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Nonexistence of Very Negative Ions*
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Abstract. In this paper we develop the geometric methods in the spectral
theory of many-body Schrodinger operators. We give different simplified
proofs of many of the basic results of the theory. We prove that there are no
very negative ions in Quantum Mechanics.

0. Introduction

In this paper we develop geometric methods for studying the spectral properties of
the many-body Schrodinger operators. The adjective "geometric" refers to the
basic role played by the analysis of the space configurations of a many-body
system in question. To translate this geometry into the quantum-mechanical
language, one uses partitions of unity on the state space, L2 (configuration space).
This approach commands a remarkable flexibility. As with trial functions in the
variational principle, one can vary and optimize the partitions of unity depending
on a problem at hand. This will be demonstrated in the present paper. Moreover,
the method is naturally generalizable to operators on manifolds.

The basic property of the Schrodinger operators which permits such an
analysis is their locality. Nevertheless, it is remarkable that basically local methods
give detailed information about the spectra which are the global characteristics of
operators.

The geometric methods in the many-body QM problem first appeared in the
pioneering work of Zhislin [Zl] . In the West the geometric ideas come from the
works of R. Haag and D. Ruelle on the scattering in the field theory and of Lax-
Phillips on the acoustic scattering. The term "geometric methods" was dubbed by
B. Simon [Siml]. The importance of partitions of unity in the QM many-body
problem was realized in the classical works of Enss [E] and Simon [Siml] (see
also Deift and Simon [DS]). (For more complete references and detailed
comments see [RS3].)
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In this paper we discuss the following topics:
Section 2: Hunziker-van Winter-Zhislin (HVZ) theorem (warm up).
Section 3: Exponential fall-off of eigenfunctions.
Section 4: Number of bound states. Short-range systems and negative ions.
Section 5: Nonexistence of very negative ions.
In Sects. 2-4 we present simplified proofs of known results, while the result of

Sect. 5 is new. Note that Ruskai [R] has earlier, and independently, obtained a
similar but slightly weaker result (namely that the ground state energy of a
negative ion is bounded from below by a constant1). All the neccessary definitions
are given in Sect. 1 and some of the technical results are carried out into the
appendices. Discussions of related results and extensions are presented under the
title "Remarks" at the end of the paper. Finally we admit that in estimation we
always favored short cuts whatever the price. Probably many of the estimates we
use can be improved to give physically interesting results. An announcement of
this paper appears in [S3].

1. Hamiltonians

The configuration space of an Λf-body system in 1RV with masses m l 5 . . . , mN in the
center-of-mass frame is the hyperplane X={xeW^\Σmixi = ̂ }. We equip X with
the inner product [SS] (x,y} = 2Σmixiyi. We assume v^2.

The potentials FJ:IRV—>1R are supposed to be Laplacian-compact, i.e. compact
as multiplication operators from the Sobolev space H2(]ίC) to L2(RV). By the same
letter Vι we denote also the multiplication operator by V^x1) on L2(X). Here

The Schrδdinger operator for an iV-body system in question in the center-of-
mass frame is

H=-Δ+ΣVι on L2(X),

where Δ is the Laplacian on X.
The partitions a={Ci} of the set {1, ...,JV} are collections of nonintersecting

subsets Q, called below the clusters, of which the union is entire {1, ...,]V}.
With each a we associate the intercluster interaction / α = £ Vt, truncated

Hamiltonian Ha — H — Ia and intercluster distance |x | α = min|xz |. Here lifea sig-

nifies that the indices of / belong to different clusters of a.

A partition of unity on L2(X) is a collection {X.} of (positive) C2-functions such
that ΣXf = l. (Note the difference with the standard definition.)

A localization formula (implicity [C, I, K, M, MS]). Let {X.} be a partition of
unity on L2(X). Then

H = ΣXiHXi-Σ\VXi\
2. (1.1)

Proof In the identity H = ΣX2H commute Xt one step to the right and use
ΣXyXt = 0 and Σ\VXt\

2 + ΣXiAXi = 0 to transform ΣXt[Xi9 H]. D

The local partition a(x) is defined by putting i andj into the same cluster of a(x)
iff x, = x,.

