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Abstract. We investigate the spectrum of Schrodinger operators Hω of the type:
Hω = - Δ + Σqi(ω)f(x -xx\ + ξi(ω))(qi(ω) and ξ.(ω) independent identically
distributed random variables, ieZd). We establish a strong connection between
the spectrum of Hω and the spectra of deterministic periodic Schrodinger
operators. From this we derive a condition for the existence of "forbidden zones"
in the spectrum oΐHω. For random one- and three-dimensional Kronig-Penney
potentials the spectrum is given explicitly.

Introduction

In this paper we study the spectra of random Schrodinger operators Hω of the form:

where {xf}ίeZd is a Bravais Lattice and {gt }i6Zd and {ξf}ίeZd are independent,
identically distributed random variables. Physically speaking Hω corresponds to a
random "charge"-configuration {^(ω)}, each q.(ώ) being located at the random
position xf — ξ.(ω) and producing a potential q^)f(x — xf + ̂ (ω)). Thus Hω can be
used as the Hamiltonian of a model for a "mixed" crystal with centers of strength
q^ω) at perturbed lattice positions xi — ξ^ω) or of a model of a liquid.

Models of this kind were considered by many authors, see for example: Halperin
[10], Frisch and Lloyd [7], Luttinger [15], Borland [4], Lieb and Mattis [14] and
references therein. Random operators of a more or less different kind are studied e.g.
in Pastur [18] and [19], Kunz and Souillard [13], Fukushima, Nagai and Nakao
[8], Nakao [17] and references given there.

In [11] the present authors showed that the spectrum of a wide class of random
operators, containing the Hω given above, is a nonrandom set Σ. In the present
paper we determine the spectrum of the above operator more precisely.

In the first section we give conditions under which the operator Hω is well
defined and moreover essentially self-adjoint on C^([Rd), the infinitely differentiable
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functions with compact support. This turns out to be the case if the moments of {q{}
up to a sufficiently high order are finite and the function / is not too singular.

In Sect. 2 we investigate the relation between the spectrum of Hω and the spectra
of well ordered "charge" configurations, i.e. of Schrodinger operators of the form

HλtU= - Δ + Σλif(χ - xi + uil

where λ{ as well as wf are periodic and nonrandom. We get that the set Σ, the
spectrum of Hω9 is completely determined by the spectra of operators of the form
Hλu. Thus Σ has a band structure, in the sense that Σ = u[α ί 5 b j but the intervals
[αί? b j may overlap.

In Sect. 3 for ξt Ξ 0 we give a sufficient condition for the existence of forbidden
zones ("gaps") in Σ (Theorem 5). Under a very mild condition (Assumption A) o n /
and {q.} it is shown that (α, β) is a gap for Hω if it is a gap for all "pure" Hamiltonians
Hλ = — Δ + λΣf(x — xf), where λ runs through the (connected) component of supp
p'qo the support of the probability distribution of qo(ω). Theorem 5 can be looked
upon as a generalisation of a famous conjecture by Saxon and Hutner [21].

These authors conjectured that a common gap for two pure solids is also a gap
for an alloy of these solids, at least in a one-dimensional model with point
interactions. In the latter case the conjecture was proved by Luttinger [15], but it
was shown to be wrong for other potentials (see e.g.: Lieb and Mattis [14], Halperin
[10]).

In Sect. 4 we study three examples. First we choose / to be a square-well
potential in one dimension without overlapping of the wells. For this the existence of
infinitely many gaps is shown. The second example is a random point interaction in
one dimension, a generalisation of the model considered by Luttinger [15], the
nonrandom version of which goes back to Kronig and Penney [12]. Specifically we
give the spectrum of Hω, as in the nonrandom case. This result contains Luttinger's
result mentioned above. Our last example shows the existence of a gap for a random
point interaction in three dimensions.

Section 1

Let {<3i(ω)}ίeZd be independent, identically distributed random variables on a
probability space (Ώ,J^,P). Let {xf}ieZd be a Bravais Lattice, i.e. i->xf is a
representation of the group Zd into Ud such that the {xJ i eZd span the space Ud. By
introducing a new norm on Md, if necessary, we can assume the lattice {xJ i eZd to be
Zd. Furthermore let / be a real Lfoc([Rd)-function, for some p *> d/2 for d ^ 4, and
p = 2for d ^ 3 , such that:

X sup | /(x) |<oo (1)

for some constant Ko; where Co is the unit cube around the point x0 = 0.
Then we define the potential Vω(x) by:
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Clearly we have to put some restrictions on the random variables {qi]is-ιd m order
that Vω(x) is well defined.

Lemma 1. // the first two moments of qo(co) are finite, i.e.
£ko( ω ) l < + oo,E|g0(ω)i2 < + oo, where E denotes the expectation with respect to
the probability measure P, then £ |#/(ω)| \f(x — x f)| is a locally L2(Ud)-function with

ieZd

probability one.
The proof is omitted since it is standard. From the above Lemma we get that VJx) is
a well-defined function locally square integrable for almost all ωeΩ. Hence the
operator: Hω = — A + Vω on L2(Rd), where A denotes the Laplacian, is a densely
defined (e.g. on C^([Rd)) symmetric operator on L2(tRd) and by V. Neumann's
theorem (see e.g. Reed-Simon II [20]) has selfadjoint extensions.

Actually with mild additional assumptions on/ and on {qt} ieZd we can prove the
following result:

Theorem 1. Let the real function f(x) on Ud be as before (i.e./ satisfies assumption (1)
andfeLP(Ud)for some p > 2 for d^3 and p > dβfor d>3) and assume that E\qo\

k <
+ oo with k > pd/2{p — 2) for d ^ 3 and k > dp/(2p — d) for d>3. Then the
Hamiltonian - A -h £ q^)f(x - xt) on L2(Ud) is essentially selfadjoint on C^([Rd)

ieZd

with probability one.

