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Abstract. In the present work we construct non-Gaussian self-similar random
fields with hierarchical structure. The construction is based on non-Gaussian
solutions of the main nonlinear equation of the hierarchical models theory.
The existence of such solutions was proved originally by Sinai and the author

* and later by another method by Collet and Eckmann. Next we establish the
uniqueness of a Gibbs state for the constructed self-similar field. Finally for a
class of hierarchical models we prove the convergence of renormalization
transformations of a random field at the critical point to the self-similar field.

1. Definitions

Let reTL, r ^ 2 , and ξQ>ξι>ξ2>... be a decreasing sequence of partitions of a
countable set V satisfying the following conditions:

(i) ξ0 is the partition of V into separate points,
(ii) any element of the partition ξn consists of r elements of the partition ξπ_1 ?

n = l , 2 , . . . ,
(iii) for any two points iJeVa, number n exists such that ίj belong to the same

element of the partition ξn.
Such a sequence of partitions is called a hierarchical structure in the set V (see

[1]). Let us denote n(ij) the least number n such that ij belong to the same
element of the partition ξn. The quantity

0 ί f ί=J
^ ) if

defines a metrics in a set V with hierarchical structure.
A map V-> V is called an isomorphism of hierarchical structures if it preserves

the structure of the partitions. One can see easily that for a given r any two
hierarchical structures are isomorphic. We shall consider two realizations of the
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hierarchical structure:

(i) V=Z,ξn = {Vn

(ϋ) F={α = 0 α 1 α 2 . . . |0^α ί <r,3iV:α ί = 0 if i^N},

ξn = {Vnβ9βeV}9

[Fis the set of finite r-mal fractions and Vnβ are the sets of such fractions with fixed
tails it is noteworthy that in this realization d(ίj) is the usual p-adic metrics if r = p
is a prime.]

As a rule we shall use the first realization. A configuration σ in a volume F° C V
is an arbitrary real-valued function σ = σ(ΐ) on F°. The set of all configurations in a
volume F ° C F is denoted by Σ(V°). The Hamiltonian of the hierarchical model
(HM) in a volume Vnk is given by the formula

(1.1)

where the potential

U(iJ)=-d(ijy\ (1.2)

The quantity a>\ is a parameter of the HM. Sometimes we shall use c = r2~a

instead of a as a parameter of the HM. A boundary condition for Vnk is a
configuration (real-valued function) σ' = σ'(i) on V\Vnk such that for ie Vnk the series

ft(^)= Σ U(i9j)(f(j) (1.3)

is absolutely converging. Let us note that h(σ') does not depend on i. The HM
Hamiltonian with a boundary condition σ' is defined as

HJσ\σ') = Hnk(σ)+ £ £ U{U])σ(i)o>{j). (1.4)
ieKn k j e F \ F n k

Let Λ. be the space of probability distributions v(dx) on 1R1 such that

oo

f exp(v4x2)v(Jx)<oo VieIR 1. (1.5)
— oo

For veΛ we define the Gibbs distribution of the HM in a volume Vnk with a
boundary condition σ' as

μ ^ σ l A v, σ') = S^ 1 (j8, v, <τ') exp[ - jJJ

A limit distribution of the HM is defined as

lim μn0(dσ\β, v, σ') = μ(dσ\β, v) (1.7)
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(if the limit exists) for a sequence of boundary conditions σ' [in general μ(dσ\β, v)
depends on the sequence of σ'\ The limit is understood as the weak convergence of
the finite dimensional distributions. Let us denote J70 the set of finite permutations
of V which preserve the hierarchical structure. Any limit Gibbs distribution is
invariant with respect to any permutation πoeΠo.

Let μ(dσ) be a probability measure on Σ(Ko) o r Σ W The joint distribution of
the random variables

σ{k) = r~^ Σ <>®,VmkCVn0 (or VmkCVrespectively), (1.8)
ίeVmk

defines a probability measure μm(dσ) on Σ(K-m,k) [or Σ(V) respectively]. The
measure μm(dσ) is called a renormalization transformation (RT) of the measure
μ{dσ) (see [4]) and is denoted μm{dσ) = R{

r

arlnμ(dσ) [or =R$μ{dσ) respectively]. A
probability measure μ(dσ) on £ ( F ) is called self-similar (other names: scaling
invariant, automodel) if Ri

r

aJιμ(dσ) = μ(dσ), m = l , 2 , . . . . It is noteworthy that
£ $ = tR<α))m, so, for self-similarity, it is sufficient that R{

r

a) μ(dσ) = μ(dσ) (for details
of the definitions see [4]).

