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Abstract. For quantum spin systems it is known that for a suitable space of
potentials the equilibrium states are FF*-dense in the set of all translation
invariant states. The problem discussed in this paper is how to recognize such
equilibrium states and how to find the corresponding potential. A necessary and
sufficient condition for a state to be an equilibrium state for some potential is
given in Sect. 3.

1. Introduction

The problem of equilibrium statistical mechanics is to determine the equilibrium
state of a system for given temperature and given interaction (and possibly other
parameters such as chemical potential, external field, etc.). Except for the most
trivial models this is a formidable problem. Only in exceptional cases some
correlation function can be calculated rigorously. In most cases one has to rely on
approximation methods, such as perturbation theory. However, in the neigh-
borhood of critical potentials even such approximation methods fail, or, if they give
satisfactory results, it is not quite understood why they work.

Notwithstanding these computational difficulties the problem is well-defined,
at least in the case of quantum lattice systems. The interaction between spins is
determined by a potential. For each potential in a certain Banach space of
potentials there is at least one equilibrium state. In case there is more than one
equilibrium state for a given potential, this set is shown to be a simplex, so that each
such state can be decomposed uniquely in terms of the set of extreme equilibrium
states (the pure phases). The set of all equilibrium states for all possible potentials is
£F*-dense in the set of all translation invariant states [1].

The inverse problem in statistical mechanics is to determine the potential for
which a given state is in equilibrium. This problem has two aspects, an existence
aspect and a computational aspect. As not every state is an equilibrium state for
some potential, it is of interest to have sufficient conditions for a state to be an
equilibrium state for some potential. Another related problem is how to determine
this potential even if one knows that the state is in equilibrium. In other words, can
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one determine the potential with arbitrary precision by measuring correlation
functions? These are not just academic questions since they also have practical
interest. In the renormalization theory of critical phenomena, e.g., the so-called
renormalization transformation is a transformation on potential space. In order to
derive this transformation one in faced with the problem of finding the potential
corresponding to a given state.

In this paper a modest attempt is made to discuss some aspects of these
problems. We have limited ourselves to quantum lattice systems. These systems
have the advantage over continuous systems that the problems can be well
formulated in the framework of C*-algebras. In Sect. 2 we prepare the ground with
a rather extensive but necessary discussion of potentials. We stress in particular the
use of unique potentials as introduced by Griffith and Ruelle [2]. A simple
computation scheme to calculate the unique potential from an arbitrary potential
can be found in the appendix. Section 3 gives a necessary and sufficient condition
for a state to be an equilibrium state. In Sect. 4 we discuss the possibility of finding
the potential for which a given state is in equilibrium.

2. Spaces of Potentials

We consider in this paper quantum spin one half systems. With each point x of a
v-dimensional cubic lattice Z v we associate a 2-dimensional Hubert space ξ>x. If
A c Zv is a finite subset of Zv, consisting of | A | points, we define the tensor product

The algebra 21 (ΛL) of 2 |y1' x 2 | / l1 matrices acting o n § (A) contains the observables
corresponding to A as self-adjoint elements.

If ΛίczΛ2 we write § (Λ2) =ξ> (Ax) ®ξ> (A2/A1), and we shall identify 21 (ΛJ
with 21 (ΛJ ® ΉΛ2MI We then have 21 (A,) c 21 (A2). Similarly, if A1 c\A2 = 0 the
algebras 21 (At) and 21 (A2) commute. The union 2IL of all 21 (A) is the algebra of
local observables. Its completion in the norm 21 is the C*-algebra of quasi-local
observables. Translations, defined in an obvious manner, correspond to a
representation of the additive group Έv as automorphisms of 21. For aeZv ta(A) is
the observable obtained from A by shifting over a. Clearly τa(21 (Λ)) = 21 (A + a).

In discussing a finite system the dynamics and thermal equilibrium properties
are expressed by means of the Hamiltonian. In the case of an infinite system its role
is taken over by the potential.

Definition 2.1. A translation-invariant potential Φ is a function X-» Φ (X) from the
finite subsets of Z v to the self-adjoint elements of 2ί, such that

ii.

