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Abstract. Let S(oo) be the group of finite permutations on countably many
symbols. We exhibit an embedding of S(c0) into a UHF-algebra U of Glimm
type n*® such that, if § is a *-derivation vanishing on S(co0) and satisfying
120 =0, where 7 is the unique trace on 2, then 6 admits an extension which is
the generator of a C*-dynamics.

1. Introduction

In [4] Goodman showed that if G is a locally compact group, and J is a closed
*-derivation on C,(G) commuting with the action of G as left translations on the
algebra, then ¢ is a generator of a strongly continuous one-parameter group of
*-automorphisms on C,(G). In a more recent paper, [5], Goodman and Jergensen
consider closed *-derivations on a C*-algebra U commuting with a strongly
continuous representation o, of a compact group G on U. They define a
*-derivation 0 to be tangential to o if it has the aforementioned property (ie.,
doa, =000, for all ge G) and if A, the C*-algebra of fixed elements of U, lies in the
kernel of the derivation. Under certain restrictions on the system («, G, ) (e.g., 2 is
abelian, or the action of G on U is ergodic) they prove that a derivation tangential
to o is, in fact, the infinitesimal generator of a strongly continuous one-parameter
group of automorphisms,

Suppose now that A is a UHF (uniformly hyperfinite) C*-algebra of Glimm

type n”: ie, U= (X) B,, where each B, is a full nxn matrix algebra over the
kz1

complex numbers €. Define S(0) to be the group of finite permutations on the
symbols of N, the positive integers. Then there exists a natural embedding of S(0)
into W such that, if G is any compact group, and «; a strongly continuous
representation of product type, then S(co) lies in the C*-algebra A* of fixed points
of ug (see [8]). Motivated by the results of [5], we show the following: if § is a
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symmetric *-derivation vanishing on S(c0) and satisfying 76 =0, where 7 is the
(normalized) trace on U, then 6 extends to a generator 0 on A whose associated
one-parameter group is of product type.

2. Derivations Vanishing on S(c0)

We shall make use of the following notation throughout. For n a fixed positive
integer, let B, B,, ... be a sequence of n x n matrix algebras over C, where B, has

identity I, and matrix units {ef;:1=i,j<n} satisfying eﬂ‘je*ﬁq:é ipeh Let 2 be the

UHF-algebra formed as the infinite tensor product A= (X) B,. We write I for the
k=1

identity of 2. For finite subsets A of N, there exists a canonical embedding

L,:(X)B,—A which carries (X)y, into (@yk)®< &) Ik>, and extends by
keA keA keA keN\A

linearity. Denote the image of L, by U,. (Whenever there is no danger of

confusion we shall identify (X) B, with its image 2 , in 2. In particular, we regard
ked

the algebras B, as embedded in QI) For finite disjoint subsets 4, A" of N, 2 ; and

A ,, are commuting subalgebras. For m a positive integer, let 4,, denote the subset
{1,2,...,m} of N, and denote A, by A . Then clearly A, CA,C ..., and the
union A= () A
m=1

subalgebra of local elements of . We refer the reader to [6] for the general theory
of infinite tensor products of C*-algebras.

Let t be the unique normalized trace on 2, ie., 7 is the unique state on 2
satisfying ©(xy)=1(yx), x,ye . If ef; is a matrix unit of By, then (ef)=0,;/n;
furthermore, for xe A ,, yeA ., and A, A" disjoint, 7(xy)=1(x)t(y). T is a product

state (1 = (X) 1}, where 1, is the normalized trace on Bk) ,hence [7, Theorem 2.5], a
k=1

factor state, i.e., 7 ()" is a factor in the associated GNS representation (n, H,, Q,).
For convenience we shall write n,=n, H =H, Q,=Q. That = is a faithful
representation follows from the fact [3, Theorem 5.1] that 2 is simple.

