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Abstract. In the present work we construct non-Gaussian self-similar random
fields with hierarchical structure. The construction is based on non-Gaussian
solutions of the main nonlinear equation of the hierarchical models theory.
The existence of such solutions was proved originally by Sinai and the author
- and later by another method by Collet and Eckmann. Next we establish the
uniqueness of a Gibbs state for the constructed self-similar field. Finally for a
class of hierarchical models we prove the convergence of renormalization
transformations of a random field at the critical point to the self-similar field.

1. Definitions

Let reZ, r=z2, and £,> &, >&,> ... be a decreasing sequence of partitions of a
countable set V satisfying the following conditions:

(i) &, is the partition of V' into separate points,

(i) any element of the partition &, consists of r elements of the partition &
n=12,...,

(1) for any two points i, je V a number » exists such that i, j belong to the same
element of the partition &,

Such a sequence of partitions is called a hierarchical structure in the set V' (see
[1]). Let us denote n(i,j) the least number n such that i,j belong to the same
element of the partition £,. The quantity

n—1°

o it i=j
d(i,j)= {I‘"(i’j) if i+j

defines a metrics in a set V with hierarchical structure.

A map V-V is called an isomorphism of hierarchical structures if it preserves
the structure of the partitions. One can see easily that for a given r any two
hierarchical structures are isomorphic. We shall consider two realizations of the
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hierarchical structure:
(1) szvgnz{.[/;;kakEZ})
Va={il—r"" '+ k" <i< — " (k+ )"}
(i) V={o=0-00,...050,<r,AN: ;=0 if i=N},
fn: {V;ﬁa ﬁe V} >
Ve={e=0-a0,. o, ., =p,i=1,2,...}.
[V is the set of finite r-mal fractions and ¥, ; are the sets of such fractions with fixed
tails ; it is noteworthy that in this realization d(i, j) is the usual p-adic metrics if r=p
is a prime.]
As a rule we shall use the first realization. A configuration ¢ in a volume V°CV
is an arbitrary real-valued function ¢ = ¢ (i) on V°. The set of all configurations in a

volume V°CV is denoted by ) (V?). The Hamiltonian of the hierarchical model
(HM) in a volume V, is given by the formula

Hyo)=  UG)o@)a(), (L.1)
i+
i, j€Vni
where the potential
UG, j)=—d(i,j)"*. (1.2)

The quantity a>1 is a parameter of the HM. Sometimes we shall use c=r>"¢
instead of a as a parameter of the HM. A boundary condition for V,, is a
configuration (real-valued function) ¢’ =¢’(i) on V\V,, such that for ie V,, the series

he)= Y UGj)d() (1.3)

JEVAV ke

is absolutely converging. Let us note that h(c’) does not depend on i. The HM
Hamiltonian with a boundary condition ¢’ is defined as

H,(old)=H,(0)+ Y. ) UGjo()d()). (1.4)

i€V jeV\Var

Let A be the space of probability distributions v(dx) on IR! such that
| exp(Ax*)v(dx)< oo VAeR'. (1.5)

For ve A we define the Gibbs distribution of the HM in a volume V,
boundary condition ¢’ as

tuldolp,v, o) =5, (B,v,0") exp[ — fH (ol0")]

. With a

- [T v(da(i)), (1.6)
i€V e
E(B,v,0")=[exp[ — BH,(ol0")] ];[ v(do(i)).

A limit distribution of the HM is defined as
nlgg /’LnO(do-lﬂa v, OJ) = ,Lt(do'lﬁ, V) (17)
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(if the limit exists) for a sequence of boundary conditions ¢’ [in general u(da|f, v)
depends on the sequence of ¢’]. The limit is understood as the weak convergence of
the finite dimensional distributions. Let us denote I1, the set of finite permutations
of V which preserve the hierarchical structure. Any limit Gibbs distribution is
invariant with respect to any permutation mye Il

Let u(do) be a probability measure on Y (V,,) or Y (V). The joint distribution of
the random variables

Glk)=r 2 Y 0(i),V,uCV, (or ¥, CV respectively), (1.8)
i€V ik

defines a probability measure u,(dg) on Z(Vn_m,k) [or Y.(V) respectively]. The
measure p,(do) is called a renormalization transformation (RT) of the measure
p(do) (see [4]) and is denoted u,(do) =R, u(do) [or =R u(do) respectively]. A
probability measure u(do) on Y (V) is called self-similar (other names: scaling
invariant, automodel) if R9Qu(do)=u(ds), m=1,2,.... It is noteworthy that
R =(RW)" so, for self-similarity, it is sufficient that R u(da) = u(do) (for details
of the definitions see [4]).

2. Results

Let us define a non-linear operator v—Q, 4(v) in the space /A such that for any
Borel set BCR!