We shall be interested in only such potentials where | |Φ(Z) || decreases sufficiently
rapidly with increasing X. We define a norm

CD

and consider the Banach-space 23x = {Φ: | |Φ ||x < oo}.
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This space is still too large for most applications and contains potentials with
Φ (X) not sufficiently decreasing with increasing \X\ and d(X) (the diameter of X).
Smaller spaces can be defined as follows. Let g be a function X->g(X) from the
finite subsets of Zv to the positive numbers, such that g{X) ^ 1, g(X + a) = g{X)
and g increases with increasing \X\ and/or d(X). Then

OeX \ Λ \

and
B f l ={Φ: | |Φ| | ,<oo}.

Clearly B^cz®!.
Since each term in (2.1) and (2.2) is invariant for translation of A" it is convenient

to introduce the notation X for the set {X+ x, xeZv}. Then

IIΦ|li = ΣllΦ(*)H> ( 2 3 )
and *

Σ * * ' (2 4)
Potentials may be used to define the dynamics of the system. We shall call

H(Φ,Λ)=
XcΛ

the Hamiltonian of the finite sublattice A. The time evolution is obtained by the
l i m i t lim eiH^Λ^Ae-iH^Λ^ = af(A).

Λ-> oo

As shown by Robinson and Ruelle [3,4] this limit exists and gives rise to a strongly
continuous one-parameter group of automorphisms of 91 provided ΦeSB ,̂ withg
satisfying the condition:

For \X\ sufficiently large and a > 0, g(X) ^ eα'*i. (2.5)

Potentials also play a fundamental role for the calculation of the thermo-
dynamical functions: the average free energy per lattice point, the average energy
per lattice point and the average entropy per lattice point. We consider any Banach
space of potentials %5g with g (X) ^ 1. Without proof we mention the following well-
known facts.

I. The average free energy per lattice point

/(Φ)= lim - |ΛΓ
/l-»oo

exists for all ΦeS^ and has the properties

2. /is concave.

II. For ρ translation-invariant and Φe^&g the average energy per lattice point

lim 1

where Aφ= ^
OeX
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III. For ρ translation-invariant the average entropy per lattice point

exists. Here ρΛe$1 (A) is the density matrix corresponding to the restriction of ρ to
$1 (A). The function s has the following properties

2. s is affine.

The equilibrium states for a given potential Φ e ^ are defined by means of the
variational principle, expressed in the following theorem:

Theorem 2.1 [1].
f(Φ) = mm(ρ(Aφ)-s(ρ)); (2.6)

ρel

here I is the set of translation-invariant states of$l. The set Iφ is the set of states for
which this minimum is reached. This set is not empty. Ifg satisfies condition (2.5), all
states in Iφ statisfy the KMS condition.

Whereas, according to this theorem, to each potential Φ there corresponds at
least one equilibrium state, the inverse is not true, i.e., not every state is an
equilibrium state for some potential. However, the variational equation (2.6) has
the following inverse

s(ρ)=mf(ρ(Aφ)-f(Φ)). (2.7)

It is an immediate consequence of (2.6) that every equilibrium state ρφ for potential
Φ defines a unique tangent plane o f / a t Φ. Indeed, one has

f(Φ +Ψ)^ ρΦ(Aφ + Ψ) -s(ρφ) =f(Φ) + ρφ(AΨ)9

so that Ψ -» ρφ{AΨ) is a tangent plane of/ at Φ. It can be shown [1] that also the
reverse is true: to each tangent plane of / a t Φ there corresponds an equilibrium
state from Iφ. This one-to-one correspondence between the set of equilibrium states
and the set of tangent planes of / will be of use in the following sections.

We shall now have another look at Definition 2.1 of potentials. This definition
is not unique in the sense that different potentials may give rise to the same
dynamics and the same equilibrium state. A trivial example is the following. If
Φe%>g we define Φf = Φ + δΦ, where δΦ(X) = C(X)e% with

Clearly ocf = otf. Furthermore

X

We see that the graph of/contains a straight line, i.e., / is not strictly concave:

f(Φ + μδΦ)=f(Φ) + μf(δΦ).

