

© Springer-Verlag 1982

Local Extensions in Singular Space-Times II

C. J. S. Clarke

Department of Mathematics, University of York, Heslington, York YOI 5DD, England

Abstract. Previous results of the author are corrected by reformulating them in space-times whose Riemann tensor satisfies a Hölder condition.

1. Introduction

In an earlier paper with this title [2] I showed the existence of local extensions through quasiregular singularities (in the terminology of [5]) by (implicitly) assuming that a spacetime with a C^{k-2} Riemann tensor had a C^k metric. This assumption may not be correct (the alleged proof which I gave in [3] being invalid). The basic results do hold, however, if one uses $C^{k,\alpha}$ conditions (a Hölder condition with exponent α , $0 < \alpha < 1$, on the k^{th} derivative). The technical tools needed to modify the proof are given in detail in [4]; the aim of the present paper is to outline their application to local extensions.

We first clarify the term "local extension" of a spacetime (M, g), of which there are two definitions in the literature. Here, and in [5], it means an isometry $\phi: U \to M'$, where $U \subset M$ and (M', g') is a spacetime, such that

- (i) U contains a curve γ which is incomplete with respect to a generalised affine parameter and inextendible in M.
 - (ii) $\phi \circ \gamma$ is extendible in M'.

Hawking and Ellis [6], on the other hand, replace (i) by the condition that \overline{U} is not compact in M, and (ii) by the condition that $\phi(U)$ is compact in M'. This has the undesirable consequence that Minkowski space is locally extendible [1]. With the author's definition, certain compact space-times having trapped geodesics may be locally extendible.

2. Results

The theorem will be formulated for the case where γ in the definition above is a broken geodesic. Since any rectifiable curve can be approximated by a broken geodesic this is no loss of generality, and it enables us to give a concrete description of the set U that can be extended. In addition we impose a restriction ((iv) below) that corresponds to the non-spiral condition imposed in the earlier paper [2]. The theorem will only be proved for $C^{0,\alpha}$ Riemann tensors; but it is clear that the procedure extends to $C^{k,\alpha}$.

330 C. J. S. Clarke

Theorem. Let $\gamma:(0,1] \to (M,g)$ be an incomplete curve such that $\gamma|(t_i,t_{i-1})$ is a geodesic for some sequence $0 < ... < t_n < ... < t_1 < t_0 = 1$. Let there be given a sequence $(a_n)_{n \in \mathbb{N}}$ and a frame $(E_i)_{i=0}^3$ (not necessarily orthonormal) parallely propagated on γ such that the following are satisfied:

- (i) $a_n \to 0 (n \to \infty)$.
- (ii) The map $T_n: \mathbb{R}^4 \ni \xi \mapsto \exp(\xi^i E(t_n))$ is defined and 1-1 in the ball $B_n^r: = \{\xi \mid ||\xi|| < ra_n\}$ for all $r \leq 1$, and its image contains both $\gamma(t_{n-1})$ and $\gamma(t_{n+1})$.
- (iii) There is a bounded (with respect to the b-metric [6]) section of the frame bundle over the set $U:=\bigcup_n T_n(B_n^{1/2})$, the section containing (E_n) , on which the components R_{npq}^m of the Riemann tensor satisfy a uniform Hölder condition with exponent α .
- (iv) There is a constant K > 0 such that $\dot{\gamma}^0(s) > K$ (where $\dot{\gamma} = \dot{\gamma}^i E$) for all $s \in (0, 1]$. Then there is a local extension $\phi: U \to M'$, where (M', g') is a spacetime whose Riemann tensor satisfies a Hölder condition with exponent α .

Proof. (In the following we merely outline certain operations that have been fully described in [4]). Because of (i) and (iii) (the latter implying continuity of R_{npq}^m), for large enough N the dimensionless quantity $a_n ||R||^{1/2} (n > N)$ is so small that no geodesics constructed in $T_n(B_m')$ will focus or intersect (cf. §§ 3.2, 3.3 of [4]). We define $U_n = \bigcup_{i=N}^n T_i(B_i^{1/2})$ and proceed by induction on n: we assume U_n to be extended; then append $T_{n+1}(B_{n+1}^{1/2})$; and finally let $n \to \infty$.

Suppose, then, that we have a map $\phi_n: U_n \to M' = \mathbb{R}^4$ which is an isometry for a metric $g_{(n)}$ on M'. The extension of this to ϕ_{n+1} is performed by using a special coordinate system on $T_{n+1}(B_{n+1}^{1/2})$, as follows. Choose four independent vectors $Z, \ldots, Z \in \mathbb{R}^4$ which are such that each of $Z^a E$ (for $i = 0, \ldots, 3$) is future-pointing and timelike.