2. Results

Let us define a non-linear operator v-*ββj/?(v) in the space A such that for any
Borel set J5CIR1

1?...,xr)] f\ v(dxj, (2.1)

ra/2 e B

where

00 00

L = j ... j
— oo — oo ί = 1

Theorem 1. Let μ(dσ\β,v) be a limit Gibbs distribution of the HM, veA. Then
R{

r

a)μ(dσ\β,v) = μ(dσ\β,v') where V = QaJ(v).

Remark. If μ(dσ\β, v) is a limit of the Gibbs distributions μn0(dσ\β, v, σ'n) with respect
to a sequence of boundary conditions cr/

nG^(F\ί^j0), n = n1, n2,..., then
R(

r

a)μ(dσ\β, v) is a limit of the Gibbs distributions μ(dσ\β, V, σ'n) with respect to the
sequence of normalized mean boundary conditions

K(ϊ) = r-"12 Σ <(jlVltiCV\VnOl
{ jeVltl J

In the papers [2,3], for a — 2 — ί/j + ε, 0 < ε < ε̂  , ε̂  > 0, j = 2,3,..., non-Gaussian
00

functions p*ε(x)e^(IR1), p* ε(x)>0, J p^ ε(x)dx=l, were constructed such that
— oo

the measures v*E(dx) = p*ε(x)dx are fixed points of the operator Qa x:

β..iK>v*. (2.2)
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One can see easily that then v*εj{dx) = pfε{x}/rβ)dx]/rβ are fixed points of the
operator Qaβ:

The functions p*ε(x) can be written in the form

p*ε(x) = L-' e x p [ - a0x
2 - <p*ε(x)] , (2.4)

where αo = (r—l)/(rfl —r). The functions φj^xjeC00^1) satisfy the conditions:

| |<p* ε (x)-είί,(x) | | c 3 ( ( _ | l n ε | ) | l n £ | ] ) <Cε 3 ' 2 , (2.5)

where Hpc) is a polynomial of degree 2/ and, for some constant Cy > 0 and
M | l |

dxk

< C ε 1 / 2 , (2.6)

where a = (2 — a) \ fc = 0, 1, 2, 3 [C ; coincides with the senior coefficient of the
polynomial iί/x)]. The condition (2.5) gives a description of the behaviour of
φ*ε(x) for finite x while (2.6) describes the asymptotics of φ*>ε{x) when x-^oo.

Theorem!. Let α = 2—1/j + ε, 0 < ε < ε J . The Gibbs distributions μn0(dσ\β, v*tEfP, σr

n)
with zero boundary condition σ'n = {σ'n(ί} = 0} converge to a self-similar limit Gibbs
distribution μ(dσ\β,v*εβ).

The next theorem is the most difficult one in the present paper.

Theorem 3. Let a = 2—l/j + ε, 0 < ε < ε ; . For any sequence of boundary conditions

σ'n = {σ'n(ί}} such that h(σ'n) ̂ oo 0 the Gibbs distributions μn0(dσ\β, v|ε>j8, σ'n) converge

to a self-similar limit Gibbs distribution which does not depend on the sequence σ'n.

The condition h(σ'n)= Σ d~a{ij)σ'n(j)n=ϊ>ao0 is extremely important. If
jeV\Vn0

h(<τ'n)n^ao ^Φ0 then the limit still exists but it is a limit Gibbs distributions of the
HM in the presence of the external magnetic field h. The existence of the limit in
this case can be proved by the same method as we use in the proof of the
Theorem 3. By a limit Gibbs distribution in the presence of a magnetic field h we
mean one whose conditional distributions are defined by the Hamiltonians
Hnk(σ\σ') + h £ σ(ί). In other words this is a Gibbsian distribution in the sense of

ίeVnk

the Dobrushin-Lanford-Ruelle (DLR) equations (see [5,6]) with the HM
Hamiltonian with the external field h.

Theorem 3 allows us to obtain the uniqueness theorem of the DLR equations
for the self-similar field constructed in Theorem 2. Now we formulate such a
theorem.