Definition 2.2. Two potentials are called physically equivalent if they give rise to
the same average energy and free energy, the same equilibrium states and the same
dynamics.
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Proposition 2.2. Two potentials Φx and Φ2 e 23 ̂  with g satisfying (2.5) are physically
equivalent if and only if ρ (AΦi) = ρ (AΦi) for all ρel.

Proof Wehave/(Φ1) = min(ρ(^Φ i)-j(ρ)) = min(ρ(^φ 2)- j(ρ))==/(Φ2). Con-
ρel ρel

sequently Iφ> = Iφ2; every state ρelφi = lφ> satisfies the K.M.S. condition with
respect to ocp and cup. Since a state can only satisfy the K.M.S. condition with
respect to one group of automorphisms, we conclude that αf * = αf*. D

Instead of working with equivalence classes of physically equivalent potentials
we prefer to make Φ unique by imposing some extra conditions. We follow the
papers by Griffiths and Ruelle [2] and by Roos [5].

Definition 2.3. A unique translation-invariant potential Φ is a function X-+Φ(X)
from the finite subsets of Zv to the self-adjoint elements of 21, such that

ii.
iii. TrWΦ(I) = 0J 7c: X,

where Tr<y) is the partial trace with respect to the Hubert space § (7). It is shown in
the appendix how an equivalent unique potential can be obtained from a given
potential that does not satisfy iii. We shall assume in the sequel that potentials are as
defined in Definition 2.3.

We shall now exhibit an interesting parallel between finite and infinite systems.
In a finite system the set of Hamiltonians equals the set of self-adjoint elements of
21, where 21 is the set of all bounded operators on some Hubert space § . We shall
now show that there is a one-to-one correspondence between potentials and
(equivalence classes of) self-adjoint elements of the algebra 2X.

Let τ be the unique tracial state of 2ί and g the Hubert space obtained as
completion of 2ϊ with the scalar product (A, B) = τ(A*B). The total set of linear
subspaces {21 (X), Xa Zv, \X\ < oo} are not mutually orthogonal, but by means of
an orthogonalization process we can construct mutually orthogonal subspaces
{g (X)}, where for each X g (X) = {A e2l (X): A orthogonal to all 81 (7) for Y^X.
It is then easy to prove that, for \X\ φ 0,

g (X) = {Ae9l(X): Ίr^A = 05

Since S = Σ θ 5 (X), there is for each A e 21 the unique decomposition

A = Σ A (χιwhere

ii. Trw A(X) = 0 for all 7c: X, \X\ + 0.

If A is non-local, the sum £ A (X) converges not only in the norm-topology of g
x

but also in the norm of 21. This is seen as follows. For ε > 0 there is a finite sublattice
A and A'e 2ί (A) such that \\A' - A \\ < | ε . But then \\τ^ {A' -A)\\<%ε, where τ^
is the partial trace with respect to 2l(ylc). Hence \\A' — ]Γ ^4(^)|| < is, s o that
\\A- Σ A{X)\\<z. ^
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The decomposition A = ^A (X) enables one to define another, larger, norm:

with ll^lli^H^II. Hence the Banach space (Ά1 = {Ae^i\\\A\\1<oo} is a
subset of 21.

As long as we are interested in translation invariant states only we consider
equivalence classes of observables that have the same expectation value for all states
ρ e /. We define the closed linear subspace 50? c 21 as the set {B e 21: ρ (B) = 0 for all
ρe/} . One proves without difficulty that 93? is spanned by elements of the form
τ x (^) - ^ and also that 9ft={£e 21: lim \A\~X £ τx(B) = 0}. L e t * = 2I/93ίbethe

set of equivalence classes. For xeX, the norm is defined by

With this norm X is a Banach space.

Theorem 2.3: For xeX, and A ex,

| | * | | = lim \A\~
Λ-+ oo

For the proof, see reference [6].
It is immediately seen that there is a one-to-one correspondence between

translation invariant elements of2ϊ* (the dual of 21) and elements of 3E*. If Q is the
canonical map of 21 onto X, the correspondence between ω translation invariant
e2ϊ* and ώeX* is given by ω(A) = ώ(QA).