0,,0MB)=L"" j S exp[BA(xy, ..., U v(dx;), (2.1)

X1t tx.
ajz €B

where
Alxy, oox)=r"¢ Z XX,

)ik )
L= [ ... | exp[A(x,,...x,)] [] v(dx,).
— 0 — i=1
Theorem 1. Let p(dol|f,v) be a limit Gibbs distribution of the HM, ve A. Then
R u(dalp, v)=u(dalB,v') where v'=Q, 4(v).

Remark. If p(dol|f, v) is a limit of the Gibbs distributions u,,(dolf, v, a7,) with respect
to a sequence of boundary conditions a,e) (V\V, 0) n=ny, H,,..., then
R“ u(da|B, v) is a limit of the Gibbs distributions u(dal|f, v/, 5,) with respect to the
sequence of normalized mean boundary conditions

{5;,(i)=r’“/2 PR Vl,iCV\Vno}'

Jj€Vi,.
In the papers [2, 3], fora=2— l/j—i—a, O<e<epe;>0,j=2,3, ..., non-Gaussian
functions p¥ (x)e F(RY), Pr(x)>0, j p}(x)dx=1, were constructed such that
the measures v} (dx)=p¥ (x)dx are leCd points of the operator Q,, ,:

Qa, l(ng, s) = V;F,s . (22)
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One can see easily that then v}, ;(dx)=pj (x ]/E)dx ]/B are fixed points of the
operator Q, ;:

QupVie ) =Viep- (2.3)
The functions p¥.(x) can be written in the form
pE(x)=L""exp[ —aox’ — 9% (x)], (2.4)
where a,=(r—1)/(r*—r). The functions ¢7 (x)e C*(RY) satlsfy the conditions:
I ()= eH ()]l e3¢ - fime, jrmepy < €2 (2.5)

where H(x) is a polynomial of degree 2j and, for some constant C;>0 and
[x]> % |1n8|

dk

dxk (pj a( )

Cieafa—1).. (o —k+ 1[x**

—1|<Cel2, (2.6)

where a=(2—a)" %, k=0, 1, 2, 3 [C ; coincides with the senior coefficient of the
polynomial H(x)]. The condition (2.5) gives a description of the behaviour of

@7 (x) for finite x while (2.6) describes the asymptotics of ¢¥,(x) when x—co.

Theorem 2. Let a=2—1/j+¢, 0<e<e; The Gibbs distributions p,q(do|B, v, 4 07)
with zero boundary condition ¢, = {0, (1) 0} converge to a self-similar limit Gibbs
distribution p(da|B, v, p).

The next theorem is the most difficult one in the present paper.

Theorem 3. Let a=2—1/j+e¢, 0<e<e; For any sequence of boundary conditions
o, ={0,(i)} such that h(c}) n=% 0 the Gibbs distributions w,q(dal|p, V¥, 4 a,) converge

to a self-similar limit Gibbs distribution which does not depend on the sequence ;.

The condition h(o))= Y d %i,j)o,()»=0 is extremely important. If
JEV\Vno

h(a) »5% h#0 then the limit still exists but it is a limit Gibbs distributions of the
HM in the presence of the external magnetic field 4. The existence of the limit in
this case can be proved by the same method as we use in the proof of the
Theorem 3. By a limit Gibbs distribution in the presence of a magnetic field h we
mean one whose conditional distributions are defined by the Hamiltonians
H,(ol6")+h Y, o(i). In other words this is a Gibbsian distribution in the sense of
i€V

the Dobrushin-Lanford-Ruelle (DLR) equations (see [S5,6]) with the HM
Hamiltonian with the external field h.

Theorem 3 allows us to obtain the uniqueness theorem of the DLR equations
for the self-similar field constructed in Theorem 2. Now we formulate such a
theorem.

Theorem 4. u(da|p, v, ;) is the unique Gibbs distribution in the sense of the DLR
equations.
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In the papers [2,3] it was proved also that for a=3/24¢, 0<e<e,, the
measure v} , ;(dx) which is a fixed point of the transformation Q,, , arises as a limit
of iterations v"* V=0, ,(v), V@ =v, at the critical point f=f,= f,(v) of the HM
for an open (in some natural topology) set of measures v(dx)e A. The fixed points
v¥, pldx) with j>2 appear in the theory of multicritical phenomena. Namely,
v¥, p(dx), j>2 appear as a rule, as a limit of iterations of Q, ; at the critical point
f=p., when applied to a (j—2)-parametrical family of measures v, (dx),
a=(0ty, ..., %;_,) for a certain value o =0a°. The corresponding theorem is proved in
the same way as for j=2 (see [2, 3]; a good discussion of multicritical phenomena
in the HM is contained in [7]). There are two classes of measures v(dx) for which
the existence of the critical point can be established : discrete measures on a lattice
(see [2] where asymptotically hierarchical models are dealt with) and measures
absolutely continuous with respect to Lebesque measure on R! (see [3]). Here we
consider the second case. In such a case a (j— 2)-parametrical family of measures
v,(dx)=p,(x)dx, p,(x)e L (R),