1 Ruskai proved also nonexistence of very negative ions with the electrons replaced by bosons
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2. HVZ Theorem, Difficult Direction

The HVZ theorem states ([H, VW, Zl]) that σess(H) = {Jσ(Ha). The inclusion
(Jσ(i/α)Cσess(iJ), called normally the easy direction, is proven by an explicit
construction of an approximate eigenfunction for each λe[jσ(Ha) and applying
WeyΓs criterion [RSI]. We prove here the inclusion

called the difficult direction.
First, we introduce.
A Ruelle-Sίmon partition of unity {Ja}, a runs through all and only two-cluster

partitions, is defined by suppJα = {xeX||x| f l>d|x|} for some number d depending
only on N and such that the regions on the right hand side cover X. Such d exist by
the Ruelle-Simon lemma ([Siml]). This lemma and a standard construction (e.g.
like the one used in the appendix) imply the existence of {Ja}.

In this paper we do not use directly the definition of {Ja}. Instead we use

The main property of {Ja} ([Siml, RS3]):

\VJa\
n and 7αJ", n>0, are zl-compact (in fact, they decay inX as |x|~n and the

worst potential in 7α, respectively).
The localization formula with {Ja} reads

H = Σ(JaHJa-\VJf).

Proof Since Σ(IaJ
2-\VJa\

2) is zi-compact, Weyl's theorem [RS3] yields
σ e β s(#) = σ ess(^«# Λ ) Furthermore, ΣJaHa Ja ^ min(inf JJJ. Hence
σ(ΣJaHaJa)c[jσ(Ha) (remember that the spectra of the Ha fill entire semiaxes
since Ha are translationary invariant). Both relations give (2.1). •

3. Exponential Fall-Off of Eigenfunctions

Theorem [DHSV]. Let ψ be an eigenfunction of H corresponding to an isolated
eigenvalue E. Then

efψeL2(X) as long as Vα,\Vf\2<mϊHa — E in a vicinity of {xeX\a(x) = a}.

Here we need another partition of unity.
A partition of unity {Xa}, a runs through all partitions, is defined with respect

to the subspaces ([SS, DHSV, A])5 {xeX\a(x) = a}Va. Xa with two-cluster a live in
a neighborhood of {xeX\a(x) = a} and so on.

Proof By virtue of the Combes-Thomas argument (in the DHSV-form) (see
[DHSV, CT, RS3] and Appendix 1) it suffices to show that

Inf Reσess(H(iλf)) >E for all 0 ̂  λ ^ 1

as long as / is restricted as in the theorem. Here H(f) = (—iV— Vf)2 + ΣVι. By the
abstract inequality (see Appendix 2, cf. [A]),

inf Re σe s s(^) ^ inf σess(Re A\ where Re A = \(A + A*),
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we find that inϊ Re σess(H (if)) ^ inϊ σ QSS(H - \Vf\2). Applying the proof of Sect. 2
with {Ja} replaced by {Xa} to H-\Vf\2 we arrive at σess(H-\Vf\2)
c{Jσ(Ha-\Vf\2X2). Together with the previous inequality this gives
infReσ e s s(iί(i/))^min inϊ(Ha — \Vf\2X2) which implies the desired inequality. •

4. Finiteness of the Number of Bound States

Theorem 4.1. (Zhislin et al.) The number of bound states of N-body short-range
(more exactly VιeLp(W), p = v/2) systems whose bottoms of continuous spectra are
defined only by two-cluster breakups (i.Q. mϊHa>mϊσess(H) if a has more than two
clusters) is finite.

Theorem 4.2. [Yafaev (3 particles), Zhislin, Zhislin-Vugalter]. Negative ions can
have only a finite number of bound states.

What makes the last theorem true is the QM Newton screening (by N— 1
electrons, in the ground state, of the nucleus of charge Z^N— 1 from the other
electron). If the potentials are changed in such a way that the ground states of the
(N— l)-electron system have different parities or do not have definite parities at all
[which might happen if there is an additional ("accidental") degeneracy], then the
effective potential between this system and the other electron has a dipole leading
term (|x|~2 at infinity). This term when sufficiently large might lead to the infinite
number of bound states for H.

Now we explain the main ideas of the proof of the theorems. First we transform
H using the localization formula with the partition of unity {Xa} defined in Sect. 3:

H = Σ(XaHXa-\VXa\
2)

= Σ(XaKaXa-\VXf), (4.1)

where Ka = Ha + IaXa and Xa=l on suppXfl. Here we have used that XaXa =Xa>
This step is where the geometric methods enter changing radically the problem:
IaXa behaves as a multiparticle potential, namely, it vanishes in all directions,
provided we choose suppX f lC{xeX||x|α>d|x|}.