Proof. For simplicity we assume the constant k0 appearing in (1) equal to 1. The idea

of the proof is to show that with probability one it is possible to split Vω into:

^ω = V{ω} + V{ω\ i n s u c r i a w a y ^ a t ^ωKχ) > ~ c(ω)x2 for some positive constant

c(ω) and V{2)eLlnΛoc(Udl i e ί \V{ω\x)\qdx<cί for any yeUd and a constant
co + y

ci = ci(ω), independent of y, for some q > d/2 if d > 3, q = 2 if d :g 3. Then the essen-
tial selfadjointness follows from the Faris-Lavine theorem (see e.g. Reed-Simon II
[20]) combined with Theorem XIII 96 of Reed-Simon IV [20].

We will treat only the case d ^ 3; the other cases, i.e. ά — 2 or d=l, can be
handled exactly in the same way.

By definition, Vω{x) can be written as:

K(x)= Σ 4j(ω)f(x-Xj)+<lnx)f(x-Xi(x))
j ψ i{χ)

= ΫM + qiix)f(x-xi(x)), (3)

where i(x) is such that xeC0 + xi(xy Vω(x) is the non-singular part of Vω(x) and by
assumption (1) is finite for almost every ωeΩ.

We will show that:

Σ\Φ)\ S U P i / ( ^ - ^ )l> inf \x\2

\j ψ i XBCQJΓX1 xeC0 + χι

for infinitely many χ\ = 0. (4)

From (4) we can conclude that:

sup I VJx)\ > inf \x\2 only for finitely many χt
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almost surely; hence, since Vω(x) is finite almost surely we can find with probability
one a positive constant C(ω) such that

Vω(x)>-C(ω)\x\2. (5)

By the Borel-Cantelli Lemma in order to prove (4) it suffices to show for a
suitable chosen M :

Σ p(Σl<7;l sup |/(x-x,)|> inf |x | 2 )<+cx); (6)
ieZd V / ^ i xeCo + Xί xeCo + xi /

\i\>M

by the Chebyshev inequality we have:

P \ Σ \ < l j \ SUP !/(*-*/)!> inf \

(7)
i n f \ x \ 2 }

\xeCo + Xi I

where k is as in the statement of the theorem.
The right hand side of (7) can be bounded from above by

_ sup \f(x — Xj)\ < + oo by assumption (1), and x 2 means inf \ x \ 2 .
jΦQ xeCo xeCo + x*

Inserting estimate (8) in (6) we get:

2 / 1 sup \f(x-xt)\> inf \x\
ieZ.d

\i\ > M

|x/r"<+oo, (9)

since k > dp/(2p — d)> d/2 in the case d > 3, and k > dp/2(p — 2) > d/2 in the case
d = 3.

We now consider the singular part of Vω(x): Vω(x) = qi(x}f(x — ^i(x))? where as
before i(x) is such that xeC0 + xi(x). Vω(x) in turn can be decomposed as follows:

Here χ( ) denotes the characteristic function on Rd.
The proof of the theorem is now complete if we are able to prove that

^f(X'Xi^x(^f(χ-χ^< -χ2) belonβs to Lkioc(^) almost surely, for
some q > d/2 for d > 3, q = 2, d = 3. For this it is sufficient to show:

f l^(ω)H/(x - Xi)\qχ(\qi\\f(x ~ Xt) | > *2)dx < M,(ω) (11)

for some q > d/2 for d > 3, g = 2 for d = 3 and some constant M^ω) independent of
ieZd with probability one. Since /eLfoc(Rd) with p > d/2 for d> 3 and p > 2 for
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d = 3, we can choose q in such a way that max (2, d/2) < q<p for d ̂  3. As before it is
enough to check that:

ί \qi\«\f(x-xi)\qx(\qi\\f(x-xi)\>x2)dx>l (12)
Co+x,

for infinitely many ieZd I = 0.

In fact if (12) is true then J | ^ H / ( x - Xi)\qχ(\qi\ \f(x - xd\ > x2)dx > 1 only

for finitely many ieZd, and since/(x)eLfoc(IRd) for d/2 < q < p in the case d > 3, and
/eL1

2

oc([R
<i) for d = 3, it is always possible to find a constant Mt(ω) such that (11) is

satisfied for any ίeZd.
Again, by the Borel-Cantelli lemma, the problem is reduced to give an

estimate of:

P( ί \qί\
q\f(x-xi)\qχ(\qi\\f(x-xi)\>x2)dx>λ (13)

\Co+Xι /

such that the sum:

Σ P( ί \qi\q\f(χ-Xi)\qx(\Qi\\f(χ-Xi)>χ2)\dχ>ί] (14)
ieZ \Co+Xi J

\i\>M0

is finite. By the Holder inequality the integral appearing in formula (13) can be

estimated from above by:

J \f(x-xiψdx\ j χ(lftll/(χ-Xi)l>χ2)<*χ

Γ lqlp

^\qi\p\ ί l/ίx-XfJI^x ί !x;" 2 p ( 1 " ί / p ) (15)
LCo+x, J

for some constant bx > 0, where we have used the fact that/eL^(C0)(see e.g. Reed-
Simon II page 30, [20]). Using now the Chebyshev inequality and estimate (15) we
obtain:

( J \qi\
q\f(x-xi)\qχ(\qi\\f(x-xi)\>x2)dx>l

Co+xι

k, I r\ — 2/c(l -q/p) (\ £Λ
\Xi\ V^^J

for some constant b2 > 0, where K is as in the statement of the theorem.
Inserting (16) in (14) we get that:

Σ p( ί iί.ι ι/1
ιeZ d \Co + Xi

\i\>M0

* Σ i
ieZd

is finite if 2fc(l — q/p) > d, i.e. if q<p — dp/2k. Since k> dp/(2p — d) for d>3,
k> dp/2(p -2)ϊovd = 3,p- dp/2k > d/2 fovd>3 and p - dp/2k >2ϊovd = 3, we
can always find a p such that: d/2 <p<p — dp/2k for d> 3 and 2 < p <p — dp/2k
for d = 3. The convergence of (14) is thus assured. Π
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Remark. The results of this section, namely Lemma 1 and Theorem 1 can be
extended to the following case:

v<Aχ)= Σ # ί ( ω ) / ( χ ~~ χΐ + ^i(ω))» (17)

where {£f}ie2d are new independent, identically distributed random variables
satisfying | ξt (ω) | < No for any ω.