0<p,(x)<C, exp(—ayx*— C,ex?),

is constructed such that there exists the (unique) value a=0o° for which at the
critical point f=p, the iterations Q7 ; (v,.)=p"™(x)dx converge to the measure
v¥, 5.(dx), this statement being true for small perturbations of the family v,(dx).
For the sequence of the functions p™(x) the convergence takes place in the sense
that

sup [p"(x)—p¥, l<At 0<i<l, (2.7)

|xt<yu

and constants C;, C,>0 exist such that
0<p™(x)< C, exp(— ayx?— C,ex™). (2.8)

Theorem 5. Let a=2—1/j+¢,0<e<e;, and a function p°)(x) be given such that for
the functions p®(x) defined by the equation v =Q5 , (vV'¥), v*(dx)=p"(x)dx,
n=0,1,2,..., the conditions (2.7), (2.8) are fulfilled. Then for zero boundary
conditions a limit Gibbs distribution u(da|f,,v'?) exists. Moreover

lim R u(dolf,v'”) = p(dxIf, v, 5)-

3. Proofs

For simplicity we shall consider the case r=2. The extension to the general case is
straightforward.

The Main Formula. Let p,(do|f, v, 0) be the Gibbs distribution in a volume V,, with
zero boundary conditions and y,(d&,) be the probability distribution of the
random variable

na

&=2 7Y oli) 3.1)

i€V o
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with respect to u,(dal|f, v,0). Let N=n and u,(dag|p, v, ') be the Gibbs distribution
in the volume Vj, with boundary condition ¢'. Let finally u,y(do|f,v,d’) be the
joint distribution of the variables (i), i€ V,,, with respect to uy(dalp, v, ¢’). Then

ta(dalf,v,a")= L™ f,n(€) ,(dal, v, 0), (3.2
where ¢, is defined by (3.1) and
fnX)=T,, ... Tyexp(B2"/*h(d")x), (3.3)
where h(c’) was introduced in (1.3) and
1161 U foxp (B ) (VS . 64
c=2%71, (3.5)

L is a normalizing factor in (3.2).

Proof of the Main Formula. Let V, o=V, . ;\V,,,. To compute u,y(do|fB,v,0’) one
has to integrate py(dolf, v, 0”) in the variables a(i), i€ Vyo\V,o=V,u...0Vy_,. This
will be done in two steps. At first we fix the values of the variables

ma

M=2 2 % 0)=2"%, s~ Eu,
eV
m=n,...,N—1 and integrate in all o(i) under fixed #,,, m=n, ..., N—1. As a result
we come to the probability distribution

N—-1

L™ w(dol,,0) [] [eXp (34 émnm) vm(dnm)}

m=n

exp[B2Y2h(0")¢y].

Next we integrate in the variables #y_,, ...,#, and it gives the main formula (3.2).
The proof complete.

As a matter of fact the formula (3.2) was used implicitly in the paper [8]. It
shows that the random variables £, m=N, ..., n, form a (in general nonstationary)
Markov chain. For further use we note that for N =n the formula (3.2) is written as

uy(dalB, v, 0')= L~ ' exp[B2V2 h(a") €] n(dalB, v,0). (3.6)
Proof of Theorem 1. At first we prove that
RS yun(dolB,v,0) =y _ (dolB, V', 0). (3.7)

By (1.1), (1.2) we have:
Hyolo)=Hy_; (0)— Z 27 H a(i),

JV1;CV o ieVy;
where

o= {am:z-a/z Y. o(i), Vy;C VNO}.

ieVy,
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Hence
tin(dalf,v,0)=E5"(B,v) eXp[~ﬁHNo(6)].l;[ v(da(i))
=Ey ' (B.v) exp[—ﬂHN_l,o@Jrﬂz“ X a(i)] 1 vido(@)
and J NO 1€V No

RYyun(dalB,v,0)=Z5 (B, v)exp[ — BHy_ , o(5)]
[T [L7'Q, 0 (d5())]

JV1ijCVNo

= Eﬁi {(Bv)exp[—PHy_ 1,0(5)]
[T v(da()=py-,(dalB,v,0),

JV1;CVNo
which was stated.
Using (3.6) we can extend Eq. (3.7) to arbitrary boundary conditions:

R uy(dolf,v,0") =y _ (dolB, V', &),
where & = {5'(,'):2—“/2 Y a'(@i) ;¢ VNO}. If the left hand side of this equation

iV,
has a limit for a sequence {oy} of boundary conditions, then the right hand side
converges for the corresponding sequence {gy} and the limits coincide. Theorem 1

is proved.

Proof of Theorem 2. 1t is sufficient to consider f=1. The general case is reduced to

this one by the change (i)~ [/Ea(i). Therefore we do not indicate the dependence
on f. Our aim is to prove the convergence of finite-dimensional distributions
Kay(dolvi, o)) to a limit when N—oo. We use the main formula (3.2). The
distribution p,(do(v¥,, 0) does not depend on N so the theorem will be proved if we
establish the convergence of the functions f,y(x)/f,5(0) to a limit. To prove the
convergence we use the formula (3.3).