We shall now show that there exists an isometric one-to-one mapping of 95x into
X1 = 2^/93?, where 21^ is the Banach space defined above. If Ae(ϋ1 we can define
another element Άei&1 as follows.

γΛ{X)

»o 1*1 '

where, for 1 + 0, A (X) = Σ τ~x(A (X-{- xj). One verifies immediately that A = A
(mod9K)and

i. A(X)EK(X);

ii. τa(A(X)) = A(X+a); (2.8)

iii. TrWA(X) = 0, YcX.

Furthermore,

and

OeX
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Theorem 2.4. For xeXί9 and A ex,

ll*lli = Mlli
(see [6]).

Comparing the properties (2.8) with those in Definition 2.3 of the unique
potential, we are led to the following isometry between 93X and the subspace of
traceless self-adjoint elements of Xί. For Φe23 1 ? QAφeXx and \\Φ\\λ = | | β ^ φ | | i .
That Aφ is self-adjoint and traceless is immediately seen. Conversely, if x = x* eX1

and τ (x) = 0, we have for each A ex: τ (A) = Aφ) = 0. We define the potential
ΦxefB1 as fo l lows: ΦX(X) = A(X), for A ex. A g a i n w e h a v e \\ΦJί = \\x\\lm

We shall from now on identify 23 x with the traceless self-adjoint elements of Xί.
We shall, therefore, write ρ (Φ) instead of ρ (Aφ). Having made this identification
we can extend 23 x to 23, where 23 is the set of traceless self-adjoint elements of X.
As shown in [6] the variational principle as formulated in Theorem 2.1 can be
extended to 23.

Before embarking in a discussion of the inverse problem we must discuss the
question what is a space of reasonable potentials. The space 23 is too large for many
reasons. Using an argument due to Israel [7] one proves that for any n different
extremal states of/there is a potential in 23 for which these states are in equilibrium.
This implies in particular that a given state e $ (/) is equilibrium for many different
potentials. Since equilibrium states correspond to tangent planes of the average free
energy/, we see that / i s not strictly concave. As follows from Proposition 2.2 this
will not occur in smaller spaces 23 ̂  with g satisfying (2.5). These latter spaces are
also more reasonable in the sense that they lead to dynamics. Nevertheless,
condition (2.5), is not strong enough to ensure that 23 ̂  has good properties. In fact,
(2.5) suppresses the norm of Φ (X) for large \X\, but Φ (X) may well decrease very
slowly as a function of d{X). As has been pointed out by Daniels and Van Enter
[8,9], this leads to bad behavior of such potential spaces as regards phase diagrams.
This can only be remedied by requiring that g does not only increase with increasing
|AΊ but also with increasing diameter d(X). We, therefore, consider 23 g to be a
Banach space of short range potentials if g satisfies (2.5) and

lim mΐg(X)=oo. (2.9)
A-

Here XaΔ means that for some x X+xaA. Banach spaces of finite range
potentials are defined as follows. If A c= Zv is finite

) = 0 for

These spaces are finite dimensional.

3. Characterization of Equilibrium States

As discussed in Sect. 2 we have for arbitrary ρ e /that s (ρ) = inf (ρ (Φ) — f(Φ)). The
Φe93 f f

state ρ is an equilibrium state for some potential in 23 ̂  if an only if there is a Φ e 23̂
such that s(ρ) = ρ(Φ) —f(Φ). In geometrical terms the problem is the following:
Let / be a concave function on some Banach space 23 and ρ a plane such that
ρ(Φ)+p^f(Φ) for some peJR. Is there a point Φe23 for which ρ(Φ)—f(Φ)
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Fig.l

Φ

becomes minimal? This is not necessarily so, even if 33 is finite dimensional, as is
shown in Fig. 1, where 93 = 1R, and where / has an asymptote parallel to ρ. One
could say loosely that there is a tangent point at infinity. A physical example of such
a situation occurs when ρ is the ground state corresponding to some dynamical
group αt. Then T= 0, or β = oo, which corresponds in our notation, where β is
absorbed in Φ, with infinite Φ. As we know the ground state is not an equilibrium
state but is the PF*-limit of equilibrium states with decreasing temperatures.