Section 2

In this section we investigate the spectra of Schrodinger operators of the form Hω —
— A + Vω with Vω as in (17) with the stronger assumption that the {̂ ί (ω)}/eZd are
independent identical distributed random variables. The following theorem was
proved in Kirsch-Martinelli [11]:

For almost each ωeΩ, let Hω be a selfadjoint operator on a separable Hubert
space H, such that for each ze 1R the function ω -> (z — Hω) ~ι is weakly measurable.
Furthermore assume that there exist measure preserving transformations {Γj f 6 /

(/ an arbitrary index set), which are ergodic in the sense that every Ae 3F which is
invariant under all {T^ie7Ld has either probability one or probability zero. Suppose
furthermore that there are unitary operators. {C/Jίe/ on H such that

Then we have

Theorem 2 (Theorem 1 and 2 of [11]).
1) The spectrum σ(Hω) of Hω is a nonrandom set.
2) The pure point part, the singular continuous part and the absolutely continuous

part of σ(Hω) are nonrandom sets.
This theorem can be applied to our situation, since the {gj ίe2d (as well as the

{ζi}iezd) a s independent identically distributed random variables form a stationary,
metrically transitive random field, i.e. there are measure preserving, ergodic
transformations {T^ieΈd such that

Hence with: UJ{x):=f{x - xt) one has immediately:

HTιω =-A + vTιω=-Δ + υyjj? = t/f( - A + vju? = υjajυ?.

The measurability of (z — Hω) ~x can be obtained by Corollary 3 in [11]. There it
was proved that (z — ( — A + Vω))~ί is weakly measurable if Vas a function of ω and
x is measurable and — A + Vω is essentially selfadjoint on Co(Ud) almost surely. By
Theorem 1 we know that in our case Hω = — A + Vω is essentially selfadjoint on
C£(Md), hence Theorem 2 holds for this operators. Moreover an application of
Corollary 1 in [11] shows that the discrete part of the spectrum of Hω is almost
surely empty.

Applications of Theorem 2 to more general random operators were discussed in
[11]. In our special case however it is possible to investigate the spectrum of Hω

more precisely. In doing this the following definition is convenient.

Definition. We call a real function W on Ud an admissible potential for the operator



Schrόdinger Operators with a Random Potential 335

Hω ' = ~ Δ + Vω(Vω as defined in (17)) if W(x) = ΣcJ{x - x. + w.) with nonrandom
cteU, u^R*1 and the following conditions are satisfied:

1) c fesupp Pq., where Pq is the (common) distribution of q..
2) w esupp Pξι, where Pξ is the (common) distribution of ξ .
3) W is locally square integrable.
4) -A + Wis essentially selfadjoint on C^([Rd).

5) £ cf sup |/(χ — χt + M.)| < oo for M large enough.
\ί\^M xεC0

Remark. For almost every ωeΩ Vω is an admissible potential; conditions 3) and
5) follow from Lemma 1, condition 4) from Theorem 1.

Now we prove the following theorem which allows an investigation of the
spectrum of Hω by means of admissible potentials.

Theorem 3. IfWis an admissible potential for Hω the spectrum σ( — A + W) of — A

+ W is contained in the set Σ9 which is the spectrum of Hω almost surely. Thus

Σ= (J σ( - Δ + W)
WeA

where the union is taken over the class A of all admissible potentials.

Proof. Let A: = \ωeΩ; V V 3

J I W(x) - V(x + xo(NXω%ω)\2dx < 1/fcl.
BN J

where BN: = {x;\x\ g N}.
In Lemma 2 we will show that P(A) = 1. Take now λeσ( — A + w), then by the

Weyl criterion (see e.g. Weidmann [22] Theorem 7.22) there exists a sequence

{ψkίkeN i n ^?(^ d ) such that: ||<pj| = l (|| || denotes the L2-norm) and \\{-A
+ W)φk — λφk\\ < 1/fc. Choose Nk large enough in such a way that suppφk a BNk

and take ωeA n Ω0(Ω0 = {ωeΩ; σ(/ίω) = Σ}). By Theorem 2 and Lemma 2 we have
P ( ^ n Ω 0 ) = l . Choose xo(Nk,k

2 | | φ k | | i , ω ) , where | | φ , | | ^ = sup|φ k(x)|; by the

definition of y4 we have:

BN ^ I! Ψk II oo

If we define the new sequence of CQ -functions:

φk(x) = φk(x - χo(Nk,K
2 || φj ^,ω)),

= \\(-A + v}x + xl(Nky\\φk\\2

cM))φk-λφk\\
S\\(-A + W)φk-λφk\\ + \\{W(x)-VJx + x0(Nk,k

2\\φk\\l,ω))}φk

< 1 1_
~k+k~2 '
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Hence, again by the Weyl criterion, λeσ{ — A -f Vω) — Σ since ω belongs by

assumption also to Ωo.
It remains only to show the following lemma:

Lemma 2. Let W be an admissible potential and define

Λ = \ωeΩ\ V V 3xo(JV,/c,ω)eZd

α

keh

ί
BN

Then P{A)=L

Proof. Let ANk = \ωeΩ; 3xo(ω) j \W(x) - VJx + xo(ω))\2dx < - [. Since
I BN k)

oo

Λv+i,k ^^N.kJ if we define Ak = Q ,4N k, then P(/l k) = lim P(A N k). By definition
N = l ' N-^oo

oo

yl = Pi i f c, and since Ak + 1 a Ak we get P(^) = lim P(y4fr). Thus in order to show
fc=l k-^oo

that P(A)- 1 it suffices to show that P{ANk) = 1 for any N,keN. Clearly ANΛ is
invariant under the ergodic shift {7)} ieΣd on Ω, so that P(A MΛ) is either equal to one or
to zero. So it is enough to show that P(AN k) > 0, or P(CN k) > 0, where CNΛ c ^ N k is

t h e s e t i ω e Ω ; j |W(x) - V{x,ω)\2dx < 1/k i.
I J

Let Mγ be a positive constant large enough such that:
2

dx<l/4k.ί
This constant Mx always exists since:

c,/(x-*,

^ Σ ί
\>Mί

dx

d χ

k(N)

fc(iV) /

< y v \ct\

and this last term can be made arbitrarily small because of point (5) of the definition
of admissible potential.

