

© Springer-Verlag 1982

Derivations Vanishing on $S(\infty)^*$

Robert T. Powers¹ and Geoffrey Price²

- 1 Department of Mathematics E1, University of Pennsylvania, Philadelphia, PA 19104, USA
- 2 Department of Mathematics, Indiana University-Purdue University, Indianapolis, IN 46223, USA

Abstract. Let $S(\infty)$ be the group of finite permutations on countably many symbols. We exhibit an embedding of $S(\infty)$ into a UHF-algebra $\mathfrak A$ of Glimm type n^∞ such that, if δ is a *-derivation vanishing on $S(\infty)$ and satisfying $\tau \circ \delta = 0$, where τ is the unique trace on $\mathfrak A$, then δ admits an extension which is the generator of a C^* -dynamics.

1. Introduction

In [4] Goodman showed that if G is a locally compact group, and δ is a closed *-derivation on $C_0(G)$ commuting with the action of G as left translations on the algebra, then δ is a generator of a strongly continuous one-parameter group of *-automorphisms on $C_0(G)$. In a more recent paper, [5], Goodman and Jørgensen consider closed *-derivations on a C^* -algebra $\mathfrak A$ commuting with a strongly continuous representation α_G of a compact group G on $\mathfrak A$. They define a *-derivation δ to be tangential to α_G if it has the aforementioned property (i.e., $\delta \circ \alpha_g = \alpha_g \circ \delta$, for all $g \in G$) and if $\mathfrak A^\alpha$, the C^* -algebra of fixed elements of $\mathfrak A$, lies in the kernel of the derivation. Under certain restrictions on the system $(\alpha, G, \mathfrak A)$ (e.g., $\mathfrak A$ is abelian, or the action of G on $\mathfrak A$ is ergodic) they prove that a derivation tangential to α_G is, in fact, the infinitesimal generator of a strongly continuous one-parameter group of automorphisms.

Suppose now that $\mathfrak A$ is a UHF (uniformly hyperfinite) C^* -algebra of Glimm type n^∞ : i.e., $\mathfrak A = \bigotimes_{k \geq 1}^{\infty} B_k$, where each B_k is a full $n \times n$ matrix algebra over the complex numbers $\mathbb C$. Define $S(\infty)$ to be the group of *finite* permutations on the symbols of $\mathbb N$, the positive integers. Then there exists a natural embedding of $S(\infty)$ into $\mathbb A$ such that, if G is any compact group, and α_G a strongly continuous representation of $\operatorname{product}$ type, then $S(\infty)$ lies in the C^* -algebra $\mathbb A$ of fixed points of α_G (see [8]). Motivated by the results of [5], we show the following: if δ is a

Work supported in part by NSF

440 R. T. Powers and G. Price

symmetric *-derivation vanishing on $S(\infty)$ and satisfying $\tau \circ \delta = 0$, where τ is the (normalized) trace on \mathfrak{A} , then δ extends to a generator $\hat{\delta}$ on \mathfrak{A} whose associated one-parameter group is of product type.

2. Derivations Vanishing on $S(\infty)$

We shall make use of the following notation throughout. For n a fixed positive integer, let B_1, B_2, \ldots be a sequence of $n \times n$ matrix algebras over \mathbb{C} , where B_k has identity I_k and matrix units $\{e_{ij}^k: 1 \leq i, j \leq n\}$ satisfying $e_{ij}^k e_{pq}^k = \delta_{jp} e_{iq}^k$. Let \mathfrak{A} be the UHF-algebra formed as the infinite tensor product $\mathfrak{A} = \bigotimes_{k \geq 1} B_k$. We write I for the identity of \mathfrak{A} . For finite subsets A of \mathbb{N} , there exists a canonical embedding $L_A: \bigotimes_{k \in A} B_k \to \mathfrak{A}$ which carries $\bigotimes_{k \in A} y_k$ into $(\bigotimes_{k \in A} y_k) \otimes (\bigotimes_{k \in \mathbb{N} \setminus A} I_k)$, and extends by linearity. Denote the image of L_A by \mathfrak{A}_A . (Whenever there is no danger of confusion we shall identify $\bigotimes_{k \in A} B_k$ with its image \mathfrak{A}_A in \mathfrak{A} . In particular, we regard the algebras B_k as embedded in \mathfrak{A} .) For finite disjoint subsets A, A' of \mathbb{N} , \mathfrak{A}_A and \mathfrak{A}_A are commuting subalgebras. For m a positive integer, let A_m denote the subset $\{1,2,\ldots,m\}$ of \mathbb{N} , and denote \mathfrak{A}_A by \mathfrak{A}_M . Then clearly $\mathfrak{A}_1 \subset \mathfrak{A}_2 \subset \ldots$, and the union $\mathfrak{A}_0 = \bigcup_{m=1}^{\infty} \mathfrak{A}_m$ is a uniformly dense subalgebra of \mathfrak{A} . We call \mathfrak{A}_0 the subalgebra of local elements of \mathfrak{A} . We refer the reader to [6] for the general theory of infinite tensor products of C^* -algebras.

