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Abstract. For massless models of quantum field theory, some general theorems
are proved concerning the analytic continuation of the renormalization group
functions as well as the effective coupling and the propagators. Starting points
are analytic properties of the effective coupling and the propagators in the
momentum variable fe2, which can be converted into analyticity of β- and
y-functions in the coupling parameter λ. It is shown that the β-function can
have branch point singularities related to stationary points of the effective
coupling as a function of k2. The type of these singularities of β(λ) can be
determined explicitly. Examples of possible physical interest are extremal
values of the effective coupling at space-like points in the momentum variable,
as well as complex conjugate stationary points close to the real &2-axis. The
latter may be related to the sudden transition between weak and strong
coupling regimes in quantum chromodynamics. Finally, for the effective
coupling and for the propagators, the analytic continuation in both variables
k2 and λ is discussed.

1. Introduction

For massless models of quantum field theory, the renormalization group may be
used in order to obtain analytic properties of Green's functions in the coupling
parameter λ.1 It is the purpose of this paper to derive some general theorems
concerning the analytic continuation of the effective coupling A and of the
propagators in the parameter λ and the momentum variable k2. In particular, we
show that the renormalization group function β can have well defined branch
points which are associated with stationary points of the effective coupling A as a
function of k2. These branch points may be of physical interest in quantum
chromodynamics.2

* On leave from the Max-Planck-Institut fur Physik und Astrophysik, D-8000 Mύnchen, Federal
Republic of Germany

1 For previous work on the analytic continuation in the coupling constant, see [1-5]
2 A preliminary account of this work was given in [5-7]
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We assume in this paper that the renormalization group transformations
involve only two independent parameters a dimensionless coupling parameter λ
and a normalization mass κ2. This is the case for the Landau gauge of massless
gauge theories with a single dimensionless coupling constant. Accordingly, for
such models our treatment applies to gauge invariant quantities or gauge
dependent quantities in the Landau gauge. Though intrinsic masses are absent, the
possibility of dynamical mass generation is included.

Our starting point will be the analytic properties of the effective coupling A as a
function of k2 for fixed real λ^O. We follow the approach to define the effective
coupling A in terms of a suitably chosen vertex function which depends only upon
a single momentum variable fe2. Thus defined, the effective coupling may be
regarded as a measure of the coupling strength in its dependence upon distance or
momentum.3 The definition of A is, of course, not unique. Except for quantum
electrodynamics, there is no preferred choice of the coupling parameter.
Nevertheless, it can be expected that the essential features of the effective coupling
as a function of the momentum are similar for all definitions which are based on
vertex functions in the Euclidean momentum region. In view of the relation to time
ordered functions, the effective charge is the boundary value of an analytic
function in fc2. Different constructions of A, which are regular analytic at any
k2 < 0, are related by reparametrization transformations which are nonsingular in
the entire Euclidean region. For some definitions A will even be analytic in the cut
/c2-plane for real AΞ>0 [10]. For the general considerations of this paper, the
precise extent of the region of analyticity in k2 will not be relevant. It is sufficient if
we have regularity in some domain of a Riemann surface over the /c2-plane, which
includes an appropriate interval on the negative real fe2-axis. The renormalization
group function β(λ) then becomes analytic in the domain of values which the
effective charge A assumes at its points of regularity in k2. In this domain the
function β is regular except at stationary values of A with dA/dk2 = 0.

It is important to distinguish two types of singularities of the function β(λ).
First, there are those which are associated with poles and branch points of the
effective coupling A as a function of k2, which are due to the intermediate states in
the appropriate channels of the vertex function and the propagators used in the
definition of A. Since inverse square roots of propagators are involved, there could
also be contributions from zeros of propagators, unless appropriate projected
propagators are used.

A second type of singularities of the function β(λ) is caused by zeros of
dA/δk2, which may occur anywhere in the regularity domain of A as a function of
k2. At these stationary points of A, the β-function has branch points whose general
form can be determined to be [6, 7]

with coefficients Bt regular at λ'. Here λ' is the value of yd at a stationary point
k2 φ θ where A is regular analytic, n is the order of the first nonvanishing derivative
of A, and β vanishes at such a branch point with β~x being integrable.

