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Abstract. On the basis of four physically motivated assumptions, it is shown
that a general quantum measurement of commuting observables can be
represented by a "local transition map," a special type of positive linear map on a
von Neumann algebra. In the case that the algebra is the bounded operators on a
Hubert space, these local transition maps share two properties of von Neumann-
type measurements: they decrease "matrix elements" of states and increase their
entropy. It is also shown that local transition maps have all the properties of a
conditional expectation of a von Neumann algebra onto a subalgebra except
that their range is not restricted to the subalgebra. The notion of locality arises
from requiring that a quantum measurement may be treated classically when
restricted to the commutative algebra generated by the measured observables.
The formalism established applies to observables with arbitrary spectrum. In
the case that the spectrum is continuous we have only "incomplete"
measurements.

1. Introduction

A long-standing problem in mathematical physics is the description of the quantum
mechanical measurement of an observable with continuous spectrum. The lack of
such a description is an obstacle to the development of an adequate theory of
quantum stochastic processes, and to a complete understanding of non-relativistic
quantum mechanics. This paper attempts to clear up one aspect of the problem,
the effect of a measurement on the state of the system.

The following conventions and notation will be used in this paper. Hubert
spaces will be complex and separable with inner products conjugate linear in the
first entry. 0β(y?) will denote the bounded linear operators on a Hubert space jf.
^"(Jf), 5r2(-^f), and Σ{jf) will denote respectively the trace-class operators,
Hubert-Schmidt operators, and normal states on £%(jf). A state peΣ{JΊf) will be
thought of interchangeably as a linear functional on J*(j>f) or a trace-class operator
in ^(jf7). A subset of a topological vector space is "total" if its linear span is dense.

The following description, introduced by von Neumann [1], of the complete
measurement of an observable with simple discrete spectrum is widely accepted.
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Let Ae0β{^) be such an observable with distinct eigenvalues λ{ and one-

dimensional eigenprojections P., so that A — £ λ f P f . If the system is in the state

prior to the measurement, then the probability of measuring A to have

value λt is tr(pPf), and afterwards the system will be in the pure state p' = P£. Thus

the statistical average for the final state is £ t r^P^P; = ̂ P pP^. Taking the
i i

statistical point of view we say that the measurement of A changes the state from

ptop' = ΣPiPPi'
i

In preparation for generalizing this prescription we should note the characteri-
stic properties which we wish to retain:

1. The map p->p' is affine.
2. Complete positivity (see Proposition 2.2).
3. If p expressed as a matrix with respect to an orthonormal basis of eigenvectors

of A, then off-diagonal matrix elements are annihilated.
4. The entropy of p' is greater than or equal to the entropy of p. (See e.g.

[1-3]).
5. If # 0 is the commutative algebra generated by the P i? then p'er<ί0, and

P\x) = p(x) for xe^o
All of these properties, or generalized versions, will be retained by the formalism
presented in this paper.

Note that p' = £ PipPt represents a complete measurement, in the sense that
i

the measurement is performed with sufficient precision that a result of λi leaves

the system in the pure state P.. A less precise measurement which cannot completely

resolve the eigenvalues of A may well leave the system in a state still retaining

non-zero off-diagonal terms. The statistical argument given above for p' = £ PipP,
would then not apply to such an "incomplete" measurement. Off-diagonal terms
will not be eliminated, but we might hope that they are reduced in magnitude. In
Sect. 4 we will see that they are.

In the case of a continuous spectrum, it should be clear that we cannot expect
a complete measurement, one that resolves the spectrum of A with absolute
precision. Even if the measurement can be made with arbitrarily high precision,
any individual measurement must have some imprecision and hence be incomplete.

There has been interest for some time in the use of conditional expectations
on von Neumann algebras to describe quantum measurements. (See e.g., [4-8]).
A conditional expectation of a von Neumann algebra stf onto a von Neumann
subalgebra , j/ 0 may be defined as a normal linear map Φ\s$ -+s/0 satisfying the
following properties: ([9-12])

1. Φ(l) = l.
2. ||Φ(x)||g||x||,xej*.
3. Φ(x) ̂  0 whenever x ^ 0, xe J / .
4. Φ(axb) — aΦ(x)b, a,bestf0, xestf.
5. Φ(x)*Φ(x) = Φ(x*x), xes/.