Next we note that the operators Ka with a such that inίHa>Σ, where
Σ=inϊσess(H), contribute only a finite number of eigenvalues <Σ. For the
operators Ka with a such that inΐHa = Σ we use the Combes-Simon inequality
A^PAP-δ~1PAQAP + Q(A-δ)Q, δ>0, to decouple the part along PaL

2(X)
from the part along QaL

2(X). Here Pa= [projection on the eigenspace of Ha

corresponding to inf#α = inf(i7fl)](x)i and Qa = l — Pa with Ha the operator
obtained from Ha after removal of the center-of-mass motion of the clusters in a.
The resulting operators on QaL

2(X) have inf (essential spectrum) >Σ, so they
contribute again only finite numbers of eigenvalues <Σ. The operators on
PaL

2(X) are one-particle Schrodinger operators with the two-cluster effective
potentials. Finally one takes care of the error term Σ\VXa\

2 using the fact that it
lives in the region of X where the system in question splits into three or more
clusters. Collecting all the estimates above we observe that H^ΣXaFaXa, where
each Fa has only a finite number of eigenvalues <Σ. Hence so have ΣXaFaXa and,
by the comparison theorem, H.
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We deduce Theorems 4.1 and 4.2 from a general result given below. It is a slight
generalization of the results of Zhislin and his collaborators [Z2, Z3, AZS, ZV].

Recall that Ha is the operator obtained from Ha after the removal of the center-
of-mass motion of the clusters in a. The ground states, ψa, of the Ha are
nondegenerate ([Zh4, RS3]). This is not, in general, true if one restricts Ha to
functions of a certain symmetry type. However, we assume for the sake of
notations that these ground states are nondegenerate too.

Theorem 4.3. (Essentially Zhislin et al.) Assume that infσess(H) is defined only by
two-cluster breakups fi.e. infH f l>infσe s s(Jϊ) for all three-cluster decompositions a)
and assume that for any two-cluster partition a with inΐHa=mϊσess(H) the one-body
hamiltonian —Δ + Wa (on L2(RV)J, where

Wa = WIar>-δ-H<Ψ^IΪΨa>-<Ψa,IaVf>2)> ^>0, (4.2)

has only a finite number of bound states. Then the discrete spectrum of H is finite.
The analogous result holds also on the subspaces of functions of definite symmetry
types.

Proof. Denote by # (a) the number of clusters in a partition a. Set, as usual,

<x> = (l + |x | 2 ) + 1 / 2 . Let Wa is obtained from Wa by the substitution Ia->IaXa.

Lemma 4.4. For any δ>0 and ε > 0 the following inequality holds

xy2)Xa, (4.3)
Φ (a) = 2 Φ (a) £ 3

where Ba = Ca®Da on PaL
2{X)®QaL\x) with

Ca=-Δ + Wa-ε(xy2-Σ on L2(1RV) (4.4)

and

Da = Qa(Ha-δ + IaXa-ε(x}-2)Qa.

Proof. We apply the Combes-Simon decoupling inequality [Siml]

Ka^PaKaPa-δ-ipaKaQaKaPa + Qa(Ka-δ)Qa, (4.5)

obtained by applying the Schwartz inequality to PaKaQa + QaKaPa [see Remark
(a) to this section], to each Ka with #(α) = 2 on the right hand side of (4.1).

Next, we estimate the localization error as

zwfzle Σ x2

a+ce Σ xiγ*r\ (4.6)
\ #(α) = 2 #(α)^3 /

for any ε > 0. To understand this estimate it is useful to note that

supp£ | l3g 2 C U suppX,.
#(fo)^3

To prove (4.6) we observe that since Σ\VXa\
2 = 0 on the set lxeX\ £ X 2 ( x ) = l l

I #(α) = 2 J
there is a ^-neighborhood of this set and a number 0<ε2^ such that

£ X 2 ^ l - ε 2 and Σ\VXa\
2^ει on this neighborhood and 1 - ]Γ X2^ε2

# (β) = 2 # (α) = 2

outside of it. This implies (4.6) with ε = ε 1 ( l - ε 2 ) ~ 1 and Cz = ε~λ sup(Σ|P5ίJ2).
Inserting (4.5) and (4.6) into (4.1) and recalling (4.2) we arrive at (4.3). •
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Now we pick Xa so that

|x|α Ξg const |x| on suppXα.

Lemma 4.5. Let Σ1 = mininfHaQa. Fix positive δ<Σ1—Σ. Then the operators Ba

a

have only finite numbers of eigenvalues <Σ.

Proof. Each Ca has a finite number of negative eigenvalues because of the
restriction on Wa. Operators Da have finite numbers of eigenvalues ^ Σ because
infσess(Dα) = Σ1+δ>Σ. Since Ba = Ca0Dω the statement follows. D

Lemma 4.6. The operators Hb-\-lhXb—Cε(κxy~2 with # ( b ) ^ 3 have finite numbers
of eigenvalues ^ Σ.