Theorem 4. μ(dσ\β, v*ε β) is the unique Gibbs distribution in the sense of the DLR
equations.
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In the papers [2,3] it was proved also that for α = 3/2 + ε, 0 < ε < ε 2 , the
measure vf ε β(dx) which is a fixed point of the transformation Qa β arises as a limit
of i t e r a t i o n s > + 1 ) = βΩ t β(v i n\ v(0) = v, at the critical point β = βc = βc(v) of the HM
for an open (in some natural topology) set of measures v(dx)eΛ. The fixed points
vfεβ(dx) with j>2 appear in the theory of multicritical phenomena. Namely,
v*ε β(dx),j>2 appear as a rule, as a limit of iterations of Qa β at the critical point
β = βc, when applied to a (j — 2)-parametrical family of measures va(dx\
α = (α l 5 . . . , OL-_ 2) for a certain value α = α°. The corresponding theorem is proved in
the same way as for j = 2 (see [2, 3] a good discussion of multicritical phenomena
in the HM is contained in [7]). There are two classes of measures v(dx) for which
the existence of the critical point can be established: discrete measures on a lattice
(see [2] where asymptotically hierarchical models are dealt with) and measures
absolutely continuous with respect to Lebesque measure on 1R1 (see [3]). Here we
consider the second case. In such a case a (j — 2)-parametrical family of measures

0 < p α ( x ) < C 1 e x p ( - α 0 x 2 - C 2 ε x 2 j ) ,

is constructed such that there exists the (unique) value oc = occ for which at the
critical point β = βc the iterations Qn

a βc(vaC) = p{n){x)dx converge to the measure
vjεJc(dx), this statement being true for small perturbations of the family va(dx).
For the sequence of the functions p(n)(x) the convergence takes place in the sense
that

sup \p{n\x)-p*εβc\<λ\ 0<λ<ί9 (2.7)
\x\<VW

and constants C l 5 C 2 > 0 exist such that

O < p ( w ) ( x ) < C 1 e x p ( - α o x 2 - C 2 ε x 2 0. (2.8)

Theorem 5. Let a = 2 — 1/j -f ε, 0 < ε < εj5 and a function p{0)(x) be given such that for
the functions p{n\x) defined by the equation v(π) - Qlβc{v{0\ v{n)(dx) = p{n\x)dx,
n = 0,1,2,..., the conditions (2.7), (2.8) are fulfilled. Then for zero boundary
conditions a limit Gibbs distribution μ(dσ\βc, v

(0)) exists. Moreover

Jim R^μ(dσ\β, v<°>) = μ(dx\βc, v*ε,β).

3. Proofs

For simplicity we shall consider the case r = 2. The extension to the general case is
straightforward.

The Main Formula. Let μn(dσ\β, v, 0) be the Gibbs distribution in a volume Vn0 with
zero boundary conditions and yn(dξn) be the probability distribution of the
random variable

ξ, = 2^ Σ σ(ί) (3.1)
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with respect to μn(dσ\β, v,0). Let JVΞ>rc and μN(dσ\β, v, σ') be the Gibbs distribution
in the volume VN0 with boundary condition σ'. Let finally μnN(dσ\β, v, σ') be the
joint distribution of the variables σ(i), ieF n 0 , with respect to μN(dσ\β,v,σf). Then

μΠJV(dσ|j8, v, (/) = L- ιfnΉ{ξn)μn{dσ\β, v, 0), (3.2)

where £M is defined by (3.1) and

fnN(x) = Tn+i...TNexp(β2nal2h(σ')x), (3.3)

where h(σ') was introduced in (1.3) and

^ ( ) (3.4)

c = 22~a. (3.5)

L is a normalizing factor in (3.2).

Proof of the Main Formula. Let V'm0 = Vm+ίt0\Vm0. To compute μnN(dσ\β, v, σ') one
has to integrate μN(dσ\β, v,σ') in the variables σ(ί\ ie VN0\Vn0 = V'n\j ...KJV'N_V This
will be done in two steps. At first we fix the values of the variables

m = n, ...,N—1 and integrate in all σ(i) under fixed ηm, m = n,...,N — 1. As a result
we come to the probability distribution

N - l

Next we integrate in the variables rjN-v * >,v\n and it gives the main formula (3.2).
The proof complete.