3 For this approach of defining the effective coupling see, for example [8, 9]
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Some applications of singularities associated with stationary values of A have
been discussed previously. For real Euclidean /c2, stationary values of the effective
coupling are completely consistent with the concept of the renormalization group
[6]. 4 For an extremal value λ' of A the function β(λ) passes through the real axis at
λ' with the positive and negative branch on one side of the vertical tangent λ = λ'.
Then the field quantities become multi-valued functions of the coupling constant.
Another interesting example is the case where, at a point k2 < 0, the first two
derivatives of A vanish, but not the third one. At the corresponding stationary
value, β does not change sign, but vanishes with a cusp-like behavior. Finally, we
mention an application of complex branch points of β. It has been suggested that
the indication of an abrupt transition between real and strong coupling regions, a
priori found in lattice gauge theories, may be connected to complex conjugate
branch points of β close to the real axis [13, 14, 7]. The possibility that such
singularities may be due to complex stationary values of the effective coupling was
discussed in [7].

For positive λ, the propagator of an elementary or composite field is regular
analytic in the cut fc2-plane with the possibility of a continuation across the cut.
For propagators which transform multiplicatively under the renormalization
group, analyticity in momentum space implies analyticity of the anomalous
dimension γ in the coupling constant.

With analyticity established for the β- and y-functions, an analytic con-
tinuation of A and of the propagators in both variables λ and k2 may be
accomplished. We find fixed singularities in λ and k2, as well as singular surfaces in
both variables. Fixed singularities in k2 can only occur at the origin or at infinity.
Fixed singularities in λ may be located at the singularities of β~x (and/or yβ~1 for
propagators). The singular surfaces have the simple structure given in [5], which is
an extension of the familiar A-dependence for observable masses to complex values
of λ and k2.

Analyticity in the coupling parameter may be severely restricted by singulari-
ties in momentum space [4, 5, 15]. In massless quantum chromodynamics, Khuri
has proved that propagators with thresholds extending to infinity cannot be
continued in any coupling parameter beyond a certain domain where boundaries
are tangential to the real axis at the origin.5 This limitation is due to the infinite
sequence of singular surfaces originating in the threshold singularities of
Minkowski space.

The methods of the present paper apply as well to definitions of the effective
coupling which are based on an explicitly given ^-function. Starting from a given
β, the effective coupling is defined by

\λ

in an appropriate range of the variables k2, A. This relation can be continued to
complex values of A, k2 and A by deforming the path of integration within the

4 Examples of stationary points for the effective coupling have been found in the 1/N limit of a
model [11] and in an approximative treatment of QCD for a certain range of the ^-parameter [12]
5 By a different method the same limitation was obtained in [16] for a large class of coupling
reparametrizations
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regularity domain of β~ι. Thus the analytic continuation of λ is obtained in both
variables k2 and λ.

In Sect. 2, the concept of the renormalization group in the general framework
of quantum field theory is reviewed as far as needed for the purpose of this paper.
The analytic properties of the renormalization group functions β and y are derived
in Sect. 3 from the regularity domain of the effective coupling and the propagators
in momentum space. The continuation in both variables, the coupling parameter
and the momentum variable, is discussed in Sect. 4.

2. Renormalization Group

Massless models of quantum field theory are considered which involve a single
dimensionless coupling constant λ and a Euclidean normalization mass K. Let
φ1,...9φn denote the basic field operators of the model (Lorentz and internal
symmetry indices suppressed). The renormalization group is defined as the group
of all transformations

φr-+ZlJ2φr, Z r > 0 , (2.1)

which change the normalization of the fields by positive factors. It is assumed that
a two-parameter family of normalized field operators

φr = φr(x,λ,k2) (2.2)

exists which is uniquely determined by suitable normalization conditions for
coupling constants from a sufficiently small region

(2.3)

and a normalization mass

κ 2 < 0 . (2.4)

Parameter values λ, κ2 and λ\ κ'2 are called equivalent:

λ,κ2~λ'9κ?2, (2.5)

if the corresponding field operators are related by an equivalence transformation.
The effective coupling is defined by a dimensionless quantity6

Λ = Λ(k2

9λ,κ2)

= Λ(u,λ), u = k2/κ2 (2.6)

depending on the square of a four vector k which is invariant under the
renormalization group:

Λ{k2,λ,κ2) = Λ(k2,λ\κ'2), (2.7)

6 For gauge theories, λ may be taken as square of the conventional coupling constant with A
denoting the square of the effective coupling
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and satisfies the condition

A(k2,λ,κ2) = λ at k2 = κ2. (2.8)

From (2.7) and (2.8) it follows that equivalent pairs (2.5) of parameter values are
related by

(2.9)

Equations (2.6) and (2.7) imply the differential equation

(2.10)

Only such models will be considered where

j8(0) = 0, but j8(A)φO for small x > 0 .