Proof. Since lbXb — Cε<x>~2 is H&-compact, the essential spectra of the operators
under consideration equal σess(Hb). Since by the condition of Theorem 4.3,
inϊHb>Σ for all b with # ( b ) ^ 3 , those operators have only finite numbers of
eigenvalues ^Σ. •

Lemma 4.7. Let each operator Fa be self-adjoint with negative spectrum finite. Then
ΣXaFaXa has a finite number of negative eigenvalues.

Proof. Let πa be the projection operator on the eigenspace of Fa corresponding to
the spectrum in (— oo,0). Then

Since each πa is finite dimensional, ΣFa πa has a finite number of negative
eigenvalues. Thus by the comparison theorem [RS3], ΣXaFaXa has only a finite
negative spectrum. •

Lemmas 4.4-4.7 imply via the comparison theorem the first statement of
Theorem 4.3 (no symmetry). The proof with an allowance for symmetry is
obtained by adding a few extra indices to the proof above (cf. Appendix 4). •

Now we deduce Theorems 4.1 and 4.2 from Theorem 4.3.

Proof of Theorem 4.1. Writing (\pa,Ia\pay and (ψa,I2ψa} as sums of the con-
volutions of Vι and Vf, respectively, l%a, with one-particle densities (see e.g. the
proof of Theorem 4.2 below) and using the Young (or generalized Young)
inequality [RS2] and the fact that ψaeLq for any q, we find that <φα, Iaψ

a}eLpnLq

and {ψaJ^ψayeLp/2nLr with p the same as in the statement and oo^q>p and
cc^r^p/2. Hence, since p = v/2 and (ψa,Iaψ

ay2 is positive, Wa has only a finite
number of bound states [RS3]. •

Before proceeding to the proof of Theorem 4.2, we recall the Hamiltonian of an
ion with N electrons and a nucleus of charge Z (the masses are not restricted)

JV γ ί,N i

Here the nucleus is labeled by 0, the electron charge is taken to be 1 and X is, of
course, the viV-dimensional hyperplane in W(N+ υ . The fact that the electrons are
fermions is reflected in the restriction of H(N) to functions of the permutation-
symmetry types corresponding to one- and two-column Young tables.
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Next we note that in accordance with the HVZ theorem (Sect. 2 and
Appendix 4) the bottom of the continuous spectrum of H(N) (also if restricted to
certain symmetry type functions) is defined only by two-cluster breakups of the

f 0 r m α {(0SJV)(s)} s=l,...,N9

i.e. by the one-electron ionizations. Here we assume that H(N—1) has isolated
eigenvalues. We conjecture that this always holds in the case when H(N) has
isolated eigenvalues (presently, it is known only for N = Z+ 1).

Finally, we mention that [RS3] the ground state, ψN, of H(N) is unique and
therefore rotationary invariant in the sense

ψN{gx) = ψN(x) with gx = (gx1...gxN) and geθ(3). (4.8)

This is not, however, known for different permutation-symmetry types. If (4.8) fails
to hold we use the fact that the ground states of the same symmetry type have the
same parities [see Remark (b) to this section].

Proof of Theorem 4.2. To estimate Was we note that the intercluster interaction for

*« = Σ hΠ-#Ί ( 4 9 )

and use standard screening estimates given in the two lemmas below. There we use
the notations y = xs, I{y) = Ias and ψ for the ground state of Has of a definite
permutation symmetry type. We assume ψ is rotationary invariant [in the sence of
(4.8)]. If the latter fails to hold then we proceed as prescribed in Remark (b).

Lemma 4.9. (QM Newton screeing theorem.) We have I here x = (x1...xN_1) and
N-ί \ \

dx= Γl dxA
1 ; <Ψ,I(y)ψ}^\N-ί-Z-(N-l) 1 \ψ\2dx\\y\-K (4.10)

L l* i l^ |y | J

Proof. First we compute in a standard way (M = mass of the nucleus/mass of the
e l e c t r o n ) • , „ , , M , ,

Since ψ is rotationary invariant [in the sence of (4.8)] the one-particle densities
entering (4.11) are spherically symmetric. Hence by the Newton electrostatic
theorem , , ,t2

Γ \ ψ ( χ ) r A ι , - i Γ i , V , ,
l r — ~ ι d χ = \y\ f \ψ{x)\dx

and similarly for the second integral on the right hand side of (4.11). Together with
(4.11) this gives (4.10). •

Lemma 4.10. (Simon.) The following estimate holds

(ψJ(y)2xp>-(ψJ(y

Proof. Using the elementary inequality
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we obtain

,iΦO,s i Φ s

Consider (ψ,I(y)ψy. Since \ψ\2 is even, the integral, produced by the term
/ ^ xt — Zxo\'y\y\~3, is zero. Using that \ψ\2 falls off at infinity we estimate
\ Ϊ Φ O , S

(the dipole moment is zero for an even density). Similarly, we obtain

These two inequalities imply the desired estimate.