Next, consider the set

/ V i
3M J Σ kiMII/ίx-Xi + Wω)! άx<τ

BN\\i\>M / ^K
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Since Vω is almost surely a locally square integrable function P(D) = 1, if we define
now the set DM by:

M J ' J
UΊ>M

then D M c DM + 1 and D = 1JDM hence P(D) = lim P(DM) which implies that there
M^oo

exists an integer M 2 such that P(DM)^^. Let now M = max {MUM2} and take

ωeDM; we can then estimate J | W(x) - Vω(x)\2dx as follows:

J
B N

Hx

^4 / Σ
BN \i\Z

+ 4 ί

ιdx

qι(ω)f(x - xt + ξ.(ω) ιdx

Σ . -f(χ-χr

2dx

cf 2dx

2 C 2 M s u p | 9 i ( ω ) - C ί |
2 (18)

where C2M is a positive constant depending only on M.
The last term of (18) can be chosen with positive probability less than l/4fc since

by assumption c esupp pq and the -̂'s are independent, and since feL2(Ud) because

feL2

oc(Ud) and furthermore/ is such that ]Γ sup|/(x — xt)\ < oo.
| i | > χ o x e C o

For the estimate of the first term of (18) we need the following remark:
Since the map x-+Ux(Uxf(z) =f{z + x)) is strongly continuous from Ud into the
bounded operators on L2((Rd), for any ε, there exists a δ(ε,x,f) such that:

BN

for any y such that \x — y\< δ(ε9x,f). Thus in the first term of (18) if we make
\ui — ξi(ω)\ small enough, which again is possible with positive probability since

and the ξ. are independent (and also independent of the qt), we have:

Hence with positive probability we have that:

ί \W{x)-Vω{x)\2dx<\
BN

i.e. P(CN9k) > 0 hence P(ANk) - 1. D
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Remarks.

1) It is not difficult to give an alternative proof of the fact that σ(HJ is a
nonrandom set by using the above lemma. In particular one can show that for each
ωeA σ(HJ = Σ.

2) Each λeΣ can be obtained by the construction in the theorem. On the other
hand we can ensure that xo(iV,/e,ω) goes to infinity as N goes to infinity. Thus the
sequence {ψk} can be chosen as weakly convergent to zero and moreover
orthogonal. Again by the Weyl criterion this means that each spectral value λeΣ
belongs to the essential spectrum of Hω.

By the previous theorem the spectrum of Hω looks very large because the class of
admissible potentials is very large. But the following theorem tells us that for
knowing the spectrum Σ it is enough to know the spectra of all periodic admissible
potentials.

Denote by P the class of all admissible potentials which are also periodic in the
sense that WeP if there exists a basis {αjf=1 of !Rd such that

W(x + α.) - W{x) V xeUd.

Theorem 4. In the hypotheses of Theorem 3 Σ = [j σ( - A + W)
WeP

Proof. It will be enough to show the following: if Wis an admissible potential, We A,

then there exists a sequence of periodic admissible potentials WneP such that — A

+ Wn -• — A -f Win the sense of strong resolvent convergence. From this it follows

that \Jσ{^Σ+Wn) z>σ(-Δ + W) (see e.g. Reed-Simon I, VIII 2h [20]). But since
neM

the union of the spectra of all the admissible potentials contains Σ we have

(J σ( -A + W) => Σ; but from Theorem 3 we know that \J σ( - A + W) c Σ so
WeP WeP

that Σ= [j σ(~A + W).
WeP

We now prove that any operator H = — A + W9 We A, is the strong resolvent
limit of operators H Λ, = - A + WN, WNeP for any NeN. Since by definition C£(Md)
is a core for — A -f- W for any We A, it suffices to show that there are periodic
potentials WneP such that - A + Wn converges strongly on C^iU0) to - Δ + W,
We A. For this it is enough to show that for any compact set K and any ε > 0 there
exists a periodic admissible potential W such that:

Γ U/2
x < β . (19)

Since any compact set K c Ud can be covered by a finite number of unit cubes, it is
enough to check (19) with K = Co. Let W(x) = ΣcJ(x — x + uf) be given and define

c W ™ ^ for |i|<M1

ύi^ύi + Mχk'^ui forl^Mi

where M t is a positive constant such that
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\i\
\φup\f(x-xι

(20)

This constant always exists since PFis admissible. Without loss of generality we can
assume M 2 greater than JV0 + 1, where AΓ0 is such that |ξ.| < No almost surely (see
Remark after Lemma 1). Clearly the potential W = ΣcJ(x — xf + it.) is periodic of
period M1. Furthermore since |ίϊ.| is uniformly bounded by JV0 (see Remark after
Lemma 1) by assumption (1) on /, it follows that there exists a constant M 2 such
that:

sup \Ci\ Σ sup |/(x-x f ) |<e/3.
\i\ S Mi |t| > M 2 * e C 0

Define

and let W = ΣcJ(x -xt + Mf). Then

(Cf/(X

for \i\<Mx ksZd,

for \i\<M< k'eZά

^ sup Ut) - CJ(X -

^ Σ

Σ

K l sup | / ( x - χ .

Remark 1. From the above theorem it follows that in principle the spectrum of the
random operator Hω has band structure, i.e. the set Σ is a union of closed intervals
with possibly gaps between them.

Remark 2. The spectrum of a possible pure crystal (i.e. q. = q9 ξ. = ξ for any ieZd) is
always contained in the spectrum of the random mixture. For example if Oesupp Pqo,
then the set [0, + oo [ cz Σ.

