S) (S, )| S M2 FHINSP =3 (B (L11)

This theorem eliminates the finite range assumption on the potential present in
a similar theorem in [1], leaving essentially unchanged the other hypothesis. The
infinite range case has been already considered in [2, 3], but for special classes of
systems. We refer to [1] also for a discussion on the physical meaning of the main
hypothesis (1.7) and for the proof of the existence of the infinite volume correlation
functions to which, obviously, in a suitable range of § the bound (1.11) applies. For
the use of the term exp—J in the potential we refer, for instance, to [4].

The main idea of the proof of Theorem 1 is to use the Mayer expansion for the
polymer model associated to our system. Let us recall the polymer model [1, 5]. A
polymer is a finite subset of Z¢ and its activity is given by

{(R)= | WildSR){(Sk), (1.12)
1 R|=1
C(Sk)z 1 K | |
I | (e I UES
Kz1 K! Xq,..,Xg) i=1

where * means that the sum runs over the K-sequences of subsets of R with [X;| =2,
X;#X;, UX;=R and, denoted by g(X,, ...,Xy) the graph on {1,...,K} that has a
line {i,j} if and only if X;nX ;+#, the graph g(X ,, ...,X ) is connected. In force of
this definition

nz1 {Ry,...,Rpjen(A)
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where 7(A) is the set of the partitions of A. The correlation functions of the
polymer model are

aX)=z' Y > UR) ...URY)=Z;'Z 44 (1.14)

nz1 {Ry,...,Rp}en(4\X)

and, using them, the correlation functions of the system can be conveniently
expressed

04(8y)= Z @A(XUY)jWY(dSY)FSX(SY), (1.15)
YCA\X
where
Fg (Sy)= Z Z USg,) - USg,)- (1.16)
nz1 {Ry,..., Rylen(XuY)
RinX=*0

The Mayer series for the general polymer model is given by the following
theorem in which appears the combinatorial function ¢ (truncated function) that
we define on | J, %", where £ is the set of the polymers R with |R|=2:

1 n=1

T
¢ (Ry,...,R)= (1.17)
' > I R, R)—1) n>1,
9eCyn {i, jieg
where C, is the set of the connected graphs on {1, ...,n} and
0 R,NR#*0
R..R)= ! J
(R, R)) {1 RAR,=0.
Theorem 2. If { satisfies, for each integer K =2,
sup ). JUR)[=eX (1.18)
x€Z? xeRe?
|R|=K
and
€ 1
1% < %’ (1.19)
then
> o1
Z _' Z I@T(Rla cee Rn)C(Rl) C(Rn)]
n=1 " (Ry,...Rn)e@n
IR;=R
iz 1 e \7!
SR 1+]|Rle =Inf1—2e , (1.20)
2 1—e
and the exponentiation formula holds, i.e.,
1
Z,=exp Y, — Y ®T(Ry, .., R)UR,) ... UR,). (1.21)
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The classical method of proof of this theorem goes back to [6] and uses the
“algebraic method” and integral equations of Kirkwood-Salsburg type [7]. (In
[8, 97 the theorem is explicitly stated for the polymer model.) We present here a
new proof of this theorem that shows the peculiar combinatorial aspects of the
Mayer series of polymers, making clearer the reasons of its convergence. Non-
standard proofs of the convergence of the Mayer series for continuous systems are
already known (see, for instance [10, 11]). The proof of Theorem 2 is in Sect. 3.
We use it to prove Theorem 1 in the next section.