These two lemmas and the fact that the bound states are exponentially bounded
[see Remark (c) to Sect. 3] imply the inequality (a = as)

So for Z^N—l, the negative part of Wa is short-range (the Newton screening
theorem in QM). Hence Wa have only finite number of bound states. This by virtue
of Theorem 4.3 completes the proof. •

5. Nonexistence of Very Negative Ions

Theorem. There is no very negative ions in QM.

To give a mathematical formulation of the theorem we consider an iV-electron
ion with a nucleus of charge Z. For the sake of notational convenience we assume
the nuclear mass to be infinite. In the units in which the electron charge and mass
are 1 and \ respectively, the Schrodinger operator of such an ion is

on

Here At stands for the Laplacian in
Ignoring the symmetry, the theorem asserts that

HN ^ inϊσess(HN) = inϊHN_ x for sufficiently large N.

[The second equality follows from the HVZ theorem (Sect. 2).] The symmetry can
be taken into account in a routine simple way (see Appendix 4).

In this section we use a new partition of unity {KS}Q tailored for the problem.
Let x = (x19 ...,xN) and \x\p = N-1/p{Σ\xJiη1/p. We define Ks by

suppK8C{xeWN\\x\p£γ\xs\ and \xs\>N~1/pρ}, (5.1)

where γ> 1 is a given number, e.g. y = 2, for 5 = 1 , ...,N and

KoeCJ(lRv i V) and s u p p K o C ί x e R ^ l l x ^ i V - 1 ^ } , (5.2)

Kst s = 1,..., N, is invariant under the action of the group £$_ 1 and Ko, under the
action of SN. (5.3)
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Here SN and S$_ 1 are the groups of permutations of the indices {1,..., N} and
{1, ...,iV}\{s}, respectively.

The localization formula with {Ks} is

HN= ΣKSHNKS- ΣIFKJ 2 . (5.4)
s=0 s = 0

Proof. In each cone Ks, s = l , ...,JV, we estimate (from below) the electrostatic
interaction of the 5th electron with the rest of the ion, using that

\xis\~ί^(N/y + 1—j)\xs\~1 on suppi£ s this inequality is derived by eval-
\

N
uating the minimum of ^ ( l + α ^ " 1 under the restrictions α ^ O and

here at = \Xi\/\xs\ and that H$_ ^ΣN, where H§_ 1 is the Hamiltonian of the ion

without the 5th electron:

KβnK^iΣn + iNly+l-ϊ-ΏlXsΓ1)^ where ΣJV=infJΪN_1. (5.5)

This estimate expresses a simple fact that this electron sees the nucleus shielded by
the other electrons whose electrostatic repulsion prevails for sufficiently large N
(the classical Newton screening). In Ko we estimate (again from below) the
electrostatic repulsion between electrons using the fact that they cannot get more
than 2yρ apart in Ko and then we estimate the ground state energy of N
independent electrons by the classical Fermi method filling first JV/2 levels
(counting the multiplicities) of the corresponding Dirichlet one-particle
Hamiltonian with two electrons each (the Pauli principle!):

K0HNK0^LNKl, where LN = N(N- l)/4yρ + Fermi term.

The Fermi term is twice the sum of the first N/2 eigenvalues (counting the
multiplicities) of the one-particle Hamiltonian - A — Z/\x\ on L2(ByQ), where
Bρ = {xelRv\\x\^ρ}, with the Dirichlet boundary conditions. A good estimate of
this term is tedious but its asymptotic behavior as JV—>oo is easy to derive (using
e.g. the hydrogen levels till the cutoff energy and a box model for the positive
eigenvalues): it tends to + oo as N-*co.

Finally we estimate the localization error —Σ\VKS\
2 using an explicit con-

struction of {Ks} (see Appendix 3), (we set p = N2 and absorb the factors N1/p

into the constants which otherwise are p-independent):

Putting together these inequalities and localization formula (5.4), we get

1-K2)+W, (5.6)
where

1

For N sufficiently large and ρ ̂  1 we have that

for some α > 2 implies
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Furthermore, since LN = O(N2ρ~*) and ΣN does not grow as JV-» oo we can choose
N so that LN^ΣN + Cρ~2N2/3. Together with the former inequality this implies

•

Appendix 1: Combes-Thomas Argument

Combes-Thomas Argument (in the DHSV form) [CT, DHSV]. Let ψ be an
eigenjunction of H with an eigenvalue E, f a measurable function with the
measurable weak derivative. Then

efψeL2(X) iff Eφσess{H(iλf)

Here, recall H(f) = (-iV- Vf)2 + V with V=ΣVt.