The possibility of tangent points at infinity is excluded if we require of ρ, that
there is a positive number M such that

s (ρ) = inf (ρ (Φ) — /(Φ)).
\\Φ\\£M

For finite dimensional 93 it follows immediately that there is a minimum of
ρ (Φ) —/(Φ), so that ρ is a tangent plane. To show this, we use the fact that the
sphere {Φ: || Φ || ^ M} is compact, a property which is limited to finite dimensional
spaces.

Nevertheless, the 93g, with g satisfying (2.5) and (2.9) are sufficiently short range
that the following theorem holds. As will be seen in the proof, condition (2.9) is
essential.

Theorem 3.1. If g satisfies the conditions (2.5) and (2.9), a necessary and sufficient
condition for ρ to be an equilibrium state for some Φe93^ is that there is a positive
number M such that

s(ρ)= inf (ρ(Φ)—f(Φ)).

Proof The necessity of the condition is obvious. We prove that the condition is
sufficient. We first note that if g satisfies the conditions (2.5) and (2.9), then so does

gn for every we IN, where gn(X) = g(X)n + i. Secondly, the condition implies that

there is a sequence {Φn: \\Φn \\g ^ M} such that s(ρ) = lim (ρ(Φn) -f(Φn)). Clearly,

for every X: |X\ < oo, \\Φn(X)\\^M. Since 51 (X) is finite-dimensional, there is for
each X a converging subsequence. Using the diagonalization trick, there is a
subsequence {n'} such that for each Z t h e sequence {Φn,(Z)} converges. We show
that the sequence {Φπ,} converges in 93gn for each n.
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Σ \\Φ, (X)-ΦAX)\\gn(2)+ Σ \\Φn-(X)-ΦAX)\\gn{X)
XczA XφΔ

^ Σ \\Φn>(X)-ΦAX)\\gn(2)+ supg(l)""+1 X ||Φ^(l)-Φm,(l)||g(l)

1

— Σ ll^n'C^) ~~ ̂ m'C^OII&iC'O "+" 2MSUpg(X) W + 1 .

Using condition (2.9) we can choose A so large that the second term becomes
< ε/2. The first term, consisting of a finite sum, can be made smaller than \z
by choosing n' and m' sufficiently large. We conclude that there is a Φoe33gn

such that lim \\Φn. - Φ 0 | | g π = 0. Now ρ and / are continuous o n 8 A , so that
H'->CO

S(Q) = Q(Φo)—f(Φo)> which implies that ρ is equilibrium for Φo. We shall now
show that ΦoG33^ For each n, || Φo ||gn ^ M. Since || Φo ||gπ increases with increasing
n, the l im| |Φ 0 | | g π exists and is ^M. We have | | Φ 0 | l g π ^ Σ H φ oWli^nW 5

and hence lim ||Φ01| > V \\Φ0(X) \\g(X), and by taking the limit A -+ oo, we get

that | | Φ 0 | | ^ M . D

Remark 1. If ρ does not satisfy the condition of Theorem 3.1 we cannot conclude
that ρ is a tangent plane at infinity (i.e. for a point Φ with one or more components
infinite) like in the T — 0 case. In fact, ρ may well be equilibrium for Φ in some larger
space 95̂ /, with g' < g.

Remark 2. The criterion for equilibrium as given in this section is not practical in
the sense that it can be tested. It assumes knowledge of the average free energy as a
function of the potential. Therefore, it can be tested only if the main problem of
equilibrium statistical mechanics is solved. A more useful criterion would involve
conditions on the correlation functions.