Let τ be the unique normalized trace on \mathfrak{A} , i.e., τ is the unique state on \mathfrak{A} satisfying $\tau(xy) = \tau(yx)$, $x, y \in \mathfrak{A}$. If e^k_{ij} is a matrix unit of B_k , then $\tau(e^k_{ij}) = \delta_{ij}/n$; furthermore, for $x \in \mathfrak{A}_A$, $y \in \mathfrak{A}_{A'}$, and A, A' disjoint, $\tau(xy) = \tau(x)\tau(y)$. τ is a product state $\left(\tau = \bigotimes_{k \geq 1} \tau_k$, where τ_k is the normalized trace on B_k), hence [7, Theorem 2.5], a factor state, i.e., $\pi_{\tau}(\mathfrak{A})''$ is a factor in the associated GNS representation $(\pi_{\tau}, H_{\tau}, \Omega_{\tau})$. For convenience we shall write $\pi_{\tau} = \pi$, $H_{\tau} = H$, $\Omega_{\tau} = \Omega$. That π is a faithful representation follows from the fact [3, Theorem 5.1] that \mathfrak{A} is simple.

We now describe an embedding ϱ of the group $S(\infty)$ of finite permutations on the symbols of $\mathbb N$ into the group of unitary elements of $\mathfrak A$. We write e for the identity element of $S(\infty)$, and define $\varrho(e)=I$. Let $t=(kl)\in S(\infty)$ be a transposition $(k \neq l, k, l \in \mathbb N)$, and define $\varrho(t)$ to be the operator $\varrho(t)=\sum_{i,j=1}^n e_{ij}^k \otimes e_{ji}^l$. Note that $\varrho(t)$ is self-adjoint and that $[\varrho(t)]^2=I=\varrho(t^2)$, hence $\varrho(t)$ is unitary. Moreover, suppose $x\in \mathfrak A_0$, then x is a linear combination of elements of the form $e_{i_1j_1}^{p_1}\otimes ...\otimes e_{i_rj_r}^{p_r}$. A straightforward calculation gives, for t=(kl),

$$\varrho(t) \left[e_{i_1 j_1}^{p_1} \otimes \dots \otimes e_{i_r j_r}^{p_r} \right] \varrho(t^{-1}) = e_{i_1 j_1}^{t(p_1)} \otimes \dots \otimes e_{i_r j_r}^{t(p_r)}, \tag{1}$$

where t(p) is the image of $p \in \mathbb{N}$ under the permutation t. In particular, Eq. (1) indicates that the mapping $x(\in B_p) \mapsto \varrho(t) x \varrho(t^{-1})$ is an isomorphism between B_p and $B_{t(p)}$.

Let $q \in S(\infty)$, then q may be written as a product of transpositions $q = t_1 t_2 \dots t_s$. We define $\varrho(q) = \varrho(t_1) \dots \varrho(t_s)$. To see that this is well-defined, suppose $q = e = t_1 \dots t_s$. Making repeated use of (1), we have, for $u = \varrho(t_s)\varrho(t_{s-1}) \dots \varrho(t_1)$,

$$\begin{split} u\{e_{i_{1}j_{1}}^{p_{1}}\otimes\ldots\otimes e_{i_{r}j_{r}}\}u^{*} &= \varrho(t_{s})\ldots\varrho(t_{2})\{\varrho(t_{1})[e_{i_{1}j_{1}}^{p_{1}}\otimes\ldots\otimes e_{i_{r}j_{r}}^{p_{r}}]\varrho(t_{1}^{-1})\}\varrho(t_{2}^{-1})\ldots\varrho(t_{s}^{-1})\\ &= \varrho(t_{s})\ldots\varrho(t_{2})\{e_{i_{1}j_{1}}^{t_{1}(p_{1})}\otimes\ldots\otimes e_{i_{r}j_{r}}^{t_{1}(p_{r})}\}\varrho(t_{2}^{-1})\ldots\varrho(t_{s}^{-1})\\ &= \ldots\\ &= e_{i_{1}j_{1}}^{t_{s}\ldots t_{1}(p_{1})}\otimes\ldots\otimes e_{i_{r}j_{r}}^{t_{s}\ldots t_{1}(p_{r})}\\ &= e_{i_{1}j_{1}}^{\varrho(t_{1})}\otimes\ldots\otimes e_{i_{r}j_{r}}^{\varrho(p_{r})}\\ &= e_{i_{1}j_{1}}^{\varrho(t_{1})}\otimes\ldots\otimes e_{i_{r}j_{r}}^{\varrho(p_{r})} \end{split}$$

Hence for all $x \in \mathfrak{A}_0$, Eq. (2) yields $uxu^* = x$. By norm continuity, the same holds for all $x \in \mathfrak{A}$. Since \mathfrak{A} has trivial center, however, and since u is unitary, $u = \lambda I$, for some $\lambda \in \mathbb{C}$, $|\lambda| = 1$. But u is a product of operators of the form $\varrho(t) = \varrho((kl)) = \sum_{i,j=1}^{n} e_{ij}^k \otimes e_{ji}^l$, hence clearly $\lambda = \tau(u) > 0$. Thus $\lambda = 1$, $u = I = \varrho(e)$, and ϱ is well-defined. The faithfulness of ϱ is apparent from Eq. (1), and thus we have

Lemma 1. The mapping ϱ of $S(\infty)$ into the unitaries of $\mathfrak A$ is a faithful group representation.