If y,=v,d¢,) is the distribution of the random variable £, [see (3.1)] with
respect to p,(dolv¥,,0), then by (1.1), (1.2)

Vus1=Qu1)-

ie

Moreover
yO = v;k’g 5
so by virtue of (2.2)
7. =Qa0vi)=v},n=0,12,.

5e

all the operators T, ,, ..., Ty coincide with
c
O B L L ey

= [exp Cx

4 (‘ffgy_")

p;;(%y—x) )y
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and
fun()=TY "exp[ B2V h(c')x]. (3.9)

It is noteworthy that in such a case the random variables &£, form a stationary
Markov chain. In the theorem we consider ¢’ =0 so exp[f2¥%2h(¢’)x]=1 and
fin)=T""1.

The operator

S=exp(—ax?) Texp(ax?), a>0,
is equivalent to T and

fin(x)=exp(ax?)SY¥ " exp(—ax?).

The kernel of the operator S has the form

c 2 2
S(x, y)=exp[—x(-y—x) —ocx2+ocy2}p’3‘5(—~y—x)
4" \)e Ve
=exp E>c(—2—y—x) —ax? 4 ay?
4 l/;

sl s
4(2_C) ng qu,s sz

. ) 2_3c+4
Direct calculations show that for ¢ = CST% >0,
4

o[ 2
—(pj,a %y—-x

SO(X:Y)zeXp[_A(X_Y)Z*sz"Byz],

S(x,y)=S(x,y)exp

>

where

(-9} _ 4-c e
A_Tz_—C)T>0,B_(2_C)8(|/ 1)2>0.

The operator S, with the kernel Sy(x,y) is a compact self-adjoint operator in
L*(RY). Its eigenfunctions have the form:

() =exp(—yx) H(}/2yx),

4—c)(c—1
where y=|/B*+2A4B= (—?(CQB‘C—)J and H (t) are the Hermite polynomials, and
—c
the corresponding eigenvalues:
(0)
20 — ’1_0_ (3.10)

J Cj/Z

Let L,CL*R") be the space orthogonal to e{”(x). Then for fe L,
0)

A
S <20 ,
| ofll-wllfl\

where | -| is the L?-norm.
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Using perturbation theory arguments one can prove that for the operator S an
eigenfunction e,(x) and a supplementary subspace L C L*(IR') also exist such that

Seqy=1Ayeq > (3.11)
A
MRS 0_5 If1,  feL, (3.12)
where
8,(A = Ao), [|€)) — ol = OC(e) (3.13)

(see [2, 3, 9]). The subspace L is orthogonal to the first eigenfunction e, of the
adjoint operator S" and

leg” —epll=0(e). (3.14)
Let us write:
f(x)=peg(x)+ f(x), (3.15)
u=(f.eo), f'eL. (3.16)
Then
SN = pAN T eq + - (3.17)
where
/ 2y W /
-t () (17)
soif u£0
(plg'")"lSN_"f:e0+O((l/_1—5>N‘" @) (3.18)

To estimate u we use Eq. (3.14):

4
p=(fep)=(fe5")+0() = l/%ff(X) exp(—yx?)dx+0(e). (3.19)

In our case
f(x)=exp(—ax?)
I/l

and for small ¢ the quantity ——— is positive and uniformly bounded in &. Moreover
I

we can suppose that (\/—5)‘ t<o<1. So
SV f(x)= Ly L, Leo(x)+0(" "], (3.20)

where Ly !, is a normalizing factor. Here the estimate of the remainder term is in
L?-norm. Let us note however that the operator S is continuous from L*IR!) to
F(RY), 50 eo(x)e L(R) and the formula (3.20) is also valid for the sequence of
norms defining the topology in #(IRY).
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Thus it is proved that
Sun()/fn(0) =exp(ox?) [eo(x) + O(0" ") 1/[e,(0) + 0V "], (3.21)

where 0<p<1, hence

Jan()/fun(0) n=0 €xp(0x?) e(x)/ e (0).

As the distribution p,(do]v¥,0) has a density decreasing at infinity as
[T {C,exp[— C,ea(i)*]}, i.e. faster than any Gaussian density, then (3.8) and

iV 0
(321) imply the convergence of the distributions u,y(da|v},,0") to the limit
L_1exp(océf)eo(én)un(dalvjfs, 0) when N— co. Theorem 2 is proved.