4. The Inverse Problem

We assume in this section that the state ρ is equilibrium for some ΦεBg, where g
satisfies conditions (2.5) and (2.9). Since/is strictly concave on Bg, this potential is
uniquely determined by ρ. The question we shall discuss in this section is the
following. Can we determine Φ approximately by performing a finite number of
experiments? Mathematically speaking, doing measurements on ρ one determines a
^^-neighborhood of ρ. As discussed extensively by Haag and Kastler [10], a
^^-neighborhood is very large, in the sense that every state ρ' of 21 contains in its
representation a normal state in every weak neighborhood of ρ. This fact can be
understood as follows. A finite number of measurements gives information about ρ
in some finite region A'. Having no further information one cannot distinguish
between ρ and some totally different state ρ' that coincides with ρ on A.
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The situation is, however, completely different if we restrict ourselves to
translation-invariant states. In that case a finite number of measurements gives
global information about ρ.

Since, for finite A, BΔ is finite dimensional, the restriction of ρ to BΔ can be
determined by a finite number of measurements. Again, since BΔ is finite
dimensional, there is a unique ΦΔeBΔ, and tangent plane ρΔ at ΦΔ such that

Q\BΔ = ρA\BΔ.

This tangent point ΦΔ cannot be at infinity, as is seen without difficulty.
Let now {An} be an increasing sequence of finite sets, such that An -• Z v , and let

for each n ΦΔn be the potential determined by the restriction of ρ to BΔn. Intuitively
we would expect the sequence to converge to Φ. In the special case where Φ is of
finite range this is indeed the case. If ΦeBΔ, clearly ΦA= Φ for large enough n.

In general the series does not converge, as it need not be bounded. If the
sequence HΦjJI^ is bounded we can conclude that ΦΔn->Φ as a consequence of the
following proposition:

Proposition 4.1. If there is a sequence {ΦneBg} and ΦeBg such that

W* lim ρΦn=Qφ,
H-» oo

where ρΦπ is an equilibrium state for potential Φn, and if {\\Φn\\g} is bounded, then

WΦn-ΦW^O.

Proof As is the proof of Theorem 3.1 there is a subsequence {Φn,} and ΦeBg, such
that || Φn, - Φ' | | ! -> 0. For each n\

and hence, taking the limit «'-> oo,

so that ρ φ is equilibrium at Φ'. Since / is strictly concave on Bg, we conclude that
φ = φ' a n d \\Φn — Φ\\ι—>0. G

Remark. The approximation procedure as defined here is not a solution of the
problem discussed in the introduction. The aim is to calculate the potential
approximately from approximate knowledge of the correlation functions. The
result of this section gives conditions under which this is possible, without giving a
workable prescription.

Appendix

Let Φ be a potential according to Definition 2.1, with norm

\\Φ\\g=Σ ^ f f i^gf f l a n d g s u c h t h a t £W^exp(oc|X|). We assume in
addition^hat for each X τ^Φ (X) = 0. For each X, we decompose Φ(X)G<Ά(X)
according to the decomposition of elements of 91 discussed in Sect. 2. We write

Φ(X)= Σ Φ(X,Y),
YciX
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where Φ (X, Y) e 21 (Y) and τ (Π Φ (X, 7) = 0 for T c 7. We define

37

It is easy to verify that Φ is a potential according to Definition 2.3. We shall
compare the norms of Φ and Φ. We define, for I ' d ,

so that Γ(Z,0) = O and Γ(X,Z) = Φ(Z). Furthermore \\T(X,Xf)\\ ^
Taking the partial trace of Φ (V) = ^ Φ(I, 7) with respect to 21 (JΓ/JΓ) we obtain,
ίoτX'czX Y=X

This set of equations can be solved for Φ (X, Y)

Φ(X,Y)= Σ (
Γ c F

Hence

and

We get finally

and thus, ifg(Z)=
OeYczX

W e s e e t h a t Φ G ^ i f Φ e ^ , a n d g ( Z ) ^
g'(Y) = exp(y I Y\) with γ > 0, then o

(1)

(7). If, for example, we choose

Hence inequality (1) is satisfied with g'PO = exp(y \X\) and g(X) = exp(α \X\),
with α ̂  y 4- 2 log 2. This is a better estimate than the one given in reference [5].
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