In what follows, we shall identify $S(\infty)$ with its embedding $\varrho(S(\infty))$ in $\mathfrak A$ given above. Under this identification, the map $\operatorname{Ad}:S(\infty)\to\operatorname{Aut}(\mathfrak A)$ defined by $\operatorname{Ad}(p)(x)=pxp^{-1},\ p\in S(\infty),\ x\in\mathfrak A$, forms a group of inner automorphisms of $\mathfrak A$. Moreover, if x is local, i.e., $x\in\mathfrak A_l$ for some $l\in\mathbb N$, and $p(k)=i_k,\ 1\leq k\leq l$, an application of Eq. (1) yields $pxp^{-1}\in\mathfrak A_l$, where $A=\{i_1,i_2,...,i_l\}$. By [9, Lemma 2.1], $\mathfrak A$ is asymptotically abelian with respect to this group action.

If G is a compact group, and $g\mapsto \alpha_g'\in \operatorname{Aut}(\mathsf{M})$ is a strongly continuous representation of G as *-automorphisms on an $n\times n$ matrix algebra M , then define corresponding representations $g\mapsto \alpha_g^k\in \operatorname{Aut}(B_k)$ as follows: if $\{e_{ij}:1\leqq i,j\leqq n\}$ are matrix units for M , and if $\alpha_g'(e_{ij})=\sum\limits_{s,t=1}^n\beta_{ijst}e_{st}$, define $\alpha_g^k(e_{ij}^k)=\sum\limits_{s,t=1}^n\beta_{ijst}e_{st}^k$. We may then construct a strongly continuous group of product automorphisms $\{\alpha_g:g\in G\}$ of \mathfrak{A} by forming the tensor product $\alpha_g=\bigotimes_{k\geqq 1}^k\alpha_g^k$. Let $t\in S(\infty)$ and let $g\in G$; then it is clear, using (1), that $\alpha_g(txt^{-1})=t\alpha_g(x)t^{-1}$, all $x\in \mathfrak{A}$. Thus $(t^{-1})(\alpha_g(t))$ is a central unitary element of \mathfrak{A} , and since \mathfrak{A} has trivial center, we must have $\alpha_g(t)=\lambda t$, some $\lambda\in \mathbb{C}$, $|\lambda|=1$. But $\tau=\tau\circ\alpha_g$, by the uniqueness of the trace on \mathfrak{A} , and a slight modification of the argument preceding Lemma 1 shows that $\tau(t)>0$, so that $\tau(t)=\tau(\alpha_g(t))=\lambda\tau(t)$, or $\lambda=1$. Thus $\alpha_g(t)=t$, all $t\in S(\infty)$, and therefore $S(\infty)\subset \mathfrak{A}^x$, the subalgebra of \mathfrak{A} of fixed elements of α_G . Hence if δ is any derivation vanishing on \mathfrak{A}^x , then certainly $\delta p=0$, all $p\in S(\infty)$, and thus we are led by [5] to consider symmetric *-derivations δ on \mathfrak{A} [i.e., $D(\delta)$ is a dense *-subalgebra of \mathfrak{A} , and $\delta(x^*)=(\delta x)^*$, all $x\in D(\delta)$] which vanish on $S(\infty)$. If we impose the restriction $\tau\circ\delta=0$, then it follows (Theorem 6) that δ has an extension δ which is a generator.

As a preliminary to proving this we make a definition and establish some results on strong convergence in $\pi(\mathfrak{A})''$.

Definition 1. Let r > m be non-negative integers, then define $S_{r,m} \subset S(\infty)$ to be the subgroup [of order (r-m)!] of permutations which fix the symbols of $\mathbb{N}\setminus\{m+1,\ldots,r\}$.

Lemma 2. Let x be a fixed element of \mathfrak{A} . Define, for r > 0,

$$x_r = (1/r!) \cdot \sum_{p \in S_{r,0}} p x p^{-1}$$
.

Let (π, H, Ω) be the GNS construction for τ . Then the sequence $\{\pi(x_r)\}$ has a strong limit in $\pi(\mathfrak{A})''$, and st- $\lim_{n\to\infty} \pi(x_r) = \tau(x)\pi(I)$.

Proof. Without loss of generality we may assume x to be self-adjoint. Furthermore, we may assume x to be local, i.e., $x \in \mathfrak{U}_0$. For suppose $x \in \mathfrak{U}$, and st- $\lim_{r \to \infty} \pi(x'_r)$ exists for all $x' \in \mathfrak{U}_0$. If $x' \in \mathfrak{U}_0$ is chosen such that $\|x - x'\| < \varepsilon$, for given $\varepsilon > 0$, then one easily checks that $\|\pi(x_r) - \pi(x'_r)\| < \varepsilon$, and the strong convergence of $\{\pi(x_r)\}$ will follow by continuity. So assume $x = x^* \in \mathfrak{U}_1$, for some $l \in \mathbb{N}$.