Remark 3. The spectrum Σ depends only on the support of the distribution Pqo of
each qt. For a similar result in the discrete case (when the Hubert space is l2(Zd)) see
Kunz-Souillard [13].

Remark 4. Actually the random variables q. and ξ. need not to be independent; it is
enough that they form a stationary metrically transitive random field such that the
support of the conditional distribution P{qo\qti φ 0) of q0 given q. (i ψ 0) is equal to
the support of P(q0) and the same for the ξt.

Section 3

In this section we give a simple condition for the existence of gaps
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in the spectrum of the random operator Hω = — A + Σqi{ω)f(x — x, )
on L2([Rd), which is useful when dealing with concrete examples. Let W(x) =
ΣλJ{x —x.) be a periodic admissible potential and let {αjf=1 be a basic of the
vector space Ud such that

W(x + at) = W(x)

Clearly the Hamiltonian Hw = — Δ + w is invariant under the group A = {na{,
neZd}, so that it can be decomposed as follows:

where A is the dual group of A and B is the Brillouin zone (see e.g. Reed-Simon IV
[20] and Avron-Grossmann-Rodriguez [3]. HJk) are called the reduced Block
Hamiltonians; from the above integral decomposition it follows that the spectrum
of Hw is the union of the spectra Hw(k). Furthermore, since W(x)eLfoc(Md), it follows
that for d :§ 3 the reduced Hamiltonians have compact resolvent and thus their
spectrum consists only of isolated eigenvalues En(W,k), labeled by the discrete
parameter neN, of finite multiplicity (see Avron-Grossmann-Rodriguez, Th. 3, 1
[3])

Assumption A. The eigenvalues En{W,k) of the reduced Hamiltonians Hw(k),
W= ΣλJ(x — xf), are such that for any neN and any keB there exist two numbers
lin>k\ λ^k\ λmin Sλ<" k) ^λa λ(n'k) S λmax, where Amin(Amax) is the inf (sup) of the
set supp Pqo, Pqo being the distribution function of each of the random variables
Qi* o r ^min = — oo (λmax = + oo) if the inf (sup) of supp Pqo does not exist, such that:

En(W, k) % En(W, k) ̂  En{W9 k\ or

with W(x) = λ(n'k)Σf(x - χ.)9 W{x) = λ(n>k)Σf(x - x ).

Remark. By the mini-max principle Assumption A holds if for example/(x) has a
definite sign.

Theorem 5. If Assumption A is satisfied and the open interval (α, β) does not belong to
the spectrum of the periodic Hamiltonian — A + λΣf(x — x^for any λmin ^ λ ̂  Λmax>
then (α, j8) f]Σ = 0 , where Σ is the spectrum of Hω= — A + Σqι{ω)f(x — xf) almost
surely.

Proof. By Theorem 4 it is enough to show that (α, β) f]σ( — A + W) = D = 0 for any
periodic admissible potential W. Assume D φ 0 and let EOGD. By the integral
decomposition of — A + Wit follows that Eo = Eno(W, k0)for some noeN and koeB.
By assumption A we have

for some W{x) = l("° '<o) X f(x - xt), and
ίeϊ'i

W(x) = λ{n° ko) X f{x - x;),
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with λ{"oΛo) ^ X("°'ko) or vice versa. Since Eno(λΣf(x - xt\ k0) is a continuous function
of A, (see e.g. Reed-Simon IV [20]) there exists a λ{noM) ^λ^λ{noM) (or λ(n°>ko) ^ X
^ pΌ,*o)) such that

J5Πo( W, fc0) = E J t y fc0) when <V(x) = X £ /(x - x,).
ieZd

But this means that £ 0 = jEno(W^fe0)£Wo(flKfe0) belongs to the spectrum of
— A + λΣ/(x — xf) in contradiction with the hypothesis. •

Corollary 1. If the supp P^o is connected and if Assumption A holds, then the open
interval (α, β) is a gap for the random Hamiltonίan Hω if and only if it is a gap for all the
periodic Hamiltonians Hλ= -A + λΣf(x - x() λesuppPqQ.

Proof. It is a direct consequence of the previous theorem and of Theorem 4. D
It follows from the above Corollary that, in some case, the study of the (possible)

gaps in the spectrum Σ of Hω is reduced to the study of the gaps of the "pure crystals"

— A + £ / ( x — Xi), where λ runs in the supp Pqo. In the examples we shall consider it

will turn out to be sufficient to study the gaps of the "pure crystals" corresponding to

the values λ = Amax and λ = λmin.

Section 4

In this last section we give first two one-dimensional examples of random operators
of the Kronig-Penney type for which infinitely many gaps occur, and then we show
that also for the random version of the periodic point interaction model in three
dimensions treated by Grossmann, H^egh-Krohn, Mebkhout [9] still a gap is
present in the nonrandom spectrum Σ. While the first example is only an application
of the general result of Sects. 1-3, the other two examples require new proofs of results
similar to that of the previous sections, since the above theorems cannot be applied
directly because of the strong singularities of these Hamiltonians.

1) The Kronig-Penney model with a step potential in one dimension (see
Kronig-Penney [12]).

Let/(x) = χ[0 α](x), 0 < a < Xι{χA{ ) is the characteristic function of the set /4c[R)
and let V(x) = Σf(x - xf) when the lattice {Xi}ieZ is assumed for simplicity to be Z.
Furthermore let { g j ^ be independent, identically distributed random variables
such that:

0 < M1 ^ q^ω) ^ M 2 < oo VωeΩ,VieZ.

and define VJx) = £ f̂, (ω)/(x - xf).

Prepositional ί. Denote by Σ the almost surely constant spectrum of Hω =
-d2/dx2 + Vω. Thenjor each of the points En = (nπ/(x1 - a))2, En< Mother e exists
a neighborhood An such that An f] Σ = 0 .

Proof In Flugge [6] it is shown that for any 0 < λ < + oo the Hamiltonian
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— d2/dx2 + λ Σ f(x — x.) has gaps Aλ

n around the points En < λ. If we define Λn =
ieZ

f] Aλ

n we have that An Φ 0 and that An is a common gap for all the

Hamiltonian - d2/dx2 + λ Σ f(x - xt ) with Mx ^ λ ^ M 2 . Furthermore since/(x)

has a definite sign (f(x) ^ 0) and /(x) ^ 1 Assumption A holds so that we get the
statement by Theorem 5.