As a matter of fact the formula (3.2) was used implicitly in the paper [8]. It
shows that the random variables ξm, m = N,..., n, form a (in general nonstationary)
Markov chain. For further use we note that for N = n the formula (3.2) is written as

μN(dσ\β, v, σ') - L " 1 exp lβ2Nal2 h(σf) ξN] μN(dσ\β, v, 0). (3.6)

Proof of Theorem ί. At first we prove that

R^NμN(dσ\β, v, 0) - μN_ ^dσlβ, v\ 0). (3.7)

By (1.1), (1.2) we have:

J-VijCVN0 ieVij

where
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Hence

μN(dσ\β,v,Q) = Ξΰι(β,v)expl-βHm(σ)-] Π v(dσ(i))
ίeVN0

= Ξήi(β,v)exp\-βHN_lo(σ) + β2a £ σ(ί)} f\ v(dσ(i))

and

Mft v, 0) = Ξ~! (ft v) exp [ - jJHw _ t >0(σ)]

= Sjji1(j8,v0exp[-j8ίίJΪ_ lpO(σ)]

which was stated.

Using (3.6) we can extend Eq. (3.7) to arbitrary boundary conditions:

R^NμN(dσ\β, v, σ') = μN _ y{dσ\β, v', σ'),

where σ'= ίσ'{j) = 2~al2 ^ σ'(i), F .̂ct F ^ l . If the left hand side of this equation

1has a limit for a sequence {σ^} of boundary conditions, then the right hand side
converges for the corresponding sequence {σ^} and the limits coincide. Theorem 1
is proved.

Proof of Theorem 2. It is sufficient to consider β= 1. The general case is reduced to
this one by the change σ(ϊ)-* ]/~βσ{ί). Therefore we do not indicate the dependence
on β. Our aim is to prove the convergence of finite-dimensional distributions
μnN(dσ\vJε,σ') to a limit when JV->oo. We use the main formula (3.2). The
distribution μn(dσ\v*ε, 0) does not depend on N so the theorem will be proved if we
establish the convergence of the functions fnN{x)/fnN{0) to a limit. To prove the
convergence we use the formula (3.3).

If yn = γn(dξn) is the distribution of the random variable ξn [see (3.1)] with
respect to μn(dσ\vlε,0), then by (1.1), (1.2)

yn+l=Qa(yn)'

Moreover

yo=vh^

so by virtue of (2.2)

v _ / w v * \ — v* π —0 1 ?
!n~{ϊla\Vj,ε>~ Vj,ε> H —U, 1, Z, . . . ,

all the operators Tn+V .-.,TN coincide with
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and
/„„(*) = TN-n exp lβ2Nal2hWx] (3.9)

It is noteworthy that in such a case the random variables ξm form a stationary
Markov chain. In the theorem we consider σ' = 0 so Qxp\_β2Nal2h(σ')x] = l and
/ B W ( x ) = T J Ϊ - l .

The operator

5' = exp(-αx2)Texp(αx2), α > 0 ,

is equivalent to T and

/πN(x) = exp(αx 2 )S"- Λ exp(-αx 2 ).

The kernel of the operator S has the form

c ( 2
- y - x -αx

c I 2

c 3c + 4
Direct calculations show that for α = >0,

8(2-c)

-

S0(x, y) = exp [ - A{x - y)2 - Bx2 - By2'],

where

The operator So with the kernel ^oί^J7) ^s a compact self-adjoint operator in
L2(W}). Its eigenfunctions have the form:

where y = ]/B2jr2AB = — — and Hft) are the Hermite polynomials, and

the corresponding eigenvalues:

Let L 0 CL 2 (R 1 ) be the space orthogonal to £(

0

0)(x). Then for / e LΌ

A(

n

0)

where II • II is the L 2 -norm.
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Using perturbation theory arguments one can prove that for the operator S an
eigenfunction eo(x) and a supplementary subspace LcL2(Ψ}) also exist such that

λ o

(3.11)

(3.12)
/ c — o

where
<55(/l

(O)—-A ), | |e ( 0 ) —e | |=0(ε) (3.13)

(see [2, 3, 9]). The subspace L is orthogonal to the first eigenfunction e'Q of the
adjoint operator S' and

\\e^-e'J=O(ε). (3.14)

Let us write:

f(x) = μeo(x) + /'(x), (3.15)

Then

(S
i V""/ = μ/l^"β0 + / ^ _ n , (3.17)

where

N Ίl/ΊU (3.Π0

so if μΦO

\\]/c —

To estimate μ we use Eq. (3.14):

( 1 1 8 )

= (/> e'o) = (/> e(oO>) + O(ε) = ψ- j / W exp( - yx2)dx + O(ε). (3.19)

In our case

and for small ε the quantity is positive and uniformly bounded in ε. Moreover

we can suppose that (]/c — δ)"1 <ρ< 1. So

" ) ] ; (3.20)

where Lχ-n is a normalizing factor. Here the estimate of the remainder term is in
ZΛnorm. Let us note however that the operator S is continuous from L^IR1) to
^(IR1), so eo(x)e6^(]R1) and the formula (3.20) is also valid for the sequence of
norms defining the topology in
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Thus it is proved that

αx2) ίeo(x) + O(^-")]/[βo(0) + O(ρ"-")] , (3.21)

where 0 < ρ < l , hence

fnN^)/fnNΦ) N-^OO exp{ccx2)e0(x)/e0(0).