We begin by showing that $\{\pi(x_r)\Omega\}$ is a Cauchy sequence. Let $r \ge s$, then, since x_r, x_s are self-adjoint,

$$\begin{split} \|\pi(x_r)\Omega - \pi(x_s)\Omega\|^2 &= \|\pi(x_r - x_s)\Omega\|^2 \\ &= \tau([x_r - x_s]^2) \\ \tau(x_r^2) - 2\tau(x_r x_s) + \tau(x_s^2). \end{split}$$

Let N(r;l) be the set of those $p \in S_{r,0}$ which permute all of the symbols of Λ_l into the set $\{l+1,\ldots,r\}$. For such $p, pxp^{-1} \in \mathfrak{A}_{\{l+1,\ldots,r\}}$, and therefore, since $x \in \mathfrak{A}_{A_l}$, $\tau(pxp^{-1}x) = \tau(pxp^{-1})$ $\tau(x) = \tau(x)^2$. Furthermore, one may check by a counting argument that $\lim_{r \to \infty} \left[\# N(r;l)/r! \right] = 1$. Then

$$\begin{split} \tau(x_r^2) &= (1/(r!)^2) \cdot \sum_{p,\, q \in S_{r,\, 0}} \tau(pxp^{-1}qxq^{-1}) \\ &= (1/(r!)^2) \cdot \sum_{p,\, q \in S_{r,\, 0}} \tau([q^{-1}pxp^{-1}q]x) \\ &= (1/r!) \cdot \sum_{p \in S_{r,\, 0}} \tau(pxp^{-1}x) \\ &= (1/r!) \cdot \sum_{p \in N(r;\, l)} \tau(pxp^{-1}x) + (1/r!) \cdot \sum_{p \in S_{r,\, 0} \backslash N(r;\, l)} \tau(pxp^{-1}x) \\ &= (\#N(r;\, l)/r!) [\tau(x)]^2 + (1/r!) \cdot \sum_{p \in S_{r,\, 0} \backslash N(r;\, l)} \tau(pxp^{-1}x) \,. \end{split}$$

The sum $(1/r!) \cdot \sum_{p \in S_{r,0} \setminus N(r;\,l)} \tau(pxp^{-1}x)$ is bounded in absolute value by $\|x\|^2 \cdot [r! - \#N(r;\,l)]/r!$, hence it tends to 0 as $r \to \infty$, and therefore $\lim_{r \to \infty} \tau(x_r^2) = \tau(x)^2$. Similarly, $\lim_{s \to \infty} \tau(x_s^2) = \tau(x)^2 = \lim_{r,s \to \infty} \tau(x_r x_s)$, thus $\lim_{r,s \to \infty} \|\pi(x_r)\Omega - \pi(x_s)\Omega\| = 0$.

Let $y, z \in \mathfrak{A}_0$, then employing a convergence argument similar to the one above, one shows that the sequences $\{\pi(x_r)\pi(y)\pi(z)\Omega:r\in\mathbb{N}\}$ and $\{\pi(y)\pi(x_r)\pi(z)\Omega:r\in\mathbb{N}\}$ are Cauchy in H and that their limits coincide. Letting y=I in the first sequence, one sees that the uniformly bounded (by $\|x\|$) sequence of operators $\{\pi(x_r)\}$ converges on all vectors in the dense subset $\pi(\mathfrak{A}_0)\Omega$ of H, and therefore has a strong limit in $\pi(\mathfrak{A})$." Again using uniform boundedness, we have $\lim_{r\to\infty}\pi(y)\pi(x_r)\xi=\lim_{r\to\infty}\pi(x_r)\pi(y)\xi$, all $\xi\in H$, $y\in\mathfrak{A}_0$, hence

$$\operatorname{st-}\lim_{r\to\infty}\pi(x_r)\in\pi(\mathfrak{A}_0)'\cap\pi(\mathfrak{A})''=\pi(\mathfrak{A})'\cap\pi(\mathfrak{A})''=\{\lambda\pi(I):\lambda\in\mathbb{C}\}\;.$$

Thus

$$\begin{aligned} \text{st-} & \lim_{r \to \infty} \pi(x_r) = \lim_{r \to \infty} \left\langle \pi(x_r) \Omega, \Omega \right\rangle \cdot \pi(I) \\ & = \lim_{r \to \infty} \tau(x_r) \cdot \pi(I) \\ & = \lim_{r \to \infty} (1/r!) \cdot \tau \left(\sum_{p \in S_{r,0}} pxp^{-1} \right) \cdot \pi(I) \\ & = \tau(x) \cdot \pi(I). \end{aligned}$$

This completes the proof of the lemma.

We describe a generalization of the "averaging map" defined in Lemma 2. Let \mathfrak{A}_m^c be the commutant of \mathfrak{A}_m relative to \mathfrak{A} (i.e., $\mathfrak{A}_m^c = \{y \in \mathfrak{A} : xy = yx, \text{ all } x \in \mathfrak{A}_m\}$). In particular, if $t \in S_{r,m}$, then $txt^{-1} = x$, for all matrix units $x \in \mathfrak{A}_m$, by Eq. (1), so that $t \in \mathfrak{A}_m^c$. Hence $S_{r,m}$ lies in \mathfrak{A}_m^c . Let $y \in \mathfrak{A}_m^c$, and for r > m, form the operator

$$y_{r,m} = [1/(r-m)!] \cdot \sum_{p \in S_{r,m}} pyp^{-1}$$
.