Sketch of the proof Introduce the one parameter group of gauge transformations:

U(λ)\u-*eiλfu.

The gauge-transformed Hamiltonian is given by

We compute H(f) = {-iV-Vf)2+V. Hence the family H(λf) has an analytic
continuation to λe<L. Applying the O'Connor projection lemma and the first
Balslev-Combes theorem [RS3] one concludes that ψ is [/(λ)-analytic as long as E
stays away from σQSS(H(λf)). So efψeL2(X) if Eφσess{H(iλf)) for all O^λ^ 1. •

Appendix 2: An Inequality

Proposition. Let Abe a densely defined closed operator on a Hilbert space such that
ReA = ̂ (A + A*) and lmA = jι(A — A*) are defined and self-adjoint and 1mA is
(Re A)-bounded. Then

inf Re σtn(A) ^ inf σess(Re A). (*)

The same inequality is also true for the full spectra.

Proof. Note first that Re A and 1mA are self-adjoint by the assumptions. For any
ε > 0 there is an π-dimensional eigen-projection Pn, n<oo, for Re,4 so that
Γ-(Re^)( l -P")^ infσ e s s (Re^l )-ε . The real spectrum of Λ-(ReΛ)P" lies
in [infσess(Re^4) —ε, oo) as follows from the invertibility of

T+iImA-λ=={T-λ)1/2[t + i(T-λy1/2(ImA)(T-λy1/2]{T-λ)1/2 (**)

for any /l<infσ e s s(Re^)-ε. Since σ e s s (^)Cσ(^-(Re^)P M ) by Weyl-type theorem
of [S4, Theorem AI, 1], (*) follows. The second part of the proposition follows
from the invertibility of (**) with T = Re A D

Appendix 3: Construction of {Ks}

Let Ω={xeWN\\x\p£\x8\, \xs\^ρ} for s = l...,N and Ω0 = {xeWN\\x\pSρ}

Then 0 ΩS = ΈCN. Let {Fs}% be a collection of real C00-functions such that Fs=ί
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on Ωs. We define Ks = Fs(ΣFfy1/2. So ΣKf = 1. Note that ΣFf = 1 since Fs= 1 on
Ω\fs and [JΩS = ΈCN.

Now we construct Fs. Let χe C00 and χ(t) = 1 if t S1 and = 0 if ί > 1 + α for some
fixed α>0. Then Fs(x) = (l-χ(|xs|N

1/p/ρM|x|p/|Λ:s|) if W > 0 and = 0 if |xJ = 0 for
5 = 1, ..., N and F0{x) = χ(\x\pN

1/p/ρ). With this definition Ks obeys (5.1)-(5.3). We
show now that it obeys (5.5) as well.

First we prepare the ground for the estimation of Σ l ^ J 2 - We compute

So as vectors on R N + 1 and

Finally, we note the following simple inequalities [cf. (4.6)]

ε-1χ2 + ε) and tf^ctf-^l-tf + S), (A.2)

where C1 is a constant depending only on α. This can be derived using e.g. the
explicit construction

/ ί - l \ 3 it-IV
χ(ί) = 2 - 3 +1 for l ^ ί ^ l + α .

α / \ α

Now we proceed directly to an estimation of || VF\\. First we compute explicitly

Σ ) Σ l^ l )
where we have introduced the notation ψs=—χ'(\xs\/Q)χ(\x\p/\xs\) and
#s = (l-χ(W/£))/(MP/W) Since |x p ^(l+α)|xj on supp#s and Ix/" 1

= (ΣlχilP) p w e n a v e l^l : )Csl(lχLW~ :L)l=(l+α + ̂ '~1/p)lχsΓ1 Furthermore,

using the inequalities (β + ̂ ) 2^2α 2 + 2̂ ?2 and Σ l ^ / ^ ' ^ ^ ί Σ l ^ / ) P w e f i n d

\VFs

Finally, since
on supptps5 (A.3)

and |x|p^(l + α)|xs| on

and, by virtue of (A.2),

ψ^C^δ + δ-'F2) and

we get taking δ = ε < 1

Summing up these inequalities we find
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where C 2 = 24(l4-α)4C1, obviously iV-independent. Picking here ε = N~113 and
recalling (A.I) we arrive at