We now describe an embedding ¢ of the group S(oo) of finite permutations on
the symbols of N into the group of unitary elements of . We write e for the
identity element of S(c0), and define g(e)=1. Let t=(kl)e S(o0) be a transposition

is a uniformly dense subalgebra of . We call 2, the

m

(k=1 k,1eN), and define (1) to be the operator o(t)= . ef;®e};. Note that (1) is
Lj=1

self-adjoint and that [o(t)]*=1=g(t?), hence o(t) is unitary. Moreover, suppose

xe W, then x is a linear combination of elements of the form e, ® ... ®elr; . A

straightforward calculation gives, for t=(kl),
o[l ® ... ®elr Jolt™ ) =67V ® ... e, (1)

where #(p) is the image of pelN under the permutation t. In particular, Eq. (1)
indicates that the mapping x(eBp)HQ(t)xg(t‘l) is an isomorphism between B,
and B

t(p)
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Let ge S(c0), then ¢ may be written as a product of transpositions g=t ¢, ... 1,
We define o(q)=o(t,)...0(t,). To see that this is well-defined, suppose g=e
=t,...t, Making repeated use of (1), we have, for u=o(t)o(t,_,)... o(t;)

u{el, ® ... Qe, ; Ju*=o(t) ... o(t,){o(t, ) [P} ® ... ®elw Jolty ety V) .. oty )
=0(t) ... 0t,) {9 ... @€Vt 1) .. ot )

=els 1PN R | R els:-11(pr)

11J1 Lr]r
_ elpn) e(pr)
=, ® ... Qe ]
— P Dr
=el, ®...Qel; . 2)

Hence for all xe U, Eq. (2) yields uxu® = x. By norm continuity, the same holds for
all xe . Since U has trivial center, however, and since u is unitary, u = A, for some

AeC, |2l =1. But u is a product of operators of the form o(t)=o((kl)= . e};®e};,
ij=1
hence clearly A=1(u)>0. Thus A=1, u=I=09(e), and g is well-defined.
The faithfulness of g is apparent from Eq. (1), and thus we have

Lemma 1. The mapping ¢ of S(c0) into the unitaries of W is a faithful group
representation.

In what follows, we shall identify S(co) with its embedding o(S(c0)) in U given
above. Under this identification, the map Ad:S(c0)— Aut(2) defined by Ad(p)(x)
=pxp !, peS(o0), xe A, forms a group of inner automorphisms of A. Moreover, if
x is local, i.e., xe 2, for some [eN, and p(k)=i,, 1 £k =<1, an application of Eq. (1)
yields pxp~'e,, where A={i,i,,...,i;}. By [9, Lemma 2.1], A is asymptot-
ically abelian with respect to this group action.

If G is a compact group, and g0 e Aut(M) is a strongly continuous
representation of G as *-automorphisms on an n x n matrix algebra M, then define
corresponding representations gl—»oc’;e Aut(B,) as follows: if {e;;:1=i,j<n} are

matrix units for M, and if (e, )= . B, e, define adlef)= 3 f,; el We may
s, t=1 s,t=1
then construct a strongly continuous group of product automorphisms {«,:ge G}

of A by forming the tensor product a,= (X) o Let te S(co) and let ge G ; then it is
k=1

clear, using (1), that ocg(txt“l)ztoag(x)t”: all xe . Thus (t~')(2,(t)) is a central
unitary element of 2, and since U has trivial center, we must have ¢, (t) = At, some
LeC, |Al=1. But =100, by the uniqueness of the trace on A, and a slight
modification of the argument preceding Lemma 1 shows that t(¢) >0, so that (t)
=1(0,(t))=41(t), or A=1. Thus o (t)=t, all teS(c0), and therefore S(oc0)C U, the
subalgebra of U of fixed elements of «;. Hence if 6 is any derivation vanishing on
A*, then certainly op=0, all peS(c0), and thus we are led by [5] to consider
symmetric *-derivations ¢ on U [ie., D(d) is a dense *-subalgebra of A, and (x*)
=(0x)*, all xe D(6)] which vanish on S(o0). If we impose the restriction 726 =0,
then it follows (Theorem 6) that & has an extension & which is a generator.
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As a preliminary to proving this we make a definition and establish some
results on strong convergence in 7(20)".

Definition 1. Let r>m be non-negative integers, then define S, ,, CS(c0) to be the
subgroup [of order (r—m)!] of permutations which fix the symbols of
N\{m+1,...,r}.

Lemma 2. Let x be a fixed element of . Define, for r>0,

x,=(1/rl)- > pxp~t.
PESr,0
Let (n, H, Q) be the GNS construction for t. Then the sequence {n(x,)} has a strong
limit in 7(WA’, and st-lim n(x,) = t(x)m(I).