Then clearly $y_{r,m} \in \mathfrak{A}^c_m$, and the sequence $\{y_{r,m} : r > m\}$ is uniformly bounded in norm by $\|y\|$. Arguing as in Lemma 2, one shows that the sequence $\{\pi(y_{r,m}) : r > m\}$ converges strongly to an operator $\overline{y} \in \pi(\mathfrak{A})''$, and for all $z \in \mathfrak{A}_0 \cap \mathfrak{A}^c_m$, $\overline{y}\pi(z) = \pi(z)\overline{y}$, hence $\overline{y} \in \pi(\mathfrak{A}_0 \cap \mathfrak{A}^c_m)' = \pi(\mathfrak{A}^c_m)'$. Clearly, $\overline{y} \in \pi(\mathfrak{A}_m)'$ (since $y_{r,m} \in \mathfrak{A}^c_m$, all r > m), so that $\overline{y} \in \pi(\mathfrak{A}^c_m)' \cap \pi(\mathfrak{A}^c_m)' \cap \pi(\mathfrak{A}^c_m)' \cap \pi(\mathfrak{A}^c_m)'$. Since \mathfrak{A} is generated by \mathfrak{A}^c_m and \mathfrak{A}_m , $\pi(\mathfrak{A}^c_m)' \cap \pi(\mathfrak{A}^c_m)' = \pi(\mathfrak{A})'$, thus $\overline{y} \in \pi(\mathfrak{A})' \cap \pi(\mathfrak{A})'' = \{\lambda \pi(I)\}$. Arguing as before, one now shows that $\overline{y} = \text{st-}\lim_{r \to \infty} \pi(y_{r,m}) = \tau(y) \cdot \pi(I)$.

Let $\{f_{ij}: 1 \leq i, j \leq n^m\}$ be matrix units for the $n^m \times n^m$ -dimensional matrix algebra \mathfrak{A}_m . By [2], any $x \in \mathfrak{A}$ may be written uniquely in the form $x = \sum\limits_{i,j=1}^{n^m} f_{ij}y_{ij}$, where the y_{ij} lie in \mathfrak{A}_m^c . For r > m define $x_{r,m} = [1/(r-m)!] \cdot \sum\limits_{p \in S_{r,m}} pxp^{-1}$. Then

$$\begin{split} \text{st-} & \lim_{r \to \infty} \pi(x_{r,m}) = \text{st-} \lim_{r \to \infty} \left[1/(r-m)! \right] \cdot \sum_{p \in S_{r,m}} \sum_{i,\,j=1}^{n^m} \pi(pf_{ij}y_{ij}p^{-1}) \\ & = \text{st-} \lim_{r \to \infty} \left[1/(r-m)! \right] \cdot \sum_{i,\,j=1}^{n^m} \left[\pi(f_{ij}) \sum_{p \in S_{r,m}} \pi(py_{ij}p^{-1}) \right] \\ & = \sum_{i,\,j=1}^{n^m} \pi(f_{ij})\tau(y_{ij}) \\ & = \pi \left\{ \sum_{i,\,j=1}^{n^m} f_{ij}\tau(y_{ij}) \right\}. \end{split}$$

By [2, Lemma 2], $\sum_{i,j=1}^{n^m} f_{ij}\tau(y_{ij}) = \phi_m(x)$, where ϕ_m is the conditional expectation of the trace τ onto \mathfrak{A}_m . Hence st- $\lim_{r\to\infty} \pi(x_{r,m}) = \pi(\phi_m(x))$. Thus we have

Lemma 3. Let $x \in \mathfrak{A}$, and for fixed m define $x_{r,m}$ as above. Then the sequence $\{\pi(x_{r,m}): r > m\}$ has a strong limit in $\pi(\mathfrak{A})''$, and there exists a unique element $\phi_m(x) \in \mathfrak{A}_m$ such that

$$\pi(\phi_m(x)) = \operatorname{st-lim}_{r \to \infty} \pi(x_{r,m}).$$

The mapping $\phi_m: \mathfrak{A} \to \mathfrak{A}_m$ is the conditional expectation of the trace onto \mathfrak{A}_m . Proof. The above argument shows that the conditional expectation ϕ_m has the required properties. Uniqueness follows from the faithfulness of π .

Lemma 4. Let Δ be a dense linear subset of \mathfrak{A} . Then ϕ_m maps Δ onto \mathfrak{A}_m .

Proof. Let $x \in \mathfrak{A}_m$, and for given $\varepsilon > 0$, choose $y \in \Delta$ such that $\|x - y\| < \varepsilon$. Since $\|\phi_m\| = 1$, by [2, Lemma 2], $\|x - \phi_m(y)\| = \|\phi_m(x) - \phi_m(y)\| \le \|x - y\|$. Hence $\phi_m(\Delta)$ is dense in \mathfrak{A}_m . But since ϕ_m is linear and \mathfrak{A}_m is finite-dimensional, $\phi_m(\Delta) = \mathfrak{A}_m$.