1

with a p- and iV-independent constant C. •

Appendix 4: The Symmetry Groups

Let G and G{a) be symmetry groups (or subgroups) of H and Ha, respectively, and
let σ and α label the types of their irreducible representations. We always choose
G{a) to be a subgroup of G. The examples of G(G(a)) are trivial group, S, S x 0(3)
[trivial group, (X) S(Cf), ((X)S(Cf)\(X) 0(3)1 Here S and S(C) are the groups of
[ Ciea \Cιea ) J

permutations of the identical particles in the whole system and in the cluster C,
respectively. The trivial group, {id}, is considered when we do not want to take the
symmetry into account. Let oc^σ express the fact that the irreducible repre-
sentation α of G(a) is present in the decomposition of the restriction of the
irreducible representation σ of G to the subgroup G(a). Finally, we denote by Hσ

and Ha

a the restrictions of H and Ha to the invariant subspaces on which the
representations of G and G(q) are multiple to irreducible of the types σ and α,
respectively. The projections on the invariant subspaces above will be denoted by
Pσ and i * Then Hσ = HPσ = PσH and similarly Ha

a = HaP
a

a = Pa

aHa.

To obtain the HVZ-theorem with the symmetry we note first that the Ja can be
constructed to commute with the symmetry groups G(a).

Since ^ P^Pσ = Pσ by the definition of the restriction a-^σ, the proof above
a -< σ

applied to Hσ yields that σess(Hσ) C (J σ(Hl). Together with the easy direction of
a,a<σ

which proof in the case of symmetry remains the same, this
gives σess(Hσ) = [j σ(H*\ which is the HVZ theorem with symmetry.

a,ot<σ

Now we point out the allowances which have to be made in the proof of the
theorem of Sect. 5 in order to take into account the symmetry consistently. Recall
that SN and S$_ 1 denote the groups of the permutations of (1...JV) and (1.. .S... JV),
respectively. Let Pσ and Pa

s be the projections on the subspaces on which the
representations of SN and S^ are multiple to irreducible of the types σ and α,
respectively. Finally, let Σσ

N = inf σess(Hσ

N). Then the obvious inequality
KsH$_1Ks^mϊHN_1K* used to obtain (5.6) should be replaced by
P°K^l.K^^Σ^P0K2

SP\ wich follows readily if we use:

(α) X Pa

sP
σ = Pσ,

(β) invariance of Ks with respect to permutation S$_ ί {so Ks commutes with

P3, and

(γ) Σ^=mininf i ί^_ 1 by the HVZ-theorem with the symmetry.
α-<σ

The second and last remark is about inequality (5.6): It should be placed
between the Pσ's.
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Remarks

Section 2. Our proof of the HVZ theorem is related to that of Enss [E]. It is
shorter than the latter since it uses the Weyl theorem while Enss' proof is based on
the Weyl criterion (which is more powerful) and proves the Weyl theorem in its
course. Besides, Enss' proof is more intuitive.

Section 3. (a) For almost all x, a(x) = {(!)...(N)}, so \Vf\2<— E, which gives the

fastest possible decay.
(b) As was noticed by Agmon (see [CS]) the DHSV exponential bounds are

equivalent to the Agmon optimal bounds.
(c) [DHSV] has shown that the DHSV //-exponential bound implies the

DHSV //-exponential bound [i.e. ef\peU{X)\
(d) The references and comments on other works on the exponential fall off of

bound states can be found in [DHSV, H-O2AM, and RS3] (we note only that the
first general exponential bounds were obtained by O'Connor [OC]).

(e) The subspaces {xeX\a(x) = a} can be also written as ([SS])

{xeX\xt = Xj iff ί and j belong to the same cluster of a}.

Section 4. (a) The Combes-Simon inequality can be given the following abstract
form:

Lemma. Let A and P be self-adjoint operators with R(P)CD{A) and R(A)CD{P).
Denote Q = ί-P. Then

for any invertible, positive operator W for which the right hand side is defined.