As the distribution μn(dσ\vfε,0) has a density decreasing at infinity as

Y\ {Cι exρ[ — C2εσ(z)2j]}, i.e. faster than any Gaussian density, then (3.8) and
ίeVn0

(3.21) imply the convergence of the distributions μnN(dσ\v*ε, σ') to the limit
L~ιQxp(ocξ2)eo(ξn)μn(dσ\vf^0) when N-+00. Theorem 2 is proved.

As a final remark to this proof we would like to draw attention to the fact that
the first two eigenfunctions and eigenvalues of the adjoint operator S' can be found
explicitly. Namely,

- c o ; 2 ) ,

= ίί

As p*ε(x) satisfies the fixed point equation (2.2) then

where

λQ = 2^Qxp\-x1x2jp*e(x1)plε(x2)dx1dx2.

Thus pjε is an eigenfunction of the operator T and so

e'0(*Hexp(αx2)p*ε(x) (3.22)

is an eigenfunction of the operator S'.
Differentiating in x the fixed point equation for the function exp [ — φ*ε(x)] one

comes to the equality

where

Pi(x) = exp(-α o x 2 ) — e x p [ - φ £ 6 ( χ ) ]

1! = - ^ = . So
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where

λ0 is the largest eigenvalue of the operator S\ λί is the second one. It can be noted
that e'0(x) is an even function while e\(x) is an odd one. The two largest eigenvalues

of the operator S are of course the same: λ0 and λγ = — p .

Proof of Theorem 3. Following the proof of Theorem 2 we have to establish only
the convergence of the functions gnN(x) = fnN(x)/fnN(0) when N->oo, where

fnN(x)=TN-nexp(2N*2h(σ'N)x).

As in the proof of Theorem 2 we write:

where

The previous proof, based in fact on a variant of the Perron-Frobenius theorem, is
inapplicable here in view of the following circumstance: For large values of
2Na/2h{σ'N) the function f(x) is large only far from the origin, in the neighbourhood
of the point 2Nal2h(σ'N)/2θί, and so the quantity {f,e'0)/\\f'\\ entering the right hand
side of the estimate (3.18) is extremely small: (fef

0)/\\f\\ ~exp[-2*e / 2/i((^)/2a].
Therefore the estimate (3.18) becomes of little use. In view of this we change the
scheme of our considerations. We divide our proof into two stages. At the first one
we prove an approximate equality

Skf(x)/Skf(0)« exp [ - ax2 + 2{N~k)a/2 h(σ'N)x] (3.23)

for all k such that 2(iY~/c)α/2|/?(σJv)|>ε~10. In particular one can find such a fc0 for

which ε~ lo<2(ΛΓ~ko)f l/2 |/z(σ^)|<ε~n and the approximate equality (3.23) is true.

From this equality we derive the bound

where τ depends on ε but does not depend on JV, h(σ'N) and fc0. As
S»-»f = sN-k°-n(Skof), h(σ'N)-+0 and 2(N-ko)a/2\h(σ'N)\ >ε~10, then N-k0 ^ oo. It
allows us at the second stage of our proof to obtain the convergence

which finishes the proof of the theorem.
To specify the approximate equality (3.23) we write

S*/(x) = exp [ - % ( * ) ] . (3.25)
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Our reasoning rests on obtaining suitable bounds for the second derivative φf

k{x).
It turns out that the latter takes values close to 2α everywhere except on a sequence
of segments. Let

(yC^-C-B-Y~ca. (3.26)

A direct calculation shows that ξ>0 if \<c< j/2, c = 22~a. Let us consider for
k ^ 1 the points

xH = Γ1Λk2< β,i = 0 , l , . . , k - l ,

where

and the segments

where δ = —— (see Fig. 1).
2α

i mm wmwrnm v/////////mmmmmMr
Fig.l ° xkQ *k,*2axk0 **2 = 2 % 1

k - l

Denote Λk= (J Λki. The following lemma is central in our considerations.
i = 0

Lemma3.1. Assume that |h f c |>ε~ 1 0 , where hk = 2(N~k)a/2h{σ'N). Then the following
estimates hold :

\φ'k(0)-hk\<\hk\
112, (3.27)

|<PΪ(x)-2α|<|ΛkΓ1 / 3 if xφΔk, (3.28)

|φί(x)-2α |<b i if xeΔki, (3.29)

where b0 = loc and bi+1 = ±(bi + \hk\-ll3\i = O,l...,k-2.