Lemma 5. Let δ be a *-derivation with dense domain $D(\delta) \subset \mathfrak{A}$ which satisfies $\tau \circ \delta \equiv 0$. Let \mathscr{D} be the *-subalgebra of \mathfrak{A} consisting of all elements $A \in \mathfrak{A}$ such that there exists a sequence $\{A_n : n \in \mathbb{N}\} \subseteq D(\delta)$ satisfying:

- (i) $\{A_n\}$ and $\{\delta A_n\}$ are uniformly bounded sequences in \mathfrak{A} .
- (ii) $\{\pi(A_n)\}\$ and $\{\pi(\delta A_n)\}\$ are strongly convergent sequences in $\pi(\mathfrak{A})''$.
- (iii) $\pi(A) = \text{st-}\lim_{n \to \infty} \pi(A_n)$, and there exists an $A' \in \mathfrak{N}$ such that $\pi(A') = \text{st-}\lim_{n \to \infty} \pi(\delta A_n)$.

Define a linear operator $\delta': \mathcal{D} \to \mathfrak{A}$ by $\delta' A = A'$, then δ' is a well-defined *-derivation on \mathfrak{A} extending δ and satisfying $\tau \circ \delta' = 0$.

Proof. Clearly, \mathscr{D} is a linear set containing $D(\delta)$. Suppose A and B are elements of \mathfrak{A} with corresponding sequences $\{A_n\}$, $\{B_n\}$ satisfying the conditions of the lemma. Then by (iii) and the faithfulness of π there exist unique elements A', B' of \mathfrak{A} such that $\pi(A') = \operatorname{st-lim}_{n \to \infty} \pi(\delta A_n) \Big[\operatorname{respectively}, \pi(B') = \operatorname{st-lim}_{n \to \infty} \pi(\delta B_n) \Big]$. Using (i) one verifies easily that the sequences $\{A_nB_n\}$, $\{A_n\delta B_n\}$, $\{(\delta A_n)B_n\}$ are uniformly bounded, hence so is $\{\delta(A_nB_n)\}$, since $\delta(A_nB_n) = (\delta A_n)B_n + A_n(\delta B_n)$. Let $M = \sup_n \{\|A_n\|\}$, and suppose that $f \in H_\tau$. Then applying the strong convergence of the sequences $\{\pi(A_n)\}$, $\{\pi(B_n)\}$, one has

$$\begin{split} \lim_{n \to \infty} \| \left[\pi(AB) - \pi(A_n B_n) \right] f \| & \leq \lim_{n \to \infty} \left\{ \| \left[\pi(AB) - \pi(A_n B) \right] f \| + \| \left[\pi(A_n B) - \pi(A_n B_n) f \right] \right\} \\ & \leq \lim_{n \to \infty} \left\{ \| \left[\pi(A) - \pi(A_n) \right] (\pi(B) f) \| + M \| \left[\pi(B) - \pi(B_n) \right] f \| \right\} \\ & = 0 \,, \end{split}$$

so that st- $\lim_{n\to\infty}\pi(A_nB_n)=\pi(AB)$. Similarly, one verifies that the sequence $\{\pi(\delta A_n\cdot B_n)\}$ [respectively, $\{\pi(A_n\cdot\delta B_n)\}$] converges strongly to $\pi(A'B)$ [respectively, $\pi(AB')$] and therefore the sequence $\{\pi(\delta(A_nB_n))\}=\{\pi(\delta A_n\cdot B_n)+\pi(A_n\cdot\delta B_n)\}$ converges strongly to $\pi(A'B+AB')$. Thus $AB\in\mathscr{D}$.

Now suppose $A \in \mathcal{D}$ with corresponding sequence $\{A_n\} \subseteq D(\delta)$. Then the sequences $\{A_n^*\}$ and $\{\delta(A_n^*)\}$ (= $\{(\delta A_n)^*\}$) are uniformly bounded. To see that $\{\pi(A_n^*)\}$ converges strongly to $\pi(A^*)$ it suffices to check, by the uniform boundedness of $\{A_n^*\}$, that $\lim_{n \to \infty} \pi(A_n^*) f = \pi(A^*) f$ for all f in the dense subspace $\pi(\mathfrak{A})\Omega_\tau$ of H. Let $f = \pi(z)\Omega_\tau$, $z \in \mathfrak{A}$; then

$$\begin{split} \lim_{n \to \infty} \| \left[\pi(A^*) - \pi(A_n^*) \right] f \|^2 &= \lim_{n \to \infty} \left\langle \pi(A^* - A_n^*) \pi(z) \Omega_{\tau}, \ \pi(A^* - A_n^*) \pi(z) \Omega_{\tau} \right\rangle \\ &= \lim_{n \to \infty} \left\langle \pi(z^*) \pi(A - A_n) \pi(A^* - A_n^*) \pi(z) \Omega_{\tau}, \ \Omega_{\tau} \right\rangle \\ &= \lim_{n \to \infty} \tau(z^* (A - A_n) (A^* - A_n^*) z) \\ &= \lim_{n \to \infty} \tau(\left[A^* - A_n^* \right] z z^* \left[A - A_n \right]) \\ &\leq \lim_{n \to \infty} \| z z^* \| \cdot \tau(\left[A^* - A_n^* \right] \left[A - A_n \right]) \\ &= \lim_{n \to \infty} \| z z^* \| \cdot \| \pi(A - A_n) \Omega_{\tau} \|^2 = 0 \,. \end{split}$$

Similarly, one verifies that st- $\lim_{n\to\infty} \pi(\delta A_n^*) = \text{st-}\lim_{n\to\infty} \pi((\delta A_n)^*) = \pi(A')^*$.