In the above example Φ:^{j^)^^0 given by Φx = YjPixPi is a conditional
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expectation [4]. However, attempts to generalize this formulation have been
discouraged by the fact that conditional expectations do not exist in general unless
the observable A has a discrete spectrum. (For some explicit theorems, see [6,
p. 60], [13].) In his recent contribution Srinivas [8] proposed that the condition
of normality be relaxed. In this paper it is proposed instead that the condition
that Φ map into ^ 0 be relaxed.

In Sect. 2 transition maps are defined. The results here are not new, but an
attempt has been made to list the explicit minimal conditions under which transition
maps may be used to describe quantum processes. The notion of locality is
introduced in Sect. 3 the results are presented in somewhat more generality than
will be used in this paper. Section 4 contains the main results of this paper. A
measurement is defined as a local transition map, and it is shown that all such
measurements decrease matrix elements (Theorem 4.5) and increase entropy
(Theorem 4.8), thus providing justification for this definition.

2. Transition Maps

Let stf, & be von Neumann algebras. A map Φ.sέ' -*$6 will be called a transition
map if Φ is a completely positive normal linear map with Φ(l) = 1. (Here "normal"
means "continuous with respect to the σ-weak topologies of s& and (%Γ For a
discussion of complete positivity see e.g. [14, p. 192].) If 0 < Φ(l) :g 1 but the other
conditions are satisfied we call Φ a subtransitίon map.

We claim that the effect of a quantum measurement on the state of a system
can be represented by a transition map. In fact, this is true not only for
measurements but for a large class of quantum processes. Following are the explicit
assumptions necessary to justify this claim. Let $4 be the von Neumann algebra
representing the observables of the system, with sέ\ its predual and Σ(jrf) the set
of normal states on srf. (The most common situation is srf =

(A) Well Definedness: There is a map Φ ̂  : Σ{.stf) ^> Σ{.stf) which represents the
measurement (or other process) in the sense that if p is the state of the system
immediately preceding the measurement and p' the state immediately following,
then p' = Φ^p.

(B) Superposition: The map Φ^ is affine.

(C) Extension: Let 36 be the von Neuman algebra of a second quantum system.
There is a map Φ^\ Σ(<stf ®&)->Σ(stf ®έ%) satisfying (A) and (B) such that for

Condition (A) in essence claims that we know everything about the measurement
except the state of the system to be measured. In particular we must know the
initial state of the measurement apparatus and the details of the possible
interaction(s) between the apparatus and the system.

Condition (C) merely states that a measurement process may be extended to
include a non-interacting second system with trivial evolution (i.e., nothing
happens). That a quantum system with trivial evolution may never occur in reality
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is irrelevant here; the point is that there should be no obstacle to such an extension
as no physical process is involved, only a redefinition of "system" and "external
universe."

Proposition 2.1. Φ^ satisfies conditions (A), (B), (C) if and only if there is a transition
map Φ srf' -+si such that Φ^p = poφ far all ρeΣ(si).

Proof Sketch. It is well known that an affine map on Σ(sJ) has a unique extension
to a positive linear map on si ^ also denoted by Φ^, which is then automatically
norm continuous [6, p. 17]. It then follows from [21, p. 205, 21.5] that the adjoint
map Φ on si is σ-weakly continuous, and Φ^p — ρ°Φ for pesi'^ follows from the
definition of adjoint map. Since Φ^ maps Σ(si) into Σ{si\ Φ must be positive with
Φ(l) = 1. Conversely, any positive normal linear map on si with Φ(l) = 1 yields an
affine map on Σ(si) via Φ^p = ρ°Φ.

For an argument that (C) is equivalent to complete positivity, see [15,
p.121]. •

If we relax condition (A) somewhat and require only that Φ^
with Φ ί l s p(l)^p(l)= 1 for all peΣ(si), then we may conclude the existence of a
subtransition map Φ such that Φ^,p = p°Φ. This is often useful when only a part
of a quantum process is being considered, as in the positive-map-valued measures
of Davies [6]. Our primary interest in this paper is transition maps, but when
results can be cheaply extended to subtransition maps we will do so.

The following proposition is very useful in dealing with subtransition maps;
it is a consequence of the Stinespring Theorem on completely positive maps [16].

Proposition 2.2. Let Jf, JΓ be Hubert spaces. Let si be a von Neumann algebra in
J*(Jf) and let Φ be a completely positive normal linear map from si into J'(Jf). Then
there exist Ate^(^i, 34?) such that for all xesi, Φ(x) = YjAfxAi, where the sum

converges σ-weakly. Conversely, any map of this form is a completely positive normal
linear map. [22, p. 34]

3. Locality

In the last section we saw that a large class of quantum processes, including
measurements, can be represented by transition maps. This raises the question of
what additional conditions are necessary to qualify a transition map as a quantum
measurement. The theme of this paper is that a single extra condition will
suffice—the map in question must be local with respect to some subalgebra of
$(2tf). Before defining locality we offer some motivation.