2. Proof of Theorem 1
We get from (1.15), introducing the shortened notation
Fo(T)= [ WildS1)Fy,(S1),
048 8)—048)e48)=" Y 0sxyT)Fs5(T)

TC A\{x, y}

- Y GGTYF(T) Y ,0T)Fs(Ty). (2.1)

TiC A\{x} TaC A}

Equation (1.16) gives, putting
US. T = | Wi(dS (ST,

Fg (T)={(S,T), (2.2)
Fss(D={S8,1)+ Y S, TS, T\T), (2.3)
T:CT
and so
04(5.8)—048)048)=" Y  US.S,Te,(xyT)
TC A\{x,y}
+ Z Z C(Sle)C(Sy T,)04(xyTy T,)
T1C A\{x, ¥} 1;22%/;)52 ;}

- z Z C(SxTl)C(SyTZ)éA(le)aA(yT2)‘ 2.4

TyCA\x} TaC Ay}

We perform some obvious manipulations quite similar to the ones in [1] and
get

QA(SxSy)—QA(Sx)QA(Sy)zzl+ ...+26’ (25)
where

Ii= ) USS,DaubvD),

Tc A\{x,y}
I= X Y LS TS, )@y T, T,)— a(xT)a 4 Th)),
T1CA\fx,y} T2C A\{x, y}
TonT1=90
2y=— Z Z C(Sle)C(SyTZ)éA(XTl)@A(yTZ)7

T1CA\{x,y} T2C A\{x,y}
TonT1%6
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== ) Y LS. THUS, T (xT))a,yT),
yeT1CA\x} TaC A\{x, y}
Ly=— Z Z C(SxTl)C(SyTZ)éA(xTI)éA(yTZ) >
T1C A\{x,y} xeT2C A\{y}
2e=— Z Z US TS, T,) e 4(xT1) 0,y T5). (2.6)

yeTC A\{x} xeT2C A\{y}

We use the following two lemmas to estimate the terms X, ..., X,

Lemma 1. In the hypothesis (1.4), (1.6), (1.7), (1.8), (1.9), we have

sup Y KRISIPRU VP Ha-TVB) ", 2.7)
TRISK

sup. ;R LR Se =P [(BXIT )/ BE L (—T)/B) L, (2.8)

s Y, x,ﬁ:{]if%

sup Y [ WdSpIUS,S, Sl
{x, 3 I§IC=Z;<

S H ISP EEING o= (KT /B (1 =T |/B) 71, (2.9)
sup Y. [ WidSpILS, Sl

{x,9} yeTcz4
[TI=K

St om0 (R (T |/ B (LT /BT (2.10)

Proof. Our main task is to show (2.7) because the other inequalities follows from
obvious modifications of the proof of (2.7). We have

UR)= [ We(dSg) Y. T] (e PSS9 1), (2.11)

9<Cr (x,5)eq
We use (1.4), the inequality e* —1<t(e*—1) for 0=t <1, 120 and (1.9):

LRIS X [WaldSg) [ (e matsomn 1)

geCr {x,y}eg
é e"é(x,y)J(x, )2/3 W.(dS )e ! x J(x,)’)lmvx(sx)vy(sy).
y R\AOR)C . Jiey
geCr \{x,y}eg

The argument of the exponential, for each ge Cy, is bounded by

3T Y ST +E Y w8, )3

{x,y})CR {x,y})CR

and so also by 3J Y v.(S,)? in force of (1.6).

xeR

The integral is so bounded by

[T § WdS,)et7 <=2

xeR
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and, using (1.7), we have

ERIS e DIER T [T (B0, 212)
geCr {x,y}eq
where d(R) is the smallest length of the graphs in Cp.

We observe, as in [8], that to each graph ge C, and to each xeR, one can
associate at least one sequence (x,...,x,)eR? with g=|R| such that x,=x,
X; ¥ X, 1, {X,X;411€9, and if {y,z}eg there are one or two labels i such that
{x:»%;+ 1} ={y,z}. This implies, if (1.9) holds,

.

> 2 I BItey= > 1(.3“2«7(xi,xi+1)”3)

xeReR geCr {x,y}eg g=K (x1,...,x0)e(ZH9 i=
|R|=K X1=X,X;FXi41

(B2,

Ms

W

q

A
i

and (2.7) follows remembering (1.8).