Proof of the lemma will be given below and now we finish the proof of the
theorem.

By (3.28), (3.29), φ^(x)>α/4>0, so φk(x) is a monotonous function of x and the
equation

has an unique solution. By (3.27)-(3.29) this solution lies in the interval [0, 5hjoi\.
Moreover

2α(x - m)2 ^ φk(x) - φk(m) ̂  - (x - m)2,
o

SO , _ T i 1/2
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and oo

(Skfef

0)^Skf(m) J e'0
— oo

If \hko\ = \2iN~ko)a/2h(σf

N)\<ε~ί\ then for k = k0 the point m lies in the interval
[0,5ε~* 1/oc]. As e'0{x) is a strictly positive function [see (3.22)] then for some C1>0
which does not depend on N, h(σf

N) and fc0,

00

J e'0(:x)exp[-2oφc-m)2]dx>C1,
— oo

SO

(SkofA) C^/M = C, =

C
| |S k 0/| | -C0S

kf(m) Co

Now using the same method as in the proof of Theorem 2 we obtain (3.24) and
next the statement of Theorem 3. It remains to prove the lemma above.

Proof of Lemma 3.Ϊ. The proof is by induction in k. For fc = 0 the statement of the
lemma is obvious because

<Po(x) = <Po(°) - aχ2 + 2Nal2h(σ'N)x = φo(0) - ax2 + hox.

Assume now that \hk+ί\>ε~ί0 and the statement of the lemma is true for φk(x).
Denote for brevity

= {x\ \x2a/2/h- 1| < δ β } , φ*{x) = φj;ε(2fl/2x).

Without loss of generality we may assume that h>0. Let

χ]/c
V •ψ(y). (3.30)

Then oo
ψ(x)=— In j exp(— Φ(x,y))dy. (3.31)

— oo

For fixed x a minimum point m = m(x) of the function Φ(x, y) in y is defined by the
equation

dΦ
0. (3.32)

^ ^ y — m \ ^ I

As

^ (3.33)

3Φ
the function —- is monotonous in y and Eq. (3.32) has a unique solution. It is

dy

x ]/c
extremely important for us that for large |x| this solution lies near the point —-—.
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This fact is due to the fast increase of the function φ*'(t). Namely using the
estimate

one obtains easily that

x\/c
m^-^+m, (3.34)

where

(3.34')

It is noteworthy that this estimate implies two properties important for what
follows:

(i) R*\ (J Δkpm{Δk+ί^Aki_ί9i=l9...,k, (3.35)

where m{X) is the image of a setXClR1 under the mapx->m(x). Roughly speaking
m maps Ak+1 f into Δk i _ 1 for i—1,2,...,/c.

Furthermore, (3.33) implies that

Φ(x, y) ̂  Φ(x, m) + A(y- m)2,

exp( - Φ{x, y)) ^ exp( - Φ(x, m) - A{y - m)2),

so the main contribution to ψ(x) is given by /s from a O(l)-neighbourhood of the
point m. For x^zl, the estimate (3.33) can be improved on account of the term

/ x]/c\
φ*"\y v-— . Namely we shall show now that if \y — m\<h1/{a> 1] and xφA,

d— , then
2 — a

(3.37)

This means that the main contribution to ψ(x) is given by /s from a 0(/z~1/4)-
neighbourhood of the point m.

To prove the estimate (3.37) we remark that the conditions (3.27)-(3.29) imply
that

φ'(y) = h + 2ay + r{y), (3.38)
where

l / 2 1 / 3 i f yεQ> ,,w,
l if yφθ9

 { 3 M )

where Ω = {x\x<xk0(l-δ) = ξ~1h(l-δ)} (see Fig. 2).