It is generally recognized that an important difference quantum and classical
probability is that in quantum mechanics the algebra of observables is non-
commutative. However, even in quantum systems if we restrict our attention to a
commutative algebra of observables we may deal with the system using classical
probability, since a commutative algebra may be represented as an algebra of
functions on a measurable space. This is precisely what is done when measuring
observables in quantum mechanics.

Consider the case of a single observable AeόSffl). Let ^ 0 be the commutative
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von Neumann algebra in ̂ ( j f ) generated by A (and the identity). By the spectral
theorem # 0 is isomorphic to the algebra of bounded Borel functions on the
spectrum of A [17, p. 225]. Normal states on ggffl), when restricted to # 0 , may
therefore be represented by Borel measures on the spectrum of A. We are then
placed in the formalism of classical probability as claimed.

In the classical theory of stochastic processes it is implicitly assumed that in
principle measurements can be made with complete accuracy and without
disturbing the state of the system. We make an analogous assumption in the case
of a quantum measurement, but restricted to that aspect of the measurement which
can be treated classically.

Measurement Principle. In a quantum measurement, expectation values of the
measured observables are not disturbed, nor are expectation values of observables
in the commutative von Neumann algebra generated by the measured observables
and the identity.

If this commutative algebra is denoted by ^ 0 and if p, p' are the states
immediately preceding and following the measurement, we have p'(x) = ρ(x) for
all xef 0 . If the measurement is effected by a transition map Φ, then

(*)p(Φx) = p(x) for all peΣ(jf ),xε^ 0 .

Note that (*) is not a repeatability condition, as there is no guarantee that a
repeated measurement will give a result even close to the first. It is perhaps best
thought of as a "consistency" condition.

As a consequence of (*) we have Φx = x for all xef 0 . A weakening of this
condition which costs nothing for transition maps but also applies to subtransition
maps is to require Φp^p for projections pe^0.

Let s$, jrf0 be von Neumann algebras in ^( j f ) with jtf0 cz s$. A subtransition
map Φ.stf -^sd is said to be s$0-local if Φ(p) ̂  p for all projections pestf0.

Note that von Neumann algebras are the natural setting for discussing locality
since each element is approximated by finite linear combinations of projections
[11, 1.7.5,1.3.1], and the spectral projections of any self-adjoint element are in the
algebra [11, 1.11.3].

The following proposition characterizes local subtransition maps.

Proposition 3.1 Let Φ\stf-*stf be a subtransition map with Φx = s£^AfxAi for

xestf, with each A{<E${2tf\ Then Φ is s$'0-local if and only if A^S/Q for each i.

Proof. If A^S^'Q for each i, then also Af estf'Q and hence for pestf0 a projection

we have pΦ(p)p = p( ^Af pAt )p = ΣpAf pAtp = ΣAΪPAi = Φ(P) Therefore
\ i / i i

φ(p) = pφ(p)p rg pip = p and hence Φ is j3/0-local.

Now assume that Φ is j?/0-local. Fixing a projection p e j / 0 , we have Φ(p) =

ΣAfpA^p. We must have O^AfpA^p for each i. It follows that 0 =

(1 - p)AfpAi(l-p) = (PAt(l - pψipA^l - p)\ and hence pAt(i - p) = 0, or pAt =
pAtp. Since this holds for all projections on s$0 we may replace p by 1 — p to
obtain (1 - p)At = (1 - p)Ai(\ - p\ or Atp = pAtp. Therefore, pAt = pA{p, = Atp for all
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projections p in stfQ. Since the projections are total in g#Q we may conclude that

xA{ = Atx for all xe.$/0, that is A{esi'o. D

Corollary 3.2. // Φ\$t -* ̂  is an sέ0-local subtransition map, then Φ(axb) = aΦ(x)b
for

Proof. Let Φx = £ AfxAt with each A^sέ'^ by Proposition 3.1. Then Φ(axb) =

b. D

It is any easy consequence of Corollary 3.2 with x = b = 1 that if Φ is an
j/0-local transition map on #/, then Φ(α) = α for all aesrf0. Also, it follows from
[14, p. 199] that any completely positive linear map of C*-algebras with Φ(l) rg 1
satisfies Φ(x)* Φ(x) ̂  Φ(x*x).