Remark. Let Aλ

n ~ (α J, β*) be the gap around the point (nπ/(xt — a))2 for the periodic

Hamiltonian - d2/dx2 + λ Σ /(x - x^Mj ^ λ ^ M 2 . By the general theory of one-
ieZ

dimensional periodic Schrόdinger operators (see, e.g. Reed-Simon IV [20]), we

know that an and βn are then nth eigenvalues of - d2/dx2 + λ]£/(x - xt) on
Z

^([OXi], dx) with respectively periodic and antiperiodic boundary conditions if n is
even and vice versa if n is odd. Hence, by the mini-max principle α^, βλ

n are monotone
increasing functions of λ, so that the gap An for the random operator — d2/dx2

+ Iqt{d)f(x - xt) is given by: An = (αf2, jjf1).

2) We now pass to consider a random Kronig-Penney model with point in-
teractions formally defined by:

Hω=~-ΓΊ+ Σfli(ω)<5(x-Xi), (21)
ax

where {#i(ω)}ίeZ are independent identically distributed random variables satisfying
0 < cγ ^ ^(ω) ^ c 2 < + oo for any ieZ and ωeΏ. The Hamiltonian Hω can be well
defined as a sum of quadratic forms as follows .-Denote by Q = Q( — d2/dx2) the form
domain of the operator — d2/dx2 on L2(U) and by Qo the function in Q with compact
support. We define on Qo the quadratic form:

First we show: For any a >0, there is a 6e(R such that:

for any ψεQ0 and ωeί2. In order to prove this, take a sequence {^ J f e Z in CQ (M) such
that:

1) supp \l/i^xi-uxi + ίL,

3) χ

A sequence satisfying 2) and 3) is called a "local partition" in Morgan [16].
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) (23)

(see e.g. Reed-Simon II, X. 2[20]). By repeating now word by word the proof of
Theorem 2.2 in Morgan [16] we get from the local estimate (23) the global one (22).

Now we show that βω can be defined on the whole space Q{ — d2/dx2). Let φeQ,
choose φneQ0, φn -> φ in L2((R), φ'n -> φ' in L2([R), which is possible since Qo is dense
in Q with respect to the norm (|| φ'\\2 + || φ || 2 ) 1 / 2 moreover we can choose φn in such
a way that φn(x) = φ{x) for |x| ^ n. Now:

Σ qi(ω)\ψ{xd\2 = Σ qi(ω)\φn(xi)\2SC2ΣΨn(^i)\2

The last expression is bounded independent of n, since φ'n and φn are convergent,
hence the norms are bounded. Thus βω(., ) is well defined on Q( — d2/dx2).

Furthermore, by continuity inequality (22) holds for all φeQ. Hence we can
apply the KLMN (Kata, Lax, Milgram, Nelson)-Theorem (see e.g. Reed-Simon II,
X. 2 [20]) to get a well defined, unique selfadjoint operator Hω on L2(tR) associated
with the closed quadratic form γω(φ,φ): = (φ',φf) -f βω(φ,φ) on Q( — d2/dx2). It
is this operator we mean by the formal expression in (21).

In [11] we showed that the spectrum of H is a nonrandom set. We call this set Σ.
In order to investigate Σ we have to prove analogs of Theorems 3 and 4 for the (very
singular) Hamiltonian Hω. Although it is possible to give proofs similar to those of
Sect. 2, since Hω can be shown to be essentially selfadjoint on a set of functions with
compact supports, we prefer to give a more direct proof based on the explicit
expression of the resolvent of Hω. This method has the advantage that it can be
extended immediately to the three-dimensional case (see the next example) and
moreover the case of continuously distributed random variables {<?f}ieZ causes no
further difficulty as it does for the previous method.

We call, as in Sect. 2, the formal expression W— Σλiδ(x — xt) an admissible
potential if /l-esuppP9o for all ieZ. In this case we also call the sequence {AJ/6Z

admissible.
Now we give explicitly the resolvent of the operator

HM = ~Ύ~2 + Σ λA--χi) k bounded.ax ieZ

Faris [5] (in §5) computes the resolvent of the operator Hλo = — —-j -f λoδ{.).
(XX

The resolvent is for Eφσί -
\

2X/E

dx
: (H

λo

= J GE(x - y)φ{y)dy

where GE(x) = ~E^ is the free Green's function in one dimension
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and λ / — E is chosen such that Re( ̂ J — E) > 0. In the case of finitely many <5's we get
a similar expression:

-dχ2 + ip_^χ χt)

- Σ (Tφ-% \GE(y -Xj)ψ(y)dyGE(x -xt),
i,j — — n

where T{

E

] is the n x rc-matrix given by (Tψ)^ = δi]/λi + GE{xt - x̂  ). This expression
as well as its calculation is in complete analogy with those given in Grossmann,
H0egh-Krohn and Mebkhout [9] where a three-dimensional point interaction is
considered.

d n

Using Theorem 7-10 in Faris [5] we get easily that — ~r^+ Σ ^ί^( ~xi)

ή2 + °°

converges in the strong resolvent sense to H{λι} = — -τ~ι + Σ ^( ~ xt)as n β o e s

ax ΐ= — oo

to infinity.
Hence the resolvent of H{λι} is given by:

j ^ x - X i ) , (24)

where T£ is the bounded operator on 12(Z) given by: (T£) f j = b{^λ{ + GE(xί — x}).
Indeed, that (24) is the correct limit for the weak resolvent convergence is easily
obtained by computation observing that ψ. = §GE{x — Xj)φ(x)dx is in /2(Z) that TE

and T ( P } can be looked upon as bounded operators in /2(Z) and T{

E

)~1^TE

1

d2

weakly in P(Z) as n -> oo. But since we know that — -r-j + Σ λt( — xt) converges
ax i=-n

in the strong resolvent sense, the operator in (24) is also the strong limit.