Then one has the alternative that

either β(λ)>0)
or βixxo) ^ m a l l A>0. (2.11)

With (2.8) the differential equation (2.10) can be solved by

ίΛ \
u = Qxp[ldzβ-1) (2.12)

\λ /

for

g>λ£η, OSu^c, β(λ)>0

β(λ)<0 [ ' }

with suitable bounds η and c such that in particular

in the intervals (2.13). With (2.12) the relation (2.9) between equivalent pairs of
parameter values may be written as

^=exp(ί^-1). (2.14)

For the Callan-Symanzik function β, the relation

u~ (2.15)

ou

can be derived from (2.7) and (2.9) provided O^Λ^η. On the right hand side of
this relation u and dΛ/du are to be expressed by the variables A and λ. The
resulting expression is independent of λ. In the discussion of singularities of β and
yd, as well as stationary points of A, we must remember that these positions can
generally be changed by reparametrization transformations. If singular transfer-
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mations are admitted, we can, of course, remove or generate singularities, for
example in β, but at the cost of compensating changes in A which then will no
longer have a direct relationship to a vertex function and its role as a measure of
the coupling strength as a function of momentum or distance. Nevertheless,
singular reparametrizations may be of relevance within the framework of the exact
theory or nonperturbative approximation methods [4,15,17-19].

Apart from the basic fields φr occurring in the Lagrangian, also composite field
operators C will be considered which transform multiplicatively under the
equivalence transformations (2.1),

C^Z^C. (2.16)

Let G(k2) denote a structure function of a basic field φr or a composite operator
with multiplicative transformation law (2.16). Then

G(/c2, λ'9 κ'2) = ZG(k2, λ, κ2) (2.17)

with Z — Zγ or Z = ZC. This implies the differential equation

with the anomalous dimension y depending on the field operator considered.
Multiplying by a suitable power of k2, we form the dimensionless quantity

k2

R{u,λ) = {k2)aG, u=-τ9 (2.19)
K

satisfying (2.18) in the form

U—=β—+γR. (2.20)
du όλ

Changing the normalization of the field operator by a A-dependent factor, it can
always be arranged that

R(u9λ) = l a t t t = l . (2.21)

In the work that follows, normalized structure functions R will be considered
which satisfy (2.21). With (2.21), the differential equation (2.20) can be solved to
yield

fΛ \
K — exp i j axyp , \L.LL)

\λ I

by using A and λ as independent variables. The variables λ and u should be
restricted by suitable bounds as in (2.13). With the normalization condition (2.21),
the factor Z of the transformation law (2.17) can be determined as

(2.23)
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It is sometimes convenient to replace a propagator

<Tφra(x)φFb(y)>

by [20-22]

= <TφJx)prφrb(y)>, (2.24)

where pr is the projection on a subspace Hf of positive definite metric of the space
Hr of all states with

The corresponding structure functions are denoted by G+ . The quantity

= (P ) G (2.25)

is dimensionless and depends on u and λ only,

R+=R+(uλ) u = k2/κ2

If the definition of H* does not involve additional mass parameters, it satisfies the
differential equation

dR+ JR+ , „ ^
M = i 8 — — +VJR+ (2.26)

with the same coefficients β and y.
The structure functions G of the propagators are analytic functions in the cut

/c2-plane. The effective coupling is also expected to be analytic in k2. For suitable
definitions of the effective coupling, it can be shown that it is analytic in the cut
/c2-ρlane [6]. G and A may possibly be continued across the cut as analytic
functions on a Riemann surface. The renormalization group transformations (2.7)
and (2.17) can be continued to any value of k2 where A or G are regular. In terms of
dimensionless variables, these transformations take the form

(2.27)

(2.28)

Inserting (2.14) and (2.23), one finds the functional relations

Λ{u,λ) = Λ[expndzβ-χ)u,λ')9 (2.29)

(2.30)

valid wherever A and R are regular analytic in u.