As a final remark to this proof we would like to draw attention to the fact that
the first two eigenfunctions and eigenvalues of the adjoint operator S’ can be found

explicitly. Namely,

§ =exp(ax’) T exp(—),
2 2
¢ y(_ﬁx_ ) p;;(_ﬁx—y)f(y)dy

= [ exp <Ex1x2> pE () f(x,)dx dx,

xy+xy _ 4

T :f(x)- fexp

Qa/2

As p¥(x) satisfies the fixed point equation (2.2) then
T'p}e=AoD}e
where
Ao=2[[exp (gxlxz) ¥ () p¥ (x,)dx dx, .
Thus p¥, is an eigenfunction of the operator 7" and so
eo(x) =exp(ax?)pf,(x) (3.22)

is an eigenfunction of the operator S".
Differentiating in x the fixed point equation for the function exp[ — @7 (x)] one
comes to the equality

T'p,(x)=4,p,(x),
where
d
P1(x)=exp(—apx?) - exp[ — 9}, ()]
and 4, = lifqm So
c

S'e,(x)=14,¢,(x),
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where
d
€1 (x) =exp(ax)p, (x) = exp [ — ap)x*] - exp[ — ¢} ().

Ao 1s the largest eigenvalue of the operator S, 4, is the second one. It can be noted
that ej(x) is an even function while €/, (x) is an odd one. The two largest eigenvalues
Ao

Ve

Proof of Theorem 3. Following the proof of Theorem 2 we have to establish only

the convergence of the functions g, y(x)= f,x(x)/f,x(0) when N— oo, where
Sun()=TV " exp(2Y h(a))x).

As in the proof of Theorem 2 we write:

Sun(x)=exp(ax?) SV f(x),

2Na/2h(0’;v) 2
_a(x- 2w ) ]

of the operator S are of course the same: 4, and 4, =

where

f(x)=exp(—ax?+ 282 h(g))x) = Cyexp

The previous proof, based in fact on a variant of the Perron-Frobenius theorem, is
inapplicable here in view of the following circumstance: For large values of
2N42 j(gY) the function f(x) is large only far from the origin, in the neighbourhood
of the point 2V%2 h(a)/22, and so the quantity (f, ¢,)/| /|| entering the right hand
side of the estimate (3.18) is extremely small: (f,e})/|| /[ ~exp[—2"?h(c)y)/2q].
Therefore the estimate (3.18) becomes of little use. In view of this we change the
scheme of our considerations. We divide our proof into two stages. At the first one
we prove an approximate equality

S*f(x)/S* f(0) ~exp[ —ax? + 2N ~Ra2 p(51 ) x] (3.23)

for all k such that 2N ~942|h(gy)| >e™ %, In particular one can find such a k, for
which &710 <2W=k0a2|p(51 )| <¢7! and the approximate equality (3.23) is true.
From this equality we derive the bound

(S*f ep)
>1>0,
IS s
where 1 depends on & but does not depend on N, h(cy) and k, As

SNnf = SNk n(gkof) h(gy)—0 and 20V TR p(g ) > 710, then N — kg y=s 00. It
allows us at the second stage of our proof to obtain the convergence

SN~ko—n Sko b
—Sﬁ:fﬂ%ﬁ N= w0 eo(x) (3.24)

which finishes the proof of the theorem.
To specify the approximate equality (3.23) we write

S*f(x)=exp[ — @, (x)]. (3.25)
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Our reasoning rests on obtaining suitable bounds for the second derivative ¢}(x).
It turns out that the latter takes values close to 2« everywhere except on a sequence
of segments. Let

e=(Ve-g)a-5B-1en. (326)

A direct calculation shows that ¢>0 if 1<c< ]ﬁ, c¢=22"4 Let us consider for
k=1 the points
X=E"1h2"i=0,1,.. k-1,
where
hy =20 =Ral2p(g0 )
and the segments

Akiz{xl Ix/xki_ 1f§5(1“(%)1+ 1)}a l=05 19 5k'_ 1 ’

0.0
where 6= —1 (see Fig. 1).

20
Ixo 4 %y
U
. 0 a
Fig. 1 X0 X229 X0 X12= 24

k—1
Denote 4,= (] 4,; The following lemma is central in our considerations.
i=0

Lemma 3.1. Assume that |h,|>¢~'°, where h,=2"""42p(a}). Then the following
estimates hold :

@3(0)— | <y *'? (3.27)
lop(x)—2of <|h =" if  x¢4,, (3.28)
lop(x)—2a<b; if xed, (3.29)

where by=70 and b, =3(b;+|h|3),i=0,1,....,k—2.

Proof of the lemma will be given below and now we finish the proof of the
theorem.
By (3.28), (3.29), @ (x)>0/4 >0, so ¢;(x) is a monotonous function of x and the
equation
P (m)=0
has an unique solution. By (3.27)~(3.29) this solution lies in the interval [0, 5h,/o].
Moreover

(x— m)2 >

12
(x— m)z} dx}

20(x—m)? Z @ (x) — @(m) =

oo R

SO

R

IS gskf(no{ i exp[—

— 0

< Coskf(m)



Non-Gaussian Self-Similar Random Fields 569

and w
(S, e0)ZS*f(m) | eplx)expl—2a(x—m)*]dx.