Ω Ω

Fig. 2 u x/f+i,0 xk0 X A +1,1 xk\
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Substitute (3.34) and (3.38) into (3.32):

571

or
—-=. ξx — h — ηm— r(ni) = φ*' [rn —

]/ \ 2
(3.39)

where ξ was defined in (3.26) and η = 2(A + B + α). The meaning of introducing the
2

segment A = Ak+ί 0 is that for xφA,

(3.39), (3.34'), and (3.38') that
V~c

ξx-h >δh. It allows us to infer from

φ*Ί m —

and hence that [see (2.6), here α' = (2 — a) *]

x]/c

δh

~2'

m- >C(ε

(3.40)

(3.41)

where C > 0 is a constant. Now if \y-m\<hίKa' ι\ then

y-
xWc

so

ψ \y

m —

XV c
>Cίε y-

a'-2 a'~2

>C2εha'~1 >C2εh2l\

which proves (3.37). We would like to note here that the estimate (3.41) shows that

x]/c
though the point m lies relatively near —-— as we have seen in (3.34'), the absolute

distance between them is not too small unless xeA.
By (3.31) we have directly that

/dΦ\
(3.42)

32Φ\ /idΦ /dΦ\γ
dx2/ \\dx \dx

(3.43)
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where we use the notation
00

j" f(x,y)exp(-Φ{x,y))dy

^J ' oo

j Qxp(-Φ(x,y))dy
— oo

Let us note some simple properties of < >:

(i)

dΦ

(iii) ΊϊxφΔ then <|x-m|*>gC k/Γ* / 4, fc = l,2,....

The property (i) is obvious, (ii) is proved by integration by parts, and (iii) is a
consequence of the inequalities (3.33), (3.37).

Now perform:

and by (3.32)

so

where λ = 2A + 2B- \/cA,μ=-2A+ ]/cA+ ]/cB. Thus

^ (3.44)

where

l/c
0 = μ(y - m) + Y (φ'(y) - < '̂(m)). (3.45)

Analogously one obtains the formula

(3.46)
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where

v = . 2 I A + [ ί + 4 B (3.47)

Using the identities (3.44), (3.46) we shall derive now the desired relations
(3.27)-(3.29) for the function ψ(x). As these relations are fulfilled for φ(x), then

\φ'(y)-φ'(m)\£4a\y-m\9

so by the property (iii)

if xφA and similarly

Therefore

where

Next, if xφAk+x = A^

where |ρx(

Therefore

<02>:gCo/ 1 / 2

= v+-<p"(m) + ρ(x), (3.48)

(J ^ k + 1 _ ; ) then by (3.36), m = m(x)eΔk, so by (3.28),

A direct calculation gives that

cα
v+y=2α.

(3.49)

(3.50)

c

K+ί3

Thus we have established (3.28) for tp(x) = φ fc+1(x). Furthermore, if xezί f e + 1 .,

i = 1,..., K then by (3.35), rnφ \J Akl so by (3.28), (3.29), (3.49),
Z Φ i - l

and

c

4 x 4 * i
,-1/2

which proves (3.29) for ψ{x) = φk+1{x) if xeAk+1J, z = l, ...,/c.
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To prove (3.27) for ψ(x) we note that by (3.44)

where

| ^ \μm\ + J^-|ρ 2 | ^ \μm\ + J^-4α|iw| + Ch~ m < C J ε " ^

+ Ch-llA<0Λhίl2.

So by (3.27)

as required.
It remains to prove (3.29) for xsΔ = Δk+l0. In this case m = m(x)φΔk so (3.28)

holds. Next, the upper bound follows immediately from (3.46) as <(# — <0»2> ^ 0 .
To prove the lower bound we have to estimate <(02). One easily has from (2.6) and
(3.27) that iϊxeA and |y-m(x) |<| lnε | then

82Φ(χ,y)

dy2

_d2Φ

where |ρ(x,y)|<ε1 / 3. Therefore

y — •

m — + φ"(m)\(ί+ρ(x,y))

(ί+ρ(x,y)),

where

\J/o~

j f(x,y)exp(-Φ0(x,y))dy
— oo

j exp(-Φ0(x,);))J};
— oo

. , - , d 2 Φ

dy2 (y-m)2
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So it is sufficient to estimate <02>. Furthermore, for \y — m|<|lnε|,

θ = μ(y - m) + - ^ (φ'(y) - φ\m)) = {μ+]Γca){y-m) + R(y)

= κ(y-m) + R(y),

where κ = μ + ]/ca, \R(y)\^C\y-m\2h~113, so

82Φ

<3y y = m/

where | , R 1 | < ε 1 / 3 . This gives an approximate expression for < # 2 > 0 and hence for
<# 2>. Substituting it in (3.46) we come to the desired lower bound of ψ"(x).