We will now show that the position

μ2=μ2(λ,κ2) (2.31)
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of a singularity of G or A on the Riemann surface depends on the coupling
parameter like [5]

λ0 \

A /

This law is well known to hold for observable mass parameters for any
renormalizable massless model with a single coupling constant λ. For the proof we
first observe that the location of a singularity of G or A cannot change under an
equivalence transformation (2.1) which only multiplies the function by a finite
number [see (2.7) and (2.17)]. Therefore,

(2.33)

The same relation holds for the observables of the system since, by definition, an
observable does not depend on the normalization of the fields. The invariance
relation (2.33) implies

For dimensional reasons

(2.35)

Therefore (2.34) becomes

(2.37)

Thus (2.32) holds for any singularity of the effective coupling or a propagator.
According to the derivation, it is also fulfilled for those singularities at which the
function assumes a finite value.

Particularly interesting is the case of the lowest singularity m2 on the axis
fc2^0. Either m vanishes identically or depends on the coupling parameter
according to (2.32). For a propagator, m is the lowest mass value of the modes
associated with the corresponding fields. In case of the Fermi propagators of
quantum chromodynamics, these values may be used for defining the quark
masses [22].

The location of a zero of G or A also stays invariant under equivalence
transformations. Therefore a A-dependence similar to (2.32) follows for the
position of a zero on the Riemann surface over the fc2-plane.
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3. Analyticity of β and γ

In this section it will be shown how analyticity of the effective coupling and the
propagators in the momentum variable alone can be converted to analyticity of
the β- and the γ-functions in the coupling parameter.

We introduce a domain Q) as the set of all values which

Λ = Λ(k\λ,κ2)

assumes at regular points k2. In general, Q> will be a domain on a Riemann surface
over the /L-plane. Here 3) does not depend on κ2 since A is a function of k2/κ2 and
A only. Due to the invariance relation (2.7), Q) does not depend on λ either.

For any value of A within Org/lrg??, we have [Eq. (2.14)]

β(Λ) = u^. (3.1)

This relation may be continued to complex values of A in *3). It implies that β is an
analytic function, regular in Q) except at points where A = A(u,λ) cannot be
inverted with respect to u. Hence, within the domain Q), the function β as given by
(3.1) can only become singular if

Because of (3.1), β always vanishes at a singularity in Q).
The effective coupling A is usually defined as a real function of Euclidean

momenta fc2<0 for O^λ^/y. For some definitions, A is real only in a domain $
which need not be the full Euclidean region. By definition, β becomes real in the
region $F of values which A assumes in S. For λeϊF the analytic functions β(λ) and
β(λ) = β*(λ*) coincide, hence represent the same analytic functions. As a con-
sequence, complex singularities of β appear in pairs at complex conjugate
locations.

We now determine the analytic properties of β near a zero of dA/du where A
itself is regular in u. It will first be shown that the value λ' of A at such a point does
not depend on the coupling parameter. The defining equations are

λ'(λo) = Λ(u',λo), | V , A 0 ) = 0 . (3.3)

For two different values λ1, λ2 of the coupling constant, the effective coupling A is
related by (2.29)

Λ(u9λ2) = Λ{v,λ1),

According to this

2

J dzβ~ι \u.
Ui

— (M,A1) = 0 implies —(u,λ2) =
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with constant value of A. Hence

0

follows.
The value λ0 of the coupling constant will be held fixed in the work that

follows. If A is regular at w = u' with vanishing derivative, the difference A — λf must
be of the form

A(u, λ0) -λ' = {u- u')nf(u, λ0) n = 2,3,..., (3.4)

with
/ ' = /(«Ά)Φ0. (3.5)

The analytic properties of β(Λ) near Λ = λ' are conveniently described in terms of a
variable z introduced by the analytic function

z = z(u,λo) = (u-u')f1'"(u,λo)

= (Λ{u,λo)-λfln.

The function z is regular and vanishes at u — u. Its derivative does not vanish at u :

Hence

may be inverted by the analytic function

u = u(z,λ0).