Proof. Without loss of generality we may assume x to be self-adjoint. Furthermore,
we may assume x to be local, i.e., xe 2. For suppose xe 2, and St',lijg 7(x,) exists
for all x'eU,. If x'e U, is chosen such that [[x—x'|| <e, for given £>0, then one
easily checks that ||n(x,)—n(x)| <¢, and the strong convergence of {n(x,)} will
follow by continuity. So assume x =x*e 2, for some /eN.

We begin by showing that {n(x,)Q} is a Cauchy sequence. Let r= s, then, since
X,, X, are self-adjoint,

[7(x,)Q2 — 1(x Q) * = || (x, — x,)2||*
=1([x,— x,]%)
t(x2)— 27(x,x,) + t(x2).

Let N(r; ) be the set of those peS, , which permute all of the symbols of 4, into
the set {I+1,...,r}. For such p, pxp“e?lu+1 ,,,,, . and therefore, since xe U,
(pxp~'x)=1(pxp~*) ©(x)=1(x)>. Furthermore, one may check by a counting
argument that rlir?o [# N(r;)/r!']=1. Then

)=/ Y dpxp”igxg )

P, 4€8r,0
=1/ Y g 'pxp”'qlx)
P, 4€Sr,0
=(1/r))- Y. wpxp~'x)
PESr,0
=(1/r))- Y wlpxpT ')A/ Y w(pxpT i)
peN(r; D) PESy,0\N(r; 1)
=(#N@; DY+ Y wpxp~'x).
PESy, 0\N(r: 1)
The sum (1/r!)- Y (pxp”'x) is bounded in absolute value by
PeSy, WG 1)

Ix|I?-[¥!— # N(@r; )]/r!, hence it tends to 0 as r—oo, and therefore 1—1—>Ho<lj 7(x?)
=1(x)> Similarly, lim (x}) =1(x)* = lim t(x,x,), thus rlsirqnoo
7,2 — ()2 =O.
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Let y, ze ¥, then employing a convergence argument similar to the one above,
one shows that the sequences {n(x,)n(y)n(z)Q: reN} and {n(y)n(x,)n(z): relN} are
Cauchy in H and that their limits coincide. Letting y=1 in the first sequence, one
sees that the uniformly bounded (by ||x||) sequence of operators {n(x,)} converges
on all vectors in the dense subset 7(U,)Q2 of H, and therefore has a strong limit in
n(A)". Again using uniform boundedness, we have lim n(y)n(x,)¢é = lim n(x,)n(y)&,
all éeH, ye U, hence e e

st-rlirgl0 a(x,)e n(W,) N(A)” = (WY Na(W)" = {An(I): e T} .
Thus
St_rli% n(x,)= rllrg {rlx,)2, Q) - m(I)

= lim (x,)- (1)

= lim (1/r!)~r( Y pxp”)-n(l)

DESr, 0

=1(x)-7(I).

This completes the proof of the lemma.

We describe a generalization of the “averaging map” defined in Lemma 2. Let
A<, be the commutant of U, relative to A (e, U, ={yeW:xy=yx, all xe A }). In
particular, if te§, ,, then txt~ !=x, for all matrix units xe 2, by Eq. (1), so that
te A . Hence S, , lies in A, Let yeA;, and for r>m, form the operator

Vo= =m)T- Y pyp~*.
PESr,m

Then clearly y, e, and the sequence {y, , :r>m} is uniformly bounded in
norm by | y[l. Arguing as in Lemma 2, one shows that the sequence {n(y, ,,):r>m}
converges strongly to an operator yen(2)’, and for all ze W N, yn(z) =n(z)y,
hence ye n(W,N A ) =n(A;,). Clearly, yen(2,,) (since y, ,,e Ay, all r>m), so that
yen(UL) nu(W,) nm(AW)". Since W is generated by AS, and A, 7(WAC) N(2A,)
=7(A), thus yen(AY Nnm(A)" = {An(I)}. Arguing as before, one now shows that
F=st-lim n(y, ) =1(y)- (1.

Let {f;:1=ij=n"} be matrix units for the n™Xxn™-dimensional matrix

algebra 2 .. By [2], any xe % may be written uniquely in the form x= Z Sivip

where the y;; lie in ;. For r>m define x, ,,=[1/(r—m)!]- Sz pxp‘l.i’{f:hlen
PESr,m
st-lim n(x, ) = st-lim [1/(r—m)!]- > E pfiyp Y
r a0 r o0 PESy . m i, j=1
= st-lim [1/(r—m)!] ; :7; {n(fij) pESZ m(py;p~ 1)}
- £ sty

=ﬂ{ Zm fijf(y.-j)}-

iL,j=1
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By [2, Lemma 2], ) f;2(y;)=,(x), where ¢, is the conditional expectation of
i,j=1
the trace t onto . Hence st-lim 7(x, ,,) =7(¢,,(x)). Thus we have

Lemma 3. Let xe¥U, and for fixed m define x, , as above. Then the sequence
{n(x, ,):r>m} has a strong limit in ()", and there exists a unique element
¢,(x)eN,, such that

(9, (x) =st-lim 7(x, ).