To see that δ' is well-defined, suppose st- $\lim_{n\to\infty} \pi(A_n) = 0$ and st- $\lim_{n\to\infty} \pi(\delta A_n) = B$. In particular, $\pi(\delta A_n)$ converges weakly to B, hence for all f, g in the dense subspace $\pi(D(\delta))\Omega_{\tau}$ of H_{τ} we have, letting $f = \pi(z)\Omega_{\tau}$, [respectively, $g = \pi(y^*)\Omega_{\tau}$], $z, y \in D(\delta)$,

$$\begin{split} \langle Bf,g \rangle &= \lim_{n \to \infty} \left\langle \pi(\delta A_n) \pi(z) \Omega_\tau, \pi(y^*) \Omega_\tau \right\rangle \\ &= \lim_{n \to \infty} \tau(y [\delta A_n] z) = \lim_{n \to \infty} \tau(zy [\delta A_n]) = \lim_{n \to \infty} -(\tau([\delta(zy)] A_n) z) \\ &= \lim_{n \to \infty} -\langle \pi(A_n) \Omega_\tau, \pi(\delta[zy])^* \Omega_\tau \rangle = 0 \,. \end{split}$$

Thus B=0, by continuity, and δ' is well-defined. Clearly, δ' extends δ .

Again let $A, B \in \mathcal{D}$, with corresponding sequences $\{A_n\}, \{B_n\}$. Then AB^* has corresponding sequence $\{A_nB_n^*\}$, and

$$\begin{split} \pi(\delta'[AB^*]) &= \text{st-}\lim_{n \to \infty} \pi(\delta[A_n B_n^*]) \\ &= \text{st-}\lim_{n \to \infty} \left\{ \pi(\delta A_n) \pi(B_n^*) + \pi(A_n) \pi(\delta[B_n^*]) \right\} \\ &= \text{st-}\lim_{n \to \infty} \left\{ \pi(\delta A_n) \pi(B_n)^* + \pi(A_n) \pi([\delta B_n]^*) \right\} \\ &= \pi([A'(B^*) + A(B')^*]) \\ &= \pi((\delta' A) B^* + A(\delta' B)^*) \,. \end{split}$$

hence $\delta'(AB^*) = (\delta'A)B^* + A(\delta'B)^*$, by the faithfulness of π , and therefore δ' is a *-derivation. Finally, note that for $A \in \mathcal{D}$,

$$\begin{split} \tau(\delta'A) &= \left\langle \pi(\delta'A) \Omega_{\tau}, \ \Omega_{\tau} \right\rangle \\ &= \lim_{n \to \infty} \left\langle \pi(\delta A_n) \Omega_{\tau}, \Omega_{\tau} \right\rangle \\ &= \lim_{n \to \infty} \left(\tau \circ \delta \right) (A_n) = 0 \,, \end{split}$$

so that $\tau \circ \delta' = 0$. This completes the proof of the lemma.

Corollary. Let δ be a *-derivation on $\mathfrak A$ vanishing on $S(\infty)$ and satisfying $\tau(\delta x) = 0$, all $x \in D(\delta)$. Then there exists a generator $\hat{\delta}$ which extends δ , i.e., $D(\delta) \subset D(\hat{\delta})$, and $\hat{\delta}|_{D(\delta)} = \delta$.

Proof. Let δ' be the extension of δ given in the lemma above. We show $\mathfrak{A}_0 \subset \mathscr{D}$ $[=D(\delta')]$. To see this, let $x \in D(\delta)$, let m be a positive integer, and form the sequence of operators $\{x_{r,m}:r>m\}$, where $x_{r,m}$ is defined as in Lemma 3. Clearly, $\{x_{r,m}:r>m\}$ is a uniformly bounded sequence contained in $D(\delta)$; moreover,

$$\begin{split} \delta(x_{r,\,m}) &= \big[1/(r-m)! \big] \sum_{p \in S_{r,\,m}} \delta(pxp^{-1}) \\ &= \big[1/(r-m)! \big] \sum_{p \in S_{r,\,m}} p(\delta x) p^{-1} \\ &= (\delta x)_{r,\,m}, \end{split}$$

and it is immediate that the sequence $\{(\delta x)_{r,m}: r>m\}$ is also uniformly bounded. By Lemma 3, $\pi(\phi_m(x))=\text{st-}\lim_{r\to\infty}\pi(x_{r,m})$ [respectively, $\pi(\phi_m(\delta x))=\text{st-}\lim_{r\to\infty}\pi((\delta x)_{r,m})$], hence by the preceding lemma, $\phi_m(x)\in D(\delta')$ and $\delta'(\phi_m(x))=\phi_m(\delta x)$. Since $\phi_m:D(\delta)\to\mathfrak{A}_m$ is onto, by Lemma 4, the preceding equation implies $\delta':\mathfrak{A}_m\to\mathfrak{A}_m$, for all m. Thus \mathfrak{A}_0 is a dense set of analytic elements for δ' .