If |hy | =2 %42 p(g})| <&~ ', then for k=k, the point m lies in the interval
[0,56™ 11 /o]. As e (x) is a strictly positive function [see (3.22)] then for some C, >0
which does not depend on N, h(oy) and k,

| eo(x)exp[ —2u(x—m)*]dx>C,,

(S™f,et) . C;85(m) _ C,y

IS%fll = CoS*f(m)  Cq

Now using the same method as in the proof of Theorem 2 we obtain (3.24) and
next the statement of Theorem 3. It remains to prove the lemma above.

SO
=1>0.

Proof of Lemma 3.1. The proof is by induction in k. For k=0 the statement of the
lemma is obvious because

Po(X) =@ (0)— 0x? + 2V 2 () x = po(0) — ax* + hgx.

Assume now that |h, |>¢"*

Denote for brevity

% and the statement of the lemma is true for @,(x).

P(x)=@(x), P(X) =@y (X), h=hy A=Ay 1 o
= {x]x2°?/h—1] < 5/8}, p*(x) = 0¥ ,(2%x).

Without loss of generality we may assume that h>0. Let

D(x,y)=A(x—y)*>+ Bx*+ By + o* (y— X—Zl/i) +o(y). (3.30)
Then @
p(x)=—In | exp(—P(x,y))dy. (3.31)

- 0

For fixed x a minimum point m =m(x) of the function @(x, y) in y is defined by the
equation

0P
% =_2Ax+2(A+B)m+<p*'<m—#) +¢'(m)=0. (3.32)
y=m
As
0% , x)e "
o =2(A+B)+¢* (y— —ZK) ')

>2(A+B)—Cos+%>2A>0 (3.33)
. 0D, . . . .
the function — is monotonous in y and Eq. (3.32) has a unique solution. It is

dy
x)/e
-

extremely important for us that for large |x| this solution lies near the point
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This fact is due to the fast increase of the function ¢@*(¢). Namely using the
estimate
@*(6)>Ce(t—1)
one obtains easily that
X

m= 2(: +i, (3.34)

1/3
i <C, ('x' ;L 'h') . (3.34)

It is noteworthy that this estimate implies two properties important for what
follows:

(i) ]Rl\HQI Adm( Ay DA ni=1, .k, (3.35)

where

(ii) m(ml\g A, M) cIRl\’:Q: A, =R\, (3.36)

where m(X) is the image of a set X CIR! under the map x—m(x). Roughly speaking
m maps 4, ;into 4, ;_, for i=1,2, ...k
Furthermore, (3.33) implies that

¢(X, y) z ¢(X, m) + A(y— m)Z B
exp(— (x, y)) Sexp(— d(x,m)— A(y—m)?),

so the main contribution to (x) is given by y’s from a O(1)-neighbourhood of the
point m. For x¢4, the estimate (3.33) can be improved on account of the term

@* (y— XIz/E) Namely we shall show now that if |[y—m|<h'@ ™Y and x¢4,
1
= th
“Eaw - >
)]
TOCN 5 44 Coeh3 5244112, (3.37)
0y? ?

This means that the main contribution to y(x) is given by y’s from a O(h~ V%)
neighbourhood of the point m.

To prove the estimate (3.37) we remark that the conditions (3.27)—(3.29) imply
that

@' (y)=h+2oy+r(y), (3.38)
where RSSO i e
< ’ ’ .38’
= {h”2+h‘”3lyl+2a51yl, it 0, (3:38)
where Q= {x|x<x,,(1—08)=&"*h(1—-0)} (see Fig. 2).
2 Q
4= Iy i1 P

Fig. 2 0 Xke10 Xko Xya11 Xk
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Substitute (3.34) and (3.38) into (3.32):

2 2

+r(m)+o* <m—— %) =0,

or
2 X W), (3.39)

Vzéx~h—nﬁ1—r(m)=q)*’(m 5

—2Ax+2(A—|—B)(Ex+ﬁz) +h+2a(ﬁx+ﬁ1)

where & was defined in (3.26) and #=2(A4 + B +«). The meaning of introducing the

segment A=4,, , is that for x¢4, %éx——h >6h. It allows us to infer from
c
(3.39), (3.34'), and (3.38') that
wl.  Xle oh
® <m . )>2, (3.40)
and hence that [see (2.6), here ' =(2—a)™*]
lm— X : CI >C(e™ =1 (3.41)

where C>0 is a constant. Now if |[y—m|<h!/@ =1 then

x)e

ly—m|>Ce” Ty =0yl =0 5 cpiia =1

SO

a' =2 a-2
>C,ehe 1 >C,eh??,

x)/e
N

2

co”( xVe

Gy

which proves (3.37). We would like to note here that the estimate (3.41) shows that
x}/e
2
distance between them is not too small unless xe 4.
By (3.31) we have directly that

Yix)= <g¥f> (3.42)
veo ()= (&) + ()
SRR

though the point m lies relatively near

as we have seen in (3.34"), the absolute
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where we use the notation

oo}

[ f(x,y)exp(— D(x,y))dy
(fr===

| exp(—@(x,y)dy

- 0
Let us note some simple properties of { - >:

() 1> =LKPIS sup .
(i) <g—f> ~0, <f a‘p> o
e

(iii) if x¢4 then {|x—m[*y S Ch~ ¥4 k=1,2,....