Proposition 2 Let W be an admissible potential, then σ{ — A + W) c Σ.

Proof. The proof is based on the following lemma:

Lemma 3. Let Im E φθ and let W= {A£}ίeZ be an admissible potential Then there
exists a sequence of ωneΩl7 when Ω± — {ωeΩ; σ(Hω) — Σ}, such that the operator
TE(ωn) on /2(Z) with matrix elements

—7—τδkj + GE(xk - Xj)

converges in the strong resolvent sense to the operator TE given by

γbkj + GE(xk-Xj).
Ak

Proof. Define ΩII = { ω e Ω ; | g ί ( ω ) - λ ί | < 1/n V | i | ^ n } .
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Since P(Ωi) = 1 and P(Ωn) > 0, Ωλ f]Ωn φ 0.
Hence we can pick ωneΩnf]Ωί and compute for φel2 0 W =
only for finitely many ieZ} the quantity; \\(TE(ωn) - TE)φ\\h(Z).
We have:

Σ
keZ

Σ
1 1

\—Γτδkj + GE(xh - Xj) I - ( γδkj + GE(xk - xp

keZ qk(ωn)

By definition of ωn and the fact that ^e/2,(Z) the last expression goes to zero as
n —• oo. Since TE(ωn) and Γ£ are bounded and symmetric, it follows that TE(ωn) -> T£

in the strong resolvent sense.
Now we give the proof of the proposition:

Proof of the Proposition. First we note that the p-space version of the resolvent of
H{λι} is given by:

Take now ψeC£(R), then φ(j): = -~\-~^~e'ιqxjdq is an element of Z2(Z). By the
2πuq — E

previous lemma: (TE

 1 — TE{ωn)'λ )φ = : $ π tends to zero in Z2(Z)-norm. The Fourier

transform φn(q)=(l/2π)Σ\j/n(j)eixJq of φn hence tends to zero as a function in
L2(0,2π). But

,2"-y =

1

p2-E L2(K)

we have proved that Hω(n)^>Hω in the strong resolvent sense. From this we get

σ(Hω)cz [Jσ{Hω{n))=Σ since ω(n)eΩ1 for all neN.

Call now W = Σ)H5{. — xt) an admissible periodic potential iϊλi+M = λt for some
MeZ, Aί GSuppPήo. As in Sect. 2 we denote by P the class of periodic admissible
potentials.

Proposition 3.

Proo/. As before we need a preparatory lemma:

Lemma 4. Lei W= {λt }ί6Z έ?e an admissible periodic potential. Then there exist
Wn = {λ^}}keZeP such that TE(Wn)-+ TE(W) in the strong resolvent sense in Z2(Z),
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where TE(Wn) and TE(W) have respectively matrix elements:

J(n)δkj + GE (xk - Xj) and — δkj + GE (xk - Xj).

Proof. Choose λ[n) = λk if |fe| ^ n and λk%2n + 1 = λ{

k

n) \/neZ.

Then, as in Lemma 3 it can be shown immediately that:

From the above lemma, precisely as in the previous proposition, we get that

HWn^Hw in the strong resolvent sense. This implies that σ(Hw) c \Jσ(HWn),

i.e. Σ a (J σ(Hω); and by the previous proposition we get:
PJ

weP

Σ= \J σ(HJ. D
WeP

Now we turn to the determination of the spectrum of the operator H. As it was
shown by Kronig and Penney [12] the spectrum of the operator Hλ formally defined
by

d2 • • 2

ttX ί = — GO

where the fn are continuous monotone increasing functions of λ ^ 0 and fn(λ) >
((n — l)π)2 for λ > 0 (see also Flϋgge [6]). It is a special property of this operator that
σ(Hλ) a σ(Hμ) whenever μ<Lλ.

The reduced Bloch Hamiltonίans of H{λι] = - d2/dx2 + Σλtδ{x - xt)9 where
λi + N = λ. can be defined using the KLMN-theorem as the unique selfadjoint
operator associated to the closed form:

N-ί

on the form domain Q({ - d2/dx2)k) of the Laplacian on L2 - 1/2, (N - 1/2) with
boundary conditions

ψ(-±) = eikiN)φ(N - {) and φ'( -±) = eίkNφ'(W- \).

These reduced Hamiltonians have discrete eigenvalues (see e.g. Avron, Grossman
and Rodriguez [3]) and satisfies Assumption A of Sect. 3, where (i) can be checked by
the mini-max-principle and (ii) follows from the computation by Kronig and Penney
[12]. By repeating word by word the proof of Theorem 5 we can show that Theorem
5 holds with the Hamiltonian — Δ + λΣf(x — xt) replaced by the Hamiltonian
-d2/dx2 + λΣδ(x-xi). Hence we conclude that ] ( ( n - l)π)2, fn(λmin)[_ where
/ m i n = inf {xesuppP^} > 0 is a gap for the spectrum Σ of the random operator

d2

Hω'-= --j^ + Σq^δix-Xi).

But from Proposition 2 we know that σ(H2 ) c Σ. Hence we have shown:
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Proposition 4. Let {^(ω) } ieZ be independent distributed random variables satisfying 0
< cί rg ^-(ω) ̂  c2 and let Hω be formally given by Hω:= — d2/dx2 -f Σqi(ω)δ(x — xt),
the exact meaning of which is given above.
Then the spectrum Σ of almost all Hω is given by

where Hqmiα is formally ~ d2/dx2 + qminΣδ(x - xf) and qmin = inf {q qesupp Pqo}.