Thus we see that an j/0-local transition map satisfies all the properties of a
conditional expectation onto j / 0 , except that it need not map into j / 0 .

We close this section with a comment on the interpretation of the locality
condition: Φp^p for projections pestf0. If jrf0 is the (commutative) algebra
generated by the position observable, then this condition requires that if the system
was contained in a region of space prior to the measurement, it will still be
contained in that region after the measurement. This is the reason for using the
term "local". Our notion of locality applies to any observable, discrete or
continuous.

4. Measurements

Based on the discussions in Sect. 1, 2, and 3, we define a measurement on $(jί?)
to be a transition map Φ:^(jf)-> J*(j^) together with a von Neumann algebra
srf0 in St(2tf\ such that Φ is stf 0-local. The idea is that if observables x 1 ? . . ., xNe^(jf)
are to be measured simultaneously, we let ̂ / 0 be the von Neumann algebra in
^( j f ) generated by x l 5 . . . ,x N , 1 (the identity), and require that Φ be j/0-local.

For the remainder of this paper we will assume that stf0 = ̂ 0 is commutative,
as in quantum mechanics one usually requires that observables commute in order
for simultaneous measurement to be possible.

®

Consider the direct integral decomposition j f = j Jf(t)dμ(t) corresponding
r

to ^ 0 ([14, p. 275]), for which ^ 0 is the algebra of multiplication operators. If ^ 0

is maximal commutative, then <£'o = %>0 and each j^(t) is one-dimensional. In this
case the measured observables generating ^ 0 are said to be a "complete set of
commuting observables." If on the other hand ^ 0 is not maximal commutative
the j f (t) will be multidimensional. Observables in ̂ όY^0 represent observables
not measured, but compatible with those that are. It seems reasonable that a
measurement could be performed without disturbing the expectation values of
these additional observables.

We therefore define a strong measurement to be a transition map which is
^Q-local. When a distinction is necessary, a transition map local only with respect
to ^ 0 will be called a weak measurement.
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The remainder of this section is devoted to showing that strong measurements
"decrease matrix elements" and "increase entropy" (Theorems 4.5 and 4.8).

Lemma 4.1. Let Xx, X2 be Hubert spaces. Let {/4J, {J5£} be sequences in J

and &(jf2) respectively. Assume that

S II C | | .Then for any Ceif (Jf 2, Jf

Proof. For/eJf l 5 0eJf2,

l / 2 l / 2

Therefore = sup (11/11 ύ\\C\\. D

Lemma 4.2. / / ^ = J Jf (ί)dμ(ί), kί {Λj be α sequence in ̂ {^) with Σ AΐΛi ^

// eαcfe ^ e ^ ί , wit/i X, = J

X Λf Af = 1 then Σ ^ ) M , ( t ) = 1 α.e. (μ)
i i

Proof. For each f.geJ^f we must have

then « e-

ί <f(t),g(φdμ{t) = <f,g> £ (/,
\

= Σ ( ί ̂ i
\

λ 1 ^ i
Γ

i Γ

from which the result follows. Π

The next two theorems deal with operator-valued kernels on direct integrals,
a generalization of bounded operators on if 2-spaces as in [19]. We present here
only needed definitions and results—for details see [18].

Θ

Let j f = J j^(t)dμ(t) be a direct integral of Hubert spaces. We define an
r

absolutely bounded kernel on j f to be a measurable field of operators ([14, p. 272])
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{x(s,ί):s,feΓ} with x(s,ί)eJf(^(ί), ^(s)\ such that {||x(s, ί)|| :s,ίeΓ} is abounded
kernel on if 2(Γ, μ).

Proposition 4.3. (i) // x(s,ί) is an absolutely bounded kernel there exists

such that for f9getf9 <f,Ag} = J (f(s)9x(s,t)g(t)ydμ(s)dμ{t). (ii) // x(s,t) is an

absolutely bounded kernel and y(s, t) is a measurable field of operators such that
\\y(s, t)\\ ̂  ||x(s, ί)|| for all s, t, then y(s9 t) is an absolutely bounded kernel (iii) // x(s, ί)
is an absolutely bounded kernel which induces the zero operator, then x(s, t) = 0 a.e.
{μ x μ). (iv) If Ae^~2(jtf>\ then there exists an absolutely bounded kernel which
induces A as in (ί).