P. M. Bleher

The property (i) is obvious, (ii) is proved by integration by parts, and (iii) is a

consequence of the inequalities (3.33), (3.37).
Now perform:

ox 2

and by (3.32)

<p*’(y—x]2/z)=a—¢+2z4x 2(A+B)y—9¢'(y),

oy

SO

od Veod e

a~ix+u}’“—2‘a—y+7¢())),
where 2=24+2B~ |/c 4, =—2A+1/EA+1/EB.Thus

0P

™ lx+uy+—co(y)

=lx+um+§(p’(m)+<9>,

where

Ve

0=uy—m+—=(@'()—¢'(m).

Analogously one obtains the formula

(53) =v+ Som—<o> 40

=4 29/ (m) = (0O,

oe _ =2(A+B)x—24y— l/‘q) ( xV)

(3.44)

(3.45)

(3.46)
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where

. (3.47)

(e

2 4

Using the identities (3.44), (3.46) we shall derive now the desired relations
(3.27)~(3.29) for the function y(x). As these relations are fulfilled for ¢(x), then

lp'(y)— @'(m)| =4aly —ml,
so by the property (iii)

KOy —m)ly +<J20 )/ e (y—m)ly SCh ™ V/*
if x¢4 and similarly

6*><Cyh™ 12,
Therefore
%P c .,
= (53) =v+ Som a0, (.49)

ox?
where
lo(x)|<C,h™ Y2,

k
Next, if x¢4, ., =Au< Ay, U) then by (3.36), m=m(x)e 4,, so by (3.28),
=1

@"(m)=2a+9,(x), (3.49)
where |g,(x)]<h™'/3. A direct calculation gives that

vt % =24 (3.50)

Therefore

[y (x)— 20| = lggl(x)—kg(x) < 2}1'1/3-1-C1h_”2

1/2 ms -1/3
< (Th) =h

k+1

Thus we have established (3.28) for y(x)=¢, . ,(x). Furthermore, if xe4, ., ,
i=1,...,k, then by (3.35), m¢ () 4, so by (3.28), (3.29), (3.49),

l+i—1

lo1(x)| =1k (x) — 2a| = b;

and

0"(x)— 20 = %Ql(x)-i—g(x) < %bi+ C,h~ 12

which proves (3.29) for p(x)=¢, . (x) if xe 4, ,, ;, i=1,..,k
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To prove (3.27) for p(x) we note that by (3.44)

0P c
vo= (22— VS g+ <oy
X|c=0 2
c /
= gmongz,
where
0, < |um| + g%lml+Ch_”4<C118“h|”3
+Ch™ Y% <0.1h'2,
So by (3.27)
.w’(O) l/zh = l?((p’(O)—h)‘kgz <§h1/2

1/2
+0.1h2< (‘/7211) =hi2,

as required.

[t remains to prove (3.29) for xe A= 4, ., ,. In this case m=m(x)¢4, so (3.28)
holds. Next, the upper bound follows 1mmedlately from (3.46) as {(0— <9>)2> =0.
To prove the lower bound we have to estimate {6?). One easily has from (2.6) and
(3.27) that if xe 4 and |y—m(x)|<|lng| then

0% :
—“—‘a;? D 24+ B)+ v (y— %@) +0'()
= [2(A +B)+ " (m— xzﬁ) + qo"(m)}(l +olx.7)
2
= _a—yf yzm(l +Q(X, y)) >

where |o(x, y)| <&'/3. Therefore
Ky—=m)>o—Ly—mHI=Cpe',
where .
| f(xy)exp(=Po(x, y)dy

<f>0= —= 0 ’
_§ exp(— Dy(x, y))dy

0%
Do(x, y)=D(x, M)+%W (y—m)>.

y=m
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So it is sufficient to estimate <{62>. Furthermore, for |y —m| <|Ing],

Ve

L@ 0) = @) =(u+ 1/ ca) (y—m) + R()
=(y—m)+ R0).,

0=ply—m)+

where re=p+/ca, RIS Cly—m2h™12, so0
(0% =1*(y—m)*>o+R,

0%
=57

-1
| e
y=m

where |R,|<¢'/3. This gives an approximate expression for (6%), and hence for
{6*). Substituting it in (3.46) we come to the desired lower bound of "(x).
The lemma is proved.