Lemma 2. In the hypothesis of Lemma 1 and (1.10) there is a function

1;(8)=0( ]/E), B—0, such that

04XVY)

1< I e 1 2.13
2,(X)2,(Y) l e (1) X F ™) -1, 1)
and, in particular,
04XVY) _ l : Y)e $0GD) 14
3.051Y) 1| Sexp(I4(B)D min {|X],|Y]})e , (2.14)

where X, Y)= mi;l o(x, y).

yeY

Proof. The bound (2.7) of Lemma 1 and (1.10) allows us to apply the exponen-
tiation formula (1.21) if we choose

e=1,(B)=1(B)J 2B *1—-J)/B)"*, (2.15)
and we get
_ 1
0,X)=exp— ) ~ Y ®"(Ry, .., R)UR,) ... UR,). (2.16)
n=1 N° (Ry,.. . Rnean
R, CA
JRNXF0
It follows, then,
éA(XmY) < T
AR e — R, ... R)UR,) ...LR,). (2.17)
2050 TP L e ¢ R RIURY LR
Ri;cA

Ji:RinX*0,RiNYF0
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The argument of the exponential is bounded by

" > Y lo"(Ry, . RURY)..UR,)
n=1M1: Re? Ry,..., ,.)ef%‘"
RAX+0,RNY*0 HzR,

1
=Y Y Yo r o 9TRL S R)URY)UR,)
§2¥ {x,y}CReZ n=11" (R;a,izjiR;)e@"

IR| L _ I1(ﬁ) >_1)
< xezi,( {x’y);Re@ |L(R)] (1 +|R|e'R 5 ln(l 26———1 ~ 1)
= ZXKZ“ Y. LRI +Ke I,(B),

Re®
yeY iy}lc K

where we have used (1.20) and we have put

(o, LB N
12(/3)_2111(1 2e1_11(ﬁ)) : (2.18)

The last expression can be bounded, using (2.8), by

Y Y (A +KeFL(B)e I IBKI )/ BE(1—T |/ B)

xeX K=2
yeY
=Y 2 e p), (2.19)
xeX yeY

where I,(f) is defined by the last equation, the series converges by (1.8) and this
proves the lemma.

In order to prove Theorem 1 we need to estimate each one of the terms
2., .., 2 We have by (2.9)

IS Y USS,T)

TcC A\{x,y}

S gpmisar e samis? s LUV BV
K=o 1-J)/B

= V(S22 + 3Tvy(85)2 5~ 6(x,y) 1,8, (2.20)

lIA

where 1,(f) is defined by the last equation (in the same way are defined all the
functions I in the following).
We have in the second term from Lemma 2

’@A(XJ’T1 T,)— 0 4(x Tl)éA(y T)<e” FOCT10T2) CXp D13(ﬂ) (T |+ 1).

For the term in 2, with T; +@ and T, =+ we use the bound

Z Z |C(SxT1)C(SyT2)|e—%"("T"ﬂ”em“m(”’l+ 1)

t1, 12611\{3‘ v} t1€T1CA \{x, ¥} 126T2C A\fx, Y\ T
fi*ty  8(x,T1)So(x,t1) Oy, T) = o(vt2)
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0
s X )y ) > LS, TS, Tl
t1,t26A\{x,y} K1,K2=1 11€T1CA\(x,y} 12€T>C A\{x,y\T1
tiFiy 6(x, T1) S o(x,t1) o(x,T1) S d(x,t1)
T1|=K; |T2|=K>

. eDls(ﬂ)(thl 1) o=y + 30(x,t1) +30(y,t2)

0
ée—%é(x,y) Z e-%ﬁ(x,tn) Z e“%é(y,tz) Z eDla(ﬂ)(K1+1)e%va(Sx)2

t1eA\{x, y} ta2eA\{x, y,t1} Ki=1
S (1) WAV o R A V) R YAty (1) S WAV} o B A VA
Ky=1
<e~ 36(x,y) e-%va(Sx)2 +3Jvy(Sy)? Is(ﬁ) , (2'21)

where we have used (1.8) and d(x, y) <d(x, t,)+d(y, t,) + o(xT;, yT,). The terms with
T, =@ or T,=@ must be separately estimated. For T, =@ and T, +@ we have