Since u is regular at z = 0, it may be expanded with respect to powers of z:

u = u' + (/')" 1/Λz + fl2z
2+.... (3.7)

In the neighborhood of w = u;, the right hand side of (3.1) will now be expressed by
the variable z. It is

„ £ ! = „ « * . - ! . (3.8)

This is regular at z = 0 since

^ = { / ' ) - 1 / » φ 0 at M = U'.

dz
The leading power of z depends on whether or not u φO. We have either

2 + ) (3 9 )

with bo = nw7 / 1 / f Iφ0if u'φO, or

.) (3.10)
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with bί =n = 2,3,... if ur = 0. In these expansions we collect terms of equal power
modulo n

+ ... + z " " 1 ^ _ 1 ) , (3.11)

1 + ... + z"-1Bn_ί). (3.12)

Here the Bj are analytic functions of

which are regular at z = 0 or Λ = λf. At z = 0, the coefficient Bo of the leading term
does not vanish. Since β and X are independent of λ0, the coefficients B do not
depend on λ0 either. Replacing A by A, we find

λγ-^Bn_ί), .(3.13)

if t / φ θ with B0(λ') + 0,

1/ + ... + (λ-λ')1-1 /"JBπ_1) (3.14)

if w' = 0 with ^0(A') = ̂

as a representation of β near A = A'. The coefficients

are regular at λ = λ'. By (3.1) and (3.2) or (3.13) and (3.14), the ̂ -function vanishes
at a stationary value of A. If w'ΦO, the inverse of β is still integrable at X.

This result is of particular interest for real values of λ. If n is even, A has an
extremal value X at the point u = w'. It has been pointed out in [6] that extremal
values of the effective coupling are compatible with the concept of the re-
normalization group. We will now discuss the analytic behavior of β near an
extremal value of A.

We first consider β for real arguments corresponding to values u > u' or u < vί
near the location w'ΦO of a maximum X. It is then convenient to draw the cut of
the branch point from X to the right along λ^X. Here f' = f{u\λ0) is negative
because of (3.4) and we may choose the positive root for ( — f)lln in a neighborhood
oϊu = u'. With this convention, (— l)1/wz and u — u' have equal signs by (3.6) so that

{~l)1/nz = (X-A)1/n>0 if

(-l)1/"z=-(X-A)1/n<0 if u<uf

for u sufficiently close to u'. Thus the representation of β near a maximum of the
effective coupling at a point u'φO becomes7

+ (X-λ)2/nB2±...±(X-λ)1-1/nBn_1), (3.15)

with the upper (lower) sign holding for the branch corresponding to u > vί (or u < vί
respectively) in a sufficiently small neighborhood of vί. For both branches we have

7 A qualitative picture of the l-dependence of β in case of a single maximum of A was given in [6,
Fig. 1]
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λ^X. The coefficients Bt are real functions near u with Boή=0. In case of a
minimum, the representation (3.15) holds after replacing X — λ by λ — λf.

It is interesting to study the analytic properties of β near such a branch point. If
u is continued from u' — ε to u' + ε (ε > 0) along a complex path in the upper or
lower half plane, the effective coupling A will make n/2 full turns on the Riemann
surface around the branch point at X. Accordingly the two branches (3.15) of β are
connected by continuing τι/2-times around λ — X on the Riemann surface of
(λ-X)1/n.

If n is odd, the effective coupling is stationary but does not have an extremum.
We discuss this case first for a real neighborhood of a stationary point at u = u + 0.
Then the function / defined by (3.4) is real. Choosing the real root f1/n in (3.6), the
representation (3.13) of β holds in a real neighborhood of X with real roots
(λ — λ')1/n. Analytic continuation of β from values λ < X to λ > X must be performed
in the Riemann surface of the function (λ — X)lln by taking n/2 turns around λ = X.

We briefly indicate the modifications if A has a stationary value at u = 0. For
an extremum (u even) the factor ±\λ — X\~1/n in Eq. (3.15) is replaced by λ — X.
Both branches of β form a cusp with the same tangent given by B0(X) = n. If n is
odd, we have (3.14) with the real root of (λ — X). In that case β is passing
continuously through zero at λ = X with tangent B0(X) = n.

It has been suggested in [7, 13, 14] that complex branch point smgularities of
the β-function may be related to the sudden transition from a weak coupling to a
strong coupling approximation. Complex stationary points of the effective
coupling may provide such a pair of conjugate singularities for the ^-function. In
that case the representation (3.13) holds locally at each of the smgularities. It is
more difficult to obtain a representation valid jointly for conjugate singularities. In
particular, we emphasize that conjugate stationary points on the physical sheet of
A may lead to conjugate singularities of/?, which are located on complex conjugate
sheets rather than the original physical sheet of the Riemann surface. Likewise,
conjugate singularities of β on the physical sheet need not correspond to conjugate
stationary points on the physical sheet of A. In some simple models, the branch
points may also be closely correlated with meromorphic singularities on the real
A-axis.