The lemma is proved.

Proof of Theorem 4. By the previous theorem the limit μnoo(dσ\β,

v*ε,β)= lim μnN(dσ\β, vjεβf σ'N) exists and is unique for any sequence σ'N such that

h(σ'N) N^oo 0. Moreover one can see easily from the proof of this theorem that the

convergence is uniform in the following sense: For any Borel set M c ] Γ ( F n 0 ) and

ε ° > 0 , there exist N° and <5°>0 such that

M ' ' M

if N>N° and \h(σ'N)\<δ°. Therefore it is sufficient to prove that % y r t θ in

probability. Let us fix a number iV0, for instance, iV0 = l. Then by the DLR

condition the quantity h{σ'No)= ]Γ d~a(ίj)σ'(j) is finite with probability 1. But
JφVNo,o

7f

N)= Σ d~a(iJ)σ'(j) is the tail of the sum ]Γ d~a(iJ)σ'(j) so it tends to zero

in probability when JV->oo. The theorem is proved.

Proof of Theorem 5. As for Theorem 2, we have to prove the convergence of the
functions fnN(x)/fnN(0) to a limit when N-^GO, where

fnN(x) = Tn+ί...TNl=exp(ax2)Sn+ί...SNexp(-ocx2).

The kernel of the operator Sk is

— A(x — y)2 — Bx2 — By2 — φ{k) —= y — x
We'

By the conditions (2.7), (2.8), Skk=^00 S and

\\Sk-S\\<Cλ\ (3.51)

0<λ< 1. Let λ0 be the largest eigenvalue of the operator S and
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We shall prove now the convergence in L2 (and hence in £f) of the functions
gnN{x) = Sn+1..SNexp(-(xx2) when JV-*oo.

Lemma 3.2.

(i) sup||SN+1...SN + J = F < o o .
Jy ,n

(ii) There exists No such that for N^N0,

sup\\SN+1...SN+n-Sn\\SλNI2.

Proof. By (3.17), (3.17') we have that

sup | |S l=F°<oo,
n

thus (i) follows from (ii), so it is sufficient to prove (ii). Define F(Q] = 0,

n=l,2, . . . . As
n

SM+ί..-SM+n= 2J S (

then

\\sM+i-SM+n-S"\\s Σ

J = l

iϊM^N, where C^iF^Q C2 = F°C. Therefore

t (3.52)

We assert that for large iV,

(3.53)

This is trivial for F(

0

N) = 0. Assume it is true for F(

o*\ ...,F^V_)

1. Then by (3.52),

7 = 1

if iV is large. Thus (3.53) is proved. Now,

sup \\SN+1...SN+n-Sn\\ g ^ψN sup |

which proves the lemma.
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Let us return to the proof of the theorem. We assert the following:

(i) gnN^)N^oogn(x) in

(ii) l\mgn(x) = μe0(x\ μ>0.

Assuming these statements we finish the proof of the theorem. They ensure the
existence of a limit Gibbs distribution. As in the proof of Theorem 2 its finite
dimensional distributions have the form const - Qxρ(aξ2)gn(ξn) μ(dσ\vn,0). Under the
renormalization transformation they are changed to const exp(α^) gn+1(ζn)
μ(dσ\vn+v0). As \im gn(x) = μe0(x) and limv^ = v*, the iterations of the re-
normalization transformations have a limit const exp(αc^) eo(x)μ(dσ|v*,0) which
coincides with the finite dimensional distributions of the self-similar random field
μ(dσ\v*\ Thus the theorem is proved and it remains to establish (i), (ii).

Let n < M < N. We have:

Λ Ό — C C ciV-M ( 2 ) _

By (3.18), \\SN-Mg-μe0\\^CρN-M, 0<ρ<U so

if N, N'^M. Moreover by Lemma 3.2 above g(

n

2^ g^-^0 when M-»oo. So
gnN~gnN'^O when N, N'-+oo as we can take M = [(l/2)min{JV,JV'}] and then
gi^ — g^N'-^O and g^ — g^'-^O. Thus the sequence gnN satisfies the Cauchy
condition when iV—>oo and so it converges to a limit. Now by the lemma,

9nΉ~$ n9 = (^n+ί'"^N~^ n)0~*Ό

when ft->oo, N^n, and moreover SN~ng^>μe0 when N — n-^co. Therefore
9n

= j 1 ^ 9nNn^ao μeQ, which was stated in (ii). This completes the proof.
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