Proof of Theorem4. By the previous theorem the limit p,,(dolf,
Viep= 1313}0 tan(dalB, v, 5, o) exists and is unique for any sequence oy such that
h(cy) N=% 0. Moreover one can see easily from the proof of this theorem that the
convergence is uniform in the following sense: For any Borel set M C Y (V,,) and
¢%>0, there exist N° and 6°>0 such that

|I 1on(do1B,vE, 5 an) = | 1(dolB, v;te,,;)] <&
M M

it N>N° and |h(dy)|<0°. Therefore it is sufficient to prove that h(cy) =% 0 in
probability. Let us fix a number N, for instance, N,=1. Then by the DLR
condition the quantity h(oy )= Y d™%i,j)o’(j) is finite with probability 1. But
J¢VNg,0 :
hioy)= Y. d~“(i,j)o’'(j) is the tail of the sum Y d™%,j)a'(j) so it tends to zero
JEV Ny, J#V NG, 0
in probabilitgf when N— 00. The theorem is proved.

Proof of Theorem 5. As for Theorem 2, we have to prove the convergence of the
functions f,y(x)/f,x(0) to a limit when N— oo, where

fun¥)=T,, .. Tyl =exp(ax?)S,, , ...Syexp(—oax?).

The kernel of the operator S, is

>

2
Sux, y)=exp| — A(x—y)* — Bx*— By*— ¢® <7y~ x)
[

pP(x)=exp[—aox* — g®(x)].
By the conditions (2.7), (2.8), S, k=% S and
IS, =S| <Ca¥, (3.51)
0<A<1. Let 4, be the largest eigenvalue of the operator S and
S,=4518,,8=2;"'S.
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We shall prove now the convergence in L?* (and hence in &) of the functions
gn(x)=8,.,...Syexp(—ax?) when N— co.
Lemma 3.2.

() Sp ISy 1Sy vl =F < 0.

(i) There exists N, such that for NZN,,

SUp Sy 1+ Sysn— SIS AV

Proof. By (3.17), (3.17') we have that

sup [|§"| = F°< o0,

thus (i) follows from (ii), so it is sufficient to prove (ii). Define F{" =0,
FV= S4B 1Sa+ 1 Spren—S"I1,
n=1,2,.... As
§M+1 M+n Z SJ I(SM—F _S)SM+J+1 SM+n5

-
then
St 1S 1= S = jzil 15 Uyt = 51Uyt 1 S
<F0 il CIMTHED 4 FO)
2
<C AN HCN Y WFD
j=1
if M= N, where C, =(F°)*C, C,=F°C. Therefore
FOSC " +C Y B (3.52)

ji=1

We assert that for large N,
FO < g2, (3.53)
This is trivial for F{"=0. Assume it is true for F{", ..., F™ . Then by (3.52),

FMSC A4 C AN Y WV < CyaN <N?,

j=1
if N is large. Thus (3.53) is proved. Now,
sup ISys1--Syen=S"I = Sup, sup I8as1-+-Spgan—S"1
=sup FM < V2,

which proves the lemma.
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Let us return to the proof of the theorem. We assert the following:
D) gun(X) =0 g,(x) in FRY,

(i) lim g,(x)=peo(x), u>0.

Assuming these statements we finish the proof of the theorem. They ensure the
existence of a limit Gibbs distribution. As in the proof of Theorem 2 its finite
dimensional distributions have the form const -exp(a&2)g,(&,) i(dolv,, 0). Under the
renormalization transformation they are changed to const-exp(aé?) g,.,(&,)
wdaolv, . 1,0). As lim g,(x)=peo(x) and lim v,=v* the iterations of the re-
normalization transformations have a limit const-exp(aé?)-e,(x)u(ds]v*,0) which
coincides with the finite dimensional distributions of the self-similar random field
u(dolv*). Thus the theorem is proved and it remains to establish (i), (ii).
Let n<M < N. We have:

gnN=‘§n+1"'§Ng=g$z}\I)+g£3V)9
ggl%\l)zsn+1"'SMSN—Mg;gft%V)=Sn+1"‘SM(SM+1"'SN
— SN "Myg; g=exp(—ax?)=pe,+g .
By (3.18), [|S¥ Mg — pe,|| <Co" ™M, 0<o<1, s0
g — g S U8y --Saell - 18Y Mg =S¥ ~Mg])
SC@" T M+o" M),

if N, N'ZM. Moreover by Lemma 3.2 above ¢, g'3.—»0 when M—o0. So
gon— 9w —0 when N, N'—> oo as we can take M =[(1/2)min{N, N'}] and then
gN—g'%—0 and g¥—g'% —0. Thus the sequence g,, satisfies the Cauchy

condition when N— o0 and so it converges to a limit. Now by the lemma,
9N — gN—ng=(§n+ 1 ”SN_ gN_n)g‘*O

when n—oco, Nzn, and moreover SN “"g—-pe, when N—n—co. Therefore
9n= ]\1,1_{1;10 9uNn=% Heg, which was stated in (ii). This completes the proof.
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