The mapping ¢,,: W—>A, is the conditional expectation of the trace onto U,

Proof. The above argument shows that the conditional expectation ¢,, has the
required properties. Uniqueness follows from the faithfulness of 7.

Lemma 4. Let A be a dense linear subset of W. Then ¢,, maps A onto U,

Proof. Let xe,, and for given &¢>0, choose ye4 such that |x—y| <e. Since

¢l =1, by [2, Lemma 2], [|x — ¢,,(0)[| = [ §,,(x) — $,, (0| = | x— y|l. Hence ¢,,(4) is
dense in 2. But since ¢,, is linear and A, is finite-dimensional, ¢,,(4) =2,

Lemma 5. Let § be a *-derivation with dense domain D(8) C U which satisfies 120 =0.
Let 9 be the *-subalgebra of U consisting of all elements Ae W such that there
exists a sequence {A,:neIN} < D(0) satisfying :

(i) {A4,} and {0A,} are uniformly bounded sequences in 2.

(i) {n(A4,)} and {n(6A,)} are strongly convergent sequences in m(20)".

(1i1) n(A)zst-,}erolo 7(A,), and there exists an A'€W such that 71(/1/)=st-,}ian3O
n(0A,).

Define a linear operator & D—W by dA=A, then & is a well-defined
*-derivation on W extending o and satisfying t-0'=0.

Proof. Clearly, Z is a linear set containing D(J). Suppose 4 and B are elements of
A with corresponding sequences {4,}, {B,} satisfying the conditions of the lemma.
Then by (iii) and the faithfulness of 7 there exist unique elements A’, B’ of 9 such

that n(A4")=st-lim (3 A,) | respectively, n{B')=st- lim ©(dB,)|. Using (i) one verifies

easily that the sequences {4,B,}, {4,6B,}, {(64,)B,} are uniformly bounded, hence
so is {d(4,B,)}, since 6(A4,B,)=(6A,)B,+ 4,(0B,). Let M =sup {| 4, }, and suppose

that feH,. Then applying the strong convergence of the sequences {n(A4,)},
{n(B,)}, one has

}ir{}o | [n(AB)—n(A,B,)1f] = }Lngo {II[7(AB)—n(A4,B)]f Il + || [=(4,B)—n(A4,B,) f I}
= nlgg {1l [m(4) — n(A,)](n(B) )|+ M |[[7(B) — n(B,)1f I}
=0,

so that st-lim n(A4,B,)=7(AB). Similarly, one verifies that the sequence

{n(6A,-B,)} [respectively, {n(4,-0B,)}] converges strongly to n(A’'B) [respectively,
n(AB')] and therefore the sequence {n(6(4,B,))}={n(é4, B,)+n(4,-6B,)} con-
verges strongly to n(4'B+ AB’). Thus ABe Z.
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Now suppose 4eZ with corresponding sequence {4,}SD(0). Then the
sequences {A4¥} and {6(4¥)} (={(04,)*}) are uniformly bounded. To see that
{n(A*)} converges strongly to n(4*) it suffices to check, by the uniform bounded-
ness of {A4*}, that lim n(4])f =n(A*)f for all f in the dense subspace n(W)Q2, of
H. Let f=mn(z)Q,, zeA; then

lim || [m(4*)=n(4)]f]* = lim {n(A* — AT)m(z)Q, H(A* = ADH(2)Q.)
= lim {m(z*)n(4 = A4,)n(A* — A)n(2)Q2,, 2o
= lim (z¥(A— A4,)(4%— 47)2)
= lim o([4* = A}]zz* A~ A4,])
< lim 22 o([ A%~ 4714~ 4,)
= lim [z2%] - m(A— 4,)2,]>=0.