Define

$$\begin{split} P_i &:= \exp{(a_{n+1} \sum_{i=a}^a E(t_{n+1}))}, \\ P'_i &= \exp{(-a_{n+1} \sum_{i=a}^a E(t_{n+1}))}, \\ S_i &:= \big\{x \in T_{n+1}(B'_n) | d(P_i, x) = d(P'_i, x)\big\}, \\ z^i(x) &:= d(x, S_i) + \int\limits_{1}^{t_{n+1}} g_{ab} \ddot{\gamma}^a z_i^b \mathrm{d}s. \end{split}$$

Here d denotes the supremum of the geodesic distance for timelike geodesics, the quantities only being defined where this is finite, and g_{ab} are the components of the metric in the frame (E).

The functions z^i are the required coordinates. They are constructed to achieve the following two properties:

- (a) The Hölder constants of components of the metric, and their first derivatives, are bounded in terms of the Hölder constant of the Riemann tensor.
- (b) Coordinates defined from adjacent *n*-values (i.e. in $T_n(B_n^{1/2})$ and $T_{n+1}(B_{n+1}^{1/2})$) approximately agree in the overlap of their domains.

Singular Space-Times 331

The verification of (a) is very similar to the proof of 6.1 in [4]. We let V denote the tangent vector at x to the geodesic from x to S_i that minimises the distance, with proper-time parametrisation. Then it can be shown that $g^{ij} = g(V, V)$ and that

$$g^{ij}_{,k} = g_{km}(g(\nabla_{V}^{i} \overset{i}{V}, \overset{j}{V}) + g(\overset{i}{V}, \nabla_{V}^{i} \overset{j}{V})).$$

The quantity $\nabla_{V}^{m} \stackrel{i}{V}$ can then be computed from the Riemann tensor, using Jacobi's equation for the variation in the geodesic defining $\stackrel{i}{V}$.

Calculations for (b) are similar, though a bit more involved. We replace the " t_{n+1} " in the definitions of z^i , P_i and P'_i by a variable parameter s, and vary s from t_{n+1} to t_n . As s varies, P_i and P'_i describe curves, whose tangent vectors are related to the tangent vector on γ by Jacobi's equation. These variations in turn give rise to changes in the vector field V from which the variation of Z^i as s is varied can be

changes in the vector field V, from which the variation of Z^i as s is varied can be calculated: it turns out to involve only integrals of the Riemann tensor.

In this way we can construct coordinates z^i in $T_{n+1}(B_{n+1}^{1/2})$, and related coordinates $-z^{i'}$, say – in M', using $\phi_{n*}E_a(t_{n+1})$ instead of $E_a(t_{n+1})$. A map $\overline{\phi}_{n+1}:T_{n+1}(B_{n+1}^{1/2})\to M'$ is then defined by relating points with equal z^i and $z^{i'}$ coordinates.

The extended map ϕ_{n+1} is then defined by "patching" smoothly together ϕ_n and $\overline{\phi}_{n+1}$. Condition (iv) ensures that the image of $\overline{\phi}_{n+1}$ overlaps at most a fixed finite number of the previously constructed coordinate domains, and in these property (b) of the coordinates ensures that the Hölder constants of $g_{ij,k}$ and the Riemann tensor for the metric $(\phi_{n+1}^*)^{-1}g$ is of the order of magnitude of that of the Riemann tensor, measured in the frame bundle.

We now have a map ϕ_{n+1} on U_{n+1} , inducing a metric on its image whose Hölder constants are known. The metric $g_{(n+1)}$ is then defined by extending the difference between the induced connections $(\Gamma_{(n)}$ and $\Gamma_{(n+1)}$) from $\phi_{n+1}(U_{n+1})$ to the whole of M', followed by a redefinition of the metric exactly as in [4], §8.3. It is here that the use of Hölder conditions, rather than mere continuity, is essential.

Convergence of $g_{(n)ij,k}$ and $R_{(n)jkl}$ is then easily verified, with the Hölder conditions being respected.

References

- 1. Beem, J. K.: Commun. Math. Phys. 72, 273 (1980)
- 2. Clarke, C. J. S.: Commun. Math. Phys. 32, 205 (1973)
- 3. Clarke, C. J. S.: Math. Proc. Camb. Phils. Soc., 81, 279 (1977)
- 4. Clarke, C. J. S.: Space-times of low differentiability and singularities. J. Math. Anal. Appl. (to appear)
- 5. Ellis, G. F. R., Schmidt, B. G.: Gen. Rel. Grav. 8, 915 (1977)
- Hawking, S. W., Ellis, G. F. R.: The large scale structure of spacetime. Cambridge: Cambridge University Press 1973

Communicated by S.-T. Yau Received October 27, 1981