Z 'C(S Tz),e—%é(x,yTz)eDIs(ﬂ)
y
taed\{x,y} 126T2C A\{x, ¥}
[e o)

< z Z Z IC(Sy T2)| PGk %(Xy,tz)eDIs(B)

t26A\{x,y} K2=1 126€T,C A\{x,y}
2| = K2
(y, T2) £0(y,t2)

IIA

e~%5(x,y) Z e—%é(y,tz) i e—%va(Sy)2
t2eA\{x, 3} Ko=1
(BT Y YL =T/ By P
o™ BN ISP (B (2.22)
where we have used d(x, y)<d(x, yT,)+d(y,t,). The term with T;#+0 and T,=0

give the same contribution, while the term with T, =T, =0 gives a contribution
less than

IIA

(P30 — 1)e= 2
We so get

|Z,| S e~ 300D gH IS+ 1S [ () (2.23)
The third term in (2.6) is bounded by

o)

> Y US.TYUS, T

teA\{x,y} K1,Ky=1 teT C A\{x,y} teToC A\{x,y}
IT1]=K, |T2|=K>

Ki+K Ki+K
< Z i e—é(x,t)—6(y,t)e%1vx(sx)2+%va(S_v)2 I(B) ! 2(‘] I/E) ! ?
ted\Gx,y) Ki,Ko= 1 (1—-J)/B)>
— 1, 1 244 2
<e 33(x,9) g3 TVx(S2)? + 3Tv,(Sy) 18( B). (2.24)

The fourth term in (2.6) is bounded by

[c9}

i Yo s T Y X Y s, Tyl

K1=1 yeT1CA\{x} K>=0 t2eA4\{x,} 126 T>C A\{x, )}
|T1]=K;4 |T2|=K>
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e~ 0D V(S [(R)Ks( VE)’“(I —-J I/E)_ !

1

LY X TSI (R | Y- T/ B)

K2=0 teA\{x,}
— ES 2
<e 3(x,y) e%va(SxH $Jvy,(Sy) Ig(ﬁ). (2'25)

K

IA
g 118

The fifth term gives the same contribution as the fourth and the sixth gives

YooY S Y Y ST

Ki=1 yeT1C A\{x} Ky=1 xeT>C A\{y}
IT|=K4 |T2|=K>
= 20(x, LJV(Sx)2 + £Jvy(Sy)2
< o™ 20 RIS () (2.26)

Collecting the six bounds we finally get (1.11) and it is easy to see that

1,,())=0()/B), p-0.

3. Proof of Theorem 2
We rewrite Eq. (1.13) in the form

1
Z,=1+ Z-n—, Y UR)).-.LR,)

nz1"+ (Ry,..., R,)eAR"
RinR;=0,R;CA

=1+ Zi, Y (RY-LR) [T R.Ry, (3.1)

nz1 (R;,.iz.,R/,{)e?/Z" Gcil, ...

and we insert in the last expression the expansion

n

[T xR.R)= Y > "R, hel,)...pT(R,, hely).

{i,jjc{1,....,n} K=1 {I1,....Ig}en({1,...,n})

So we get, at least formally, the exponentiation formula (1.21) exchanging the
order of summation. This exchange can be done if the series

21

a=1n! (R, ...,R)edn
RiC A

i

TRy, ., RYUR))...LUR,) (3.2)

is absolutely convergent. This follows from (1.20) if we use

Y (Y T ()

(Ri,...,RyEZR" ReZ (Ri,...,Rp)eZR™
RicA RcA JR;=R

and the bound (1.18). In order to prove (1.20) we observe that

) Y TRy, L RYIR).L(R,) (3.3)
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oo} 1 n