We conclude this section by deriving analytic properties for the anomalous
dimension y(λ) of a normalized propagator. From the differential equation (2.20)
and the normalization condition (2.21), the formula

γ(λ) =
dR(v9 λ)

δv
(3.16)

v=ί

follows. We write the transformation (2.28) in the form

R(v9λ) = ZR(uv,λ0), (3.17)

with

κ2

λ = λ ( M o ) , M = ^ ; (3.18)
κ0

λ0 denotes a positive value below η, with η chosen such that not only β(λ0) Φ0 but
also R(u,λ0)ή=0ϊor O^u^c or u ̂  c respectively [see (2.13)]. By the normalization
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condition (2.21), the factor Z is determined:

Z = R"1(«,A0). (3.19)

Differentiating (3.17) with respect to v and setting v = l, one gets

. (3.20)
λ0) du

Using A, λ0 as independent variables, this equation takes the form

R = R(u,λo) = R(u(Λ,λo),λo), (3.21)

with the overall dependence on λ0 dropping out. Here λ0 and u are restricted by
(2.13) such that

β(λo)*0, R(u,λo)+0. (3.22)

Since u is analytic in A, Eq. (3.21) may be continued to complex values of A Thus y
becomes an analytic function in the intersection J of 3> and the domain of A for
which R is analytic in u by (3.21). Here y is regular in J> except at points Λ = λ'
where one of the following conditions holds

β(λ') = O, (3.23)

R(u',λo) = 0 \ t , I* a_Λ (3.24)

^ Λ ) singular} a t " ^Λl^ } (3.25)
The conditions (3.24) or (3.25) determine values X which are independent of λ0.
For a zero or singularity u' of R depends on λ0 according to

κ' = cexp
U

where σ is a fixed positive value of the coupling parameter [see (2.32)]. Hence the
corresponding value of X depends only on c, σ, which are characteristic constants
of the zero or singularity considered.

By its original definition, y is a real function in some real domain. Therefore the
analytic continuations y(λ) and y(λ) = y*(λ*) coincide there and represent the same
analytic function. Hence all complex singularities of y appear in conjugate pairs.

4. Analyticity in the Momentum and Coupling Variables

The analytic properties of β established in the last section will now be used to set

up the analytic continuation of A in both variables u and λ. To this end the identity

(2-12) Λ χ

M=exp \\dzβ~ι\ (4.1)
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will be continued to complex values of A, u, and λ. A more explicit method
expressing A by (2.15) as a function of a single complex variable will be given
below. The relation (4.1) was originally derived for real intervals (2.13) where β
does not vanish and stationary points of A are absent. By deforming the path of
integration, relation (4.1) may be continued analytically within the regularity
domain £f of β"1. According!to the results of the last section, £P includes the
image 3) of the regularity domain of A in u except for zeros of β. Thus

u = u(A,λ) (4.2)

becomes an analytic function of A and A, regular for Aeέf, λe£f. The function u
may be singular at endpoint singularities where β(λ)~1 and/or β(A)~1 are singular.
The quantity A may be determined as a function of both complex variables u and λ
by rewriting (4.1) in the form

expίj dzβ'λ =exp(j dzβ'λu (4.3)
Uo / U o /

and inverting the left hand side with respect to A. For Ao, any regular point of β~1

on the path of integration may be taken. For A finite, β~x{A) regular and
nonvanishing, the inversion is possible and A becomes regular analytic in the
variable

\dzβ~Λu. (4.4)
λ 0 /

In turn v is a regular analytic function of u and λ except where β~ x(/l) is singular. A
singularity or zero of β~ ̂ λ) may cause a singularity at the corresponding value v'
of (4.4) leading to a singular surface

e x p K d z j S - 1 ) " ^ ' (4.5)
Vλo /

of A in the variables u and λ. The constants υ' are determined by

Λ \

\dzβ-A.

where β~1(A) = 0 or singular. Likewise, a singularity of A appears along (4.5) if

e x p [$dzβ-ί)=v/ (4.6)
Uo /

converges along a path extended to infinity. In this case A is unbounded near the
singular surface.