Since $\tau \circ \delta' = 0$, δ' is closable, by [1, Theorem 6]: denote its closure by $\hat{\delta}$. Then $\delta \subset \delta' \subset \hat{\delta}$, and $\hat{\delta}$ is a closed *-derivation with a dense set of analytic elements, hence [1, Theorem 6], $\hat{\delta}$ is a generator.

Finally we can prove

Theorem 6. Let δ be a symmetric *-derivation on $\mathfrak A$ which vanishes on $S(\infty)$ and satisfies $\tau \circ \delta = 0$. Then δ has an extension $\hat{\delta}$ which is a generator of a strongly continuous one-parameter group $\{\beta_t : t \in \mathbb{R}\}$ of product automorphisms of the form $\beta_t = \bigotimes_{k \geq 1} \beta_t'$.

Proof. By the corollary to Lemma 5, δ has an extension to a generator $\hat{\delta}$. We have only to show that the associated one-parameter group $\{\beta_t\}$ has the desired form.

First note that $\hat{\delta}: B_1 \to B_1$ (since $\mathfrak{A}_1 = B_1$ and $\hat{\delta}: \mathfrak{A}_m \to \mathfrak{A}_m$ for all m), so that B_1 consists of analytic elements for $\hat{\delta}$. Let $p \in S(\infty)$, then $\hat{\delta}p = \delta p = 0$. Hence for $x \in B_1$, $p \in S(\infty)$, pxp^{-1} is entire analytic for $\hat{\delta}$ and

$$\beta_{t}(pxp^{-1}) = \sum_{n \geq 0} (t^{n}/n!) [(\hat{\delta})^{n}(pxp^{-1})]
= \sum_{n \geq 0} (t^{n}/n!) p[(\hat{\delta})^{n}x] p^{-1}
= p \left\{ \sum_{n \geq 0} (t^{n}/n!) [(\hat{\delta})^{n}x] \right\} p^{-1}
= p\beta_{t}(x) p^{-1}.$$
(3)

Letting p = I [= $\varrho(e)$], Eq. (3) gives $\beta_t : B_1 \to B_1$. Now suppose $x = e_{ij}^1 \in B_1$ and $\beta_t(e_{ij}^1) = \sum_{r,s=1}^n \alpha_{ijrs}(t)e_{rs}^1$. Letting $p = (1k) \in S(\infty)$ and applying both Eqs. (1) and (3), we have

$$\beta_{t}(e_{ij}^{k}) = \beta_{t}(pe_{ij}^{1}p^{-1})$$

$$= p\beta_{t}(e_{ij}^{1})p^{-1}$$

$$= \sum_{r,s=1}^{n} \alpha_{ijrs}(t)e_{rs}^{k}.$$

Hence $\beta_t: B_k \to B_k$, all k, and under the obvious identification $B_1 = B_2 = \ldots$, we have $\beta_{t|B_1} = \beta_{t|B_2} = \ldots$. Thus $\beta_t = \bigotimes_{k \ge 1} \beta_t'$, where $\beta_t' = \beta_{t|B_1}$, and the proof is complete.

Acknowledgements. The authors are grateful to Fred Goodman for showing us a preprint of [5] and for improving our original proof of the results of Corollary 5. We wish to thank Palle Jørgensen for correspondence, and the referee for helpful suggestions.

References

- Bratteli, O., Robinson, D.W.: Unbounded derivations of C*-algebras. II. Commun. Math. Phys. 46, 11–30 (1976)
- 2. Elliott, G.: Derivations of matroid C*-algebras. Invent. math. 9, 253–269 (1970)
- 3. Glimm, J.: On a certain class of operator algebras. Trans. Am. Math. Soc. 95, 318-340 (1960)
- 4. Goodman, F.: Translation invariant closed *-derivations. Pac. J. Math. 97, 403-413 (1981)
- Goodman, F., Jørgensen, P.E.T.: Unbounded derivations commuting with compact group actions. Commun. Math. Phys. 82, 399–405 (1981)
- Guichardet, A.: Produits tensoriels infinis et représentations des relations d'anticommutation. Ann. Sci. École Norm. Sup. 83, 138–171 (1967)
- 7. Powers, R.T.: Representations of uniformly hyperfinite algebras and their associated von Neumann rings. Ann. Math. **86**, 1–52 (1966)
- 8. Price, G.: Extremal traces on some group-invariant C^* -algebras (to appear)
- Størmer, E.: Symmetric states of infinite tensor products of C*-algebras. J. Funct. Anal. 3, 48–68 (1969)

Communicated by H. Araki

Received July 14, 1981