3) Random point interactions in three dimensions. As the last example we treat the
random version of the point interactions model in three dimensions extensively
investigated by Grossman, H0egh-Krohn and Mebkhout [9]. For other approaches
to such operators see Albeverio and H0egh-Krohn [2] and Albeverio, Fenstad and
H0egh-Krohn [1]. Let {<7f(ω)}ί623 be independent identically distributed random
variables such that |^(ω)| < MVzeZ3 and ΫωeΩjor some positive constant M, and
let Hω be the selfadjoint operator on L2(U3) whose resolvent is given by:

-EΓ1 Σ
kJZ3

eHpk-qj)
( 2 5 )

where Im EφO, GE(k-j) = (l/4π)ei^k~j\/\k-Jl if kψj and GE(0) = 0 and
l(qk{ω) - iy/E/4π)δkj - GE(k - j ) ] ^ 1 is the inverse as an operator on /2(^3) The
sum in (25) is absolutely convergent in the sense that if we integrate with respect to
L2(U3) functions of p and q respectively, then the sum is absolutely convergent. We
remark that, as in the one-dimensional case, the operator on /2(Z3) given by qk(ω)δkj

- GE(k —j) is a bounded operator if Im £ ^ 0.

In our previous paper [11] we proved that the spectrum of H is almost surely a
nonrandom set Σ of the real line. As in the one-dimensional case, in order to study
the set Σ a R, we need the analogs of Proposition 2 and 3 about the admissible
potentials. We will call W = {Λ,f}ίeZ3 an admissible potential if ^esupp P g oVieZ 3

(Pqo is the probability distribution of qo{ω)\ and we will denote by Hω the selfadjoint
operator on L2(U3) whose resolvent is given by (25) with qk(ω) replaced by λk.

Proposition 5. Let W be an admissible potential; then σ(Hw)cΣ.
The proof is omitted since it is identical to that of Proposition 2.

As before we will call W = {λk}keZ3 a periodic admissible potential if there exists
L e Z 3 such that λk+L = lk VfceZ3, and we will denote by P the class of the periodic
admissible potentials. By repeating the proof of Proposition 3 we get:

Proposition 6.

'= [)σ(HJ.
weP

The following two results about the periodic point interactions (see [9], Th 5.4, 5.1)
will turn out to be useful:
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(i) Denote by Hλ the periodic Hamiltonian corresponding to the resolvent (25)
with qk(ω) replaced by λVkeZ3.
If λ < λ0 for some constant λ0, then the spectrum of Hλσ(Hλ) is given by:

with E\ < 0 and EQ, E\ continuous monotone increasing functions of λ.
(ii) Let A = {nιa1 + n2a2 + n3a3;(nι,n2,n3)Z3} where a1,a2,a3 are three inde-

pendent vectors in Z 3 ; without loss of generality we can assume aί,a2,a3 to be
orthonormal, and let X be a finite subset of Z 3. Let λ be a real function on Y = A + X
invariant under A, i.e. λa+x = λχ9 xeX, aeA. Then the Hamiltonian Hλ whose
resolvent is given by (31) with qk(ω) replaced by λkkeZ3 is invariant under
translation in A so that:

Hλ = ~ΛHλ(k)dk,
\ΰ\ B

where B = {sλbλ +s2b2 +53fc3, - 1/2 < s. ^ 1/2}, (fti,βj) = 2πδ i j, is the Brillouin
zone. The reduced Hamiltonians Hλ(fe) are self adjoint operators on 12(Γ)9Γ = {n1b1

+ n 2 ^ 2 + rc363,(ftl5ft2,ft3)eZ3} is the orthogonal lattice, whose resolvent is given by :

-i(γ' +k)y

y,yfeΓ,keB, where

if x — >; ̂  0 and

i

and [ ] " ί is the inverse of the n x n matrix

,n= \X\.

Furthermore Hλ(k) has discrete spectrum with eigenvalues En(k,λ)\ the negative
eigenvalues £n(fe, A) are the poles of [Λ.x<5xy — gE(x — y, fe)] " x . F r o m this we get easily
the following:

Proposition 7. Let ίfte Hamiltonian Hλ be as above (point (ii)) and suppose the periodic
function λon Y = A + X cZ3 be such that: - oo < λmxn ^λx^ λmax ^ λ0VxeX (for
the definition ofλ0, see point (i)). Thenfor any Eeσ(Hλ), E < 0, f/iere exιsί,s afunction I
on Z 3 , Xj = XVjeZ3 such that: Eeσ(Hλ).

Proof. By the previous result (point (ii)) we know that £ is a pole of [λxδxy — gE

(x -y,k)\ x,yeX, i.e. there is one of the eigenvalues ε;

m(E,k) of the nxn matrix
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\_λxδxy — gE(x — y, /c)] which is zero. Let us denote it by ελ

mi (E, kx). Since by the mini-
max-principle ε^(E,k) are monotone increasing functions of {λx}xeX, in the sense
that if μ Ξ> λ pointwise in X, then ε*(E,k) ^ εn(E,k), we get:

and thus, by the continuity, there exists a λ(m19kί9E) such that ε^ 2 (£, fej) = 0, where
ε*n(E,k) is the mί/j eigenvalue of the matrix [A(5AV - gF(x — y,k)~\. This means that
Eeσ(Hλ(k2)\ i.e. Eeσ(Hλ).

We are now in a position to prove the main result.

Proposition 8. Let the random variables {qi(co)}iel3 be such that supp
P

q o <= [tfmin^max

£j m a x is ί/î  wpper erf̂ fe of ί/ie negative band in the spectrum of
Furthermore if qmin{qmax) is the inf (sup) of supp Pqo and if

Proof. From Proposition 6 we know that Σ = (J σ(/ί H ) , and from Proposition 7 we

have that any Eeσ{Hw),E < 0, I ^ G P belongs to the spectrum of some HI{E) hence
Eq

o

mm :g E ^ £jm i n since both £^ and £f are monotone increasing functions of λ.
From this it follows that

(E^max ,O)nσ(Hw) = 0 VWeP,

and thus (Ef»* , 0 ) n I = 0 .
If now cjmin(gmax) is the inf (sup) of suppP g o,
then σ(Hq ) cz Σ and the same for σ{Hqmaχ).

Since σ(//"[in )u σ(Hqnaχ) = [£gmin

 9Eγ™ ] u [0, oo [,
by the previous discussion we get that

hence Σ c σ(Hqmin )^σ(Hqmaχ) and by Proposition 5 we get

aJ •
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