It is of interest to apply this method to the Euclidean region. The relation (2.12)
need not hold in this form if there are stationary points of A for u>0. However, if
the stationary points are restricted to a bounded region, the relation (2.12) can be
continued from the original interval (2.13) to the infrared (ultraviolet) region. Then
it holds for 0 < w ̂  α as well as b ̂  u with the appropriate branch of A and suitable
bounds α, b. In these regions, A is a monotonic function of u approaching limit
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values Λ->0 and A-^λ^ (which may be infinite) for u->0 or w->oo. As a
consequence, the integrals

0 λ0

\dxβ~\ $ dxβ'1

λ λ

must diverge at the upper limit. The zeros of β at λ = 0 and λ = λ^ (if finite) are
called strong zeros in contradistinction to weak zeros, where β~ * is still integrable.
As was shown in the last section, weak zeros appear for values of A at stationary
points w' + O.

00

On the other hand, if J dxβ'1 converges for the relevant branch of β, the
λ

effective coupling must be singular at the Euclidean momentum

k2 /°°
—2 =exp J dxβ~x

κ \λ

with Λ->oo when k2 approaches this point. This generally does not imply the
presence of tachyonic modes, it only means that the relation to an effective
coupling defined by a vertex function is given by a singular transformation.

Equivalent information on the analytic properties of A is obtained by
continuing the functional relation (2.15) to complex values of λ and u,

ί ίλ \ \
A{u, λ) = A exp j dzβ-1

 M, λ0 . (4.7)
\ Uo II

Here λ0 denotes a fixed positive value below η. Equation (4.7) expresses A as a
function of the single variable (4.4). The regularity domain of A in both variables u
and λ can be described as follows. Let &(λ0) be the region on the Riemann surface
over the i -plane where A(v, λ0) is regular. Then Λ{u9 λ) is regular on the Riemann
surface over the w-plane at any u, λ with

expίf dzβ-λueβtiλo), λe¥. (4.8)

We will now use the analytic properties of y, derived in the last section, in order
to show that R is analytic in both variables u and λ. The differential equation (2.22)
for R, with the normalization condition (2.21), can be solved by

Λ{u,λ) \

J dzyβ-η (4.9)

for values u, λ from appropriate intervals (2.13). Since β, y are analytic and A an
analytic function of u and λ, it follows that also R is analytic in both variables. The
actual domain of regularity is better described by continuing the relation (3.17) to
complex values of u and λ

ί ' ^ (4.10)

J u,
Uo /
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The integration paths should avoid singularities of β~ι and y. According to this,
R(μ, λ) is regular on the Riemann surface over the w-plane of any w, λ with

(4.11)

Here %(λ0) denotes the region on the Riemann surface over the z -plane where
R(v,λ0) is regular. &~ is the region where β~ι and yβ~ι are regular.

The propagators are real functions of Euclidean momenta in some real domain
of the coupling parameter. For some definitions the effective coupling is real only
in part of the Euclidean region. In these Veal domains of u and λ the analytic
functions A(u,λ) and R(u, λ) coincide with their complex conjugates A*(u*λ*) or
R*(u*,λ*) respectively; hence they represent the same analytic functions.

We conclude with some general statements on the singularities of the effective
coupling and propagators. For given λ0, some of the singularities of A(v, λ0) or
R(v, λ0) with respect to v are given by physical requirements such as particle poles,
thresholds, resonances, etc. Other singularities arise from zeros of the propagators
involved in the definition of A. If a singularity of A(v, λ0) or R(v, λ0) is located at
v = μ2{λ0), the position of the corresponding singularity of A(u,λ) or R(u,λ) is at

(4.12)

This is the generalization of (2.28) to the dependence of a singular point on the
complex-valued coupling constant. The position of a pole or other singularity
where A becomes infinite is

/oo \

(4.13)

as follows from (4.1) (with suitable path of integration).
As a consequence of the relations (4.8) and (4.11), singularities of the effective

coupling and the propagators may only occur
(i) at k2=0 or /c2 = oo;

(ii) at fixed values λ = λ' where β " 1 is singular or, in case of a propagator, where
yβ'1 is singular;
(iii) along surfaces λ

exp I J
λ0

provided there is a singularity at u = μ2(λ0) for λ = λ0.
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