Similarly, one verifies that st-nli_glo n(éA,T)=st-}£n; ((0A4,)*)=n(A")*.
To see that ¢’ is well-defined, suppose st-r}inoio n(A,)=0and st- }Lrg n(0A,)=B.In

particular, n(0A4,) converges weakly to B, hence for all f, g in the dense subspace
m(D(6))2, of H, we have, letting f=mn(z)Q2,, [respectively, g=n(y*)Q_.], z, ye D(J),

(Bf.g) = lim (n(04)n(z)2, (y*)2)
= lim <(y[04,12) = lim w(zy[34,])= lim — (([(zy)]4,)
= lim —(n(4,)2, 7(3[2y]*2> =0.

n— oo

Thus B=0, by continuity, and ¢ is well-defined. Clearly, ¢" extends 9.
Again let 4, BeZ, with corresponding sequences {4,}, {B,}. Then AB* has
corresponding sequence {A4,B*}, and

(8 [AB*])=st-lim m(3[4,B}])
=st-lim {n(04,)(B})+ n(4,)([B}])}
=st-lim {7(04,)7(B,)* + 7(4,)([3B,1%)}
= ([ A'(B¥)+ A(B)*])
=7((6' A)B* + A(0'B)*),

hence &'(AB*)=(6'A)B* + A(6'B)*, by the faithfulness of n, and therefore ¢’ is a
*-derivation. Finally, note that for Ae &,

o5 A)= (5 A)Q,, Q.
= lim (7(04,)2, 2.)
= lim (1o0)(4,)=0,

n— o0

so that t0d'=0. This completes the proof of the lemma.
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Corollary. Let 6 be a *-derivation on U vanishing on S(co) and satisfying r(éx) 0,
all xe D(0). Then there exists a generator 8 which extends 9, i.c., D(é)CD(é) and
S| po) =90

Proof. Let &' be the extension of § given in the lemma above. We show U, CZ
[=D(d")]. To see this, let xe D(9), let m be a positive integer, and form the sequence
of operators {x, ,:r>m}, where x,, is defined as in Lemma 3. Clearly,
{x, n:r>m} is a uniformly bounded sequence contained in D(6); moreover,

0, W =[1/r=m)] 3 opxp~ ")

PESr, m

=[1/r=m!] X p@x)p~"

PESr,m

=(0x)

r,mo

and it is immediate that the sequence {(6x), ,,:r>m} is also uniformly bounded.
By Lemma 3, n(qu(x)):st-lim (X, ) [ respectively, n(¢,,(dx)) =st- lim n((éx)r,m)],

hence by the preceding lemma, ¢, (x)eD(0’) and (¢, (x))=¢,(0x). Since
¢,,: D(0)—A,, is onto, by Lemma 4, the preceding equation implies 6" : U, —2A, ,
for all m. Thus U, is a dense set of analytic elements for ¢'.

Since 706" =0, 5’ is closable, by [1, Theorem 6]: denote its closure by 5. Then
dCd' Cé,and d is a closed *-derivation with a dense set of analytic elements, hence
[1, Theorem 6], Sisa generator.

Finally we can prove

Theorem 6. Let 6 be a symmetric *-derivatign on A which vanishes on S(o0) and
satisfies 100=0. Then & has an extension 0 which is a generator of a strongly
continuous one-parameter group {f,:t€R} of product automorphisms of the form
= B
k=1
Proof. By the corollary to Lemma 5, § has an extension to a generator 6. We have
only to show that the associated one-parameter group {f,} has the desired form.
First note that & : B,;— B, (since A, =B, and d: A, —A,, for all m), so that B,
consists of analytlc elements for §. Let pe S(oo) then 5p 5p 0. Hence for xe Bl,
peS(o0), pxp~ ! is entire analytic for § and

Il

> (@/n)S)(pxp~ 1]

nz0

> (t"/n)pld)'xIp~*

n=z0

=p{ ) (r"/n!)[(é)"x]}p—l

n=0

Bpxp™h)

=ppx)p~". 3)
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Letting p=1 [ =0(e)], Eq. (3) gives f,: B, —B,. Now suppose x=e}je B, and ﬁ,(e}j)
=) o;,s(D)es. Letting p=(1k)e S(c0) and applying both Egs. (1) and (3), we have

r,s=1
Bef)=PBpelp™")
=pBlep™!
= Z O(ijrs(t)el:s
rs=1
Hence f,:B,—B,, all k, and under the obvious identification B, =B, = we

have B, =Bp,= ... Thus ,= @ Bis where f;=p,p,, and the proof is complete
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