Proof. The equality

A = PAP + QAQ + PAQ -f QAP

and inequality

+ \\U*Qφ\\2),

where U is any invertible operator, resulting from the Schwartz inequality, imply
(*) with W=UU*. G

(b) H(N) has a finite number of eigenvalues on a subspace of any irreducible
SN- or SN x 0(3)-symmetry type or if the symmetry group is dropped altogether.
Here SN is the group of permutations of JV indices (electrons). If the ground states
of H(N— 1) of a certain SN_ t-symmetry type are not rotationary invariant [in the
sence of (4.8)] as it is the case with the ground states of the SN_ίx 0(3)-symmetry
types with nonzero total momenta, estimate (4.10) is not, in general, valid (the
negative part of <φ, I(y)ψ} does not fall off exponentially for Z ^ TV— 1). However,
since the ground states have same parity [the parity transformation is contained in
0(3)], Inegative part of (ψ9l(y)ψ}\ S const(l + |j/|)~3 for Z^N—1 as follows from
inequality (*) of the proof of Lemma 4.10 (the dipole moment is zero for even
densities). Note that if the potentials are changed in such a way that the ground
states have different parities or do not have definite parities at all (which might
happen if there is an additional ("accidental") degeneracy (see [LL]), then the
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effective potential (ψ,I(y)ψ} has a dipole leading term (\x\~2 at infinity) which
when sufficiently large might lead to the infinite number of bound states for H(N).

(c) Note again that Γ|FXJ2 falls off at infinity as \x\~2, i.e. it behaves as a long-
range JV-body potential. This does not lead to the infinite number of bound states
of H in our case since Σ\VXa\

2 lives in the region oϊX where the system splits into
more than two clusters and therefore has the lowest threshold > Σ = inϊσess(H). If
we remove the restriction on Σ, e.g. allow for three-cluster thresholds to be at Σ,
then £|FXJ2 is supported also in the region with the lowest threshold Σ. This, in
our opinion (also, B. Simon, private communication) might account for the
Effimov effect, the appearance of the infinite number of bound states in some
short-range systems.

(d) One might try to use inequality (4.3) together with the comparison theorem
[RS3] in order to obtain effective estimates of the number of bound states of H
along the lines of works [Bl, B2, BF1, BF2, H I ] (see also [G, WS, W]). Note that
such estimates were given using different generalizations of the Birman-Schwinger
principle by Yafaev [Y2], Klaus and Simon [KS], and Sigal [S2].

(e) The restriction on Σ9 that it is defined only by two-cluster breakups, is a
technical one. The essentially most general conditions under which the finiteness
of σd(H) is still true were given in [SI]. To obtain this result by the method
presented here one might try to counter — ZΊFXJ2 with s( — Δ) borrowed from — A.

(f) Theorem 4.2 can be obviously generalized to include molecular ions.

(g) In the case Z = N—1 the proof of Lemma 4.10 is especially simple. Indeed,

bywtueof l{a-yr-\yn
w e g e t ι/ωι^ Σ lι

ί Φ 0 , s

i Φ s

which, along with the fact that \ψ\2 is bounded and fast decreasing, implies that

Section 5. (a) Different generalizations (not discussed here) of the theorem of this
section are possible. Among them we list the extensions of this theorem to
molecules and to non-Coulomb potentials (cf. [R]).

(b) The idea of using |x|p with p< oo comes from Ruskai [R]. (Originally the
author used the Ks-partition with p= oo.)

(c) This section has many common points with Ruskai [R] and Zhislin
[Zl, Z2].

Appendix 3. (a) We used the same function χ in different, independent con-
structions. The reason for this is our laziness.

(b) We believe that the estimate (A.4) can be improved considerably:
N

Our conjecture is that £ \(VKs)(χ)\2^C{ί+Σφs(x))(\x\p + ρ)~2

9 where
s = 0

φs = (\Ψs\/\\ψs\\oo)2> i s t r u e N o t e t h a t ( A 3 ) implies that
suppφsC{xelR3N\\xj\<y2ρVi}. The factor N1/2 should, in our opinion, disappear
due to a compensation in \\VF\\2-\(F, FF>|7 | |F | | 2 .
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Note added in proof. The technique above is effective within the framework of Agmon's method of
proving the exponential bounds. More specifically, the localization formula H = Σ(XaHXa — \VXa\

2)
implies H^ω + I, where ω = Σ{inϊHa)X2 and I = Σ{IaX

2

a-\VXa\
2). Since / is Ή-compact, χRl(H +1)"1

-•0 as R-*co for bounded C2 functions χR with suppχΛC{|x|>Λ}. So for any ε>0 there is R s.t.
χRHχR ^ [ω — ε(H + cι)~]χR, where a = inΐH + 1 . The latter inequality plays an important role in Agmon's
method [together with the elementary inequality ((H— E — \Vf\2)efχRψ,efχRψ)SM\\efχRψ\\, where
M=||β /zlχ| | ||ΐp|| + 2||<?/Fχ|| \\Vψ\\, valid for any bounded C2 function j and an eigenfunction ψ of H
with the eigenvalue E, it implies validity the DHSV bound (see Sect. 3)].