SERI1I+ Y — X Y 1¢"Ry...R) [T Ry (3.4)
n=2M"i=1 (Rl,ﬁi,fﬁ)ew K#i

élC(R)l(lJr Zz:—,m L |¢T(R1,---,R,,)C(Rz)--i(R,,)l), (3.5)
n= . 2, Rp)e@n—1

and so our task is reduced to estimate the sum

l9T(Ry, - RIUR,). LR, (3.6)

(R2,...,Rp)eZn 1

We rewrite this sum as a sum over the connected graphs on {1, ..., n} using that
®"(R,, ..., R,) depends only on the graph g(R,, ..., R,). If we define the function ¢
on C, by

¢(g)={ > (o " (37)

we have

and so (3.6) is equal to
> lo(f)l ) IERy)-- LRI (3.8)

feCxn (Ra,...,Rp)en "1
9(Ry,..,Rp)=f

We use the following nontrivial bound for ¢(f) in terms of N(f), the number of
trees contained in f.

Proposition

o(I=N(S).
For the proof we refer to [10] or to [13, 14]. From

2 (=2 XA

feCyn teTy, fDlN(f)

where T, is the set of the trees on {1, ...,n}, we get

B8 Y X ) IURY) - LR,

teT,, fOt (Ra,...,Ry)e%n~1
g(Ry,..., Rp)=f

> IE(R,) ... L(R,)]
teTy (Ra,...,Rp)eAn~1
g(R1,..,Rp)Dt

Y w(t), (3.9

teT,

I
™M

where the definition of w(z) is implicit in the last equation. Let us compute w(t),
for instance, for the tree on {1,2,3,4} made by the lines {1,2}, {2,3}, {2,4}. We
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have
wi)= Y KRl Y KR Y KR
Re R3eZ R4eR
RonR1#0 R3nRy*0 R4nR2*0

The sum over R, gives by (1.18) a contribution less than
(1—2) R,
and the same does the sum over R,. We so have

w05 (5 IRdsp Y GRIIRP,

X xeReZ

We are so led to estimate the series

> LRIIRP

xeReR

for each nonnegative integer p and this can be done using, for instance, the bound

Y eKKP<pl - (3.10)
K=1 1—¢

that holds if e(1—¢) ! <(e—1)"! and follows from a simple induction argument.
We so find

w(t)<(1 > IR,[2!

Generally, for a tree t such that the degree, i.e. the number of lines containing the
point ie {1, ...,n} is d;, we have

n—1 n

wosir (= [T (3.11)
i=2

The number of trees on {1, ..., n} such that the degree of the point i is d, is given, by
the Cayley formula [12], by

(n—2)!
1T~

The sum over the trees can be performed summing over the sequences
dy,...d)ell_,, where I,={1,...,n}, with the constraint d, +...4+d,=2(n—1).

(3.9) is so bounded by
— N1 n—1 n
MIR ,dl(l_ > H —1)'

dysedr)el-
d1(+?.‘+d,.——*62(n—1 1 n (d,— !

1—¢ di=1 - 1! (@2,..odp)eln

dyt...+dn=2(n—1)—dy

=(L> (n—2)! i ’R1|‘ y L (3.12)

We now need a bound of the sum over (d,, ...,d,)e I"~ }. This sum can be bounded,
for instance, with the sum over (d,,...d,)el5, ", , that we can denote
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I, (2(n—1)—d,) if we define for ISK=Zm
Lm= Y 1. (3.13)

@1,....ax)el
qi1+...tgg=m

But we have, via a simple induction argument on K
mK— 1
rLms-—— 3.14
x(m= K—1)! ( )
and so
Qn—1)—dy)"?

1-;,_1(2(n—1)—d1)§ (n-—2)!

Finally (3.6) is less than

1 e n—1 | Ry|
3 2@1_8 (n—2)!R,le
and Eq. (1.20) follows summing the series (3.5).
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