Theorem 4.4 Let Φ be a subtransition map on 3$(jίf). The following is a necessary
and sufficient condition for Φ to be %>0-local:

If xe&{#f) has an absolutely bounded kernel x(s,ί) with respect to %>Q9 then
x' = Φx also has an absolutely bounded kernel x'(s,ί) with respect to ^ 0 and

\\x'(s,t)\\ύ\\x{s9t)\\ a.e.(μxμ).

Proof. Necessity: Let Φ = £ AfΆt with each A^^{^\ Since Φ is #0-local each
i

A{ and Af are in q>'0 and hence decomposable. Let f^getf. Then

g(s), X Afc)* x(s, t)Aft)f{t) ) dμ(t)dμ(s).

Since £, A^sfΆ^s) ^ l^ ( s ) and ^ ^4^)*^^) ̂  l^ ( ί ) (each μ-almost everywhere) by
i i

Lemma 4.2, it follows from Lemma 4.1 that Y^A^s^xis^ήA^ή ^ ||x(s,ί)||. By
i

Proposition 4.3(ii) ^ v4ί(s)*x(s,ί)-4I (ί) is an absolutely bounded kernel, and by the
i

above calculation and the uniqueness of kernels (Proposition 4.3(iii)) x'(s,t) =

Sufficiency: Assume that Φ is not #0-local. Then by Proposition 3.1 one of the
Ai9 say Al9 is not in %>'o. We will produce an xeJ*(jf) such that the condition of
the theorem is false.

Af is also not in ^f

0, so there is a projection pe^0 and a vector fepJf such
that Affφpjίf. Since p is a multiplication operator and a projection, we must

®

have p = P(£) = j l(ί)dμ(ί) for some measurable £ c Γ , where l(ί) is the identity
E

on jT(ί). There is then a set £ ' c ί with μ(Ef) > 0 such that £ n F = 0 , and for

ίeE',/(ί) = 0 but A*f(ήφ0.

Let x = </,•)/• Since xe^2(-Jf), x has an absolutely bounded kernel (Pro-

position 4.3(iv)) given by x(s,ί) = </(ί), >/(s). If s,ίeE' then /(s) = /(ί) = 0, so

x(s,ί)=0. On the other hand, x' = Φx = Σ > f « / , > / K = Z<^*/»'M*/- I f

i i

Θ

P(E') = j l(ί)rfμ(ί), then P(E')x'P(E') is a positive operator, and is nonzero since
E'
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P(Er)(A*f,-}A*fP(E')>0 and £ (Aff^Aff^O. Therefore if x' has an
Ϊ = 2

absolutely bounded kernel χ'(s, ί), then x'(s, t)φθ on some set E" c £ ' x F of
positive measure, as only the zero operator has zero kernel (Proposition 4.3(iii)).
For (5, t)eE"9 \\x'(s, t)\\ > |fχ(s, t)\\ = 0. Π

Our objective is to prove a similar result for states. The predual map is given

by Φ^τ = Σ AtτAf for τe^~(jf). By Proposition 4.3(iv) each state p o n j f has a

kernel p(s,t) with respect to # 0 , as pe^~(jf)c: ^~2(jf). However, Theorem 4.4

cannot be applied immediately because in general £ ^ A f is not <; 1.

In any situation where £ 4 ^ * ^ 1, the roles of At and Af may be exchanged

and Theorem 4.4 will apply. It would suffice for each A. to be normal. There is
no obvious physical reason to assume this directly, but it is a consequence of
assuming Φ to be a strong measurement.

Theorem 4.5 Let Φ be a ^f

04ocal subtransitίon map on J*(jf). Let peΣffl) and
let p' = poφ. If p,p' have kernels ρ(s,t), p'(s,t) with respect to ^ 0 , then

| |p'(s,t)| |^| |pM)|| a.e.{μxμ).

Proof. Suppose Φ = ΣAfΆi. Then ^AfA^i, and since Ai9Afe(«ό)' = ^ 0
i

(Proposition 3.1), Ai commutes with Af for each i. Hence Y^AtAf g 1 also.
i

Φ = Y^AiAf is then also a subtransition map on <%{$>) and we may apply
i

Theorem 5.4 to Φp = p ° Φ. Π

We next consider the effect of a measurement on the entropy of a state. An
excellent reference on quantum (and classical) entropy is WehrΓs review article [2].
Further references are to be found there.

There are several reasonable definitions for the entropy of a quantum state.
The following is the most widely accepted:

Let p be a state on j f with p = £ λkpk, where λk > 0, ]Γ λk = 1, and {pk} is
k k

an orthogonal set of one-dimensional projections. The entropy of p, denoted by

S{p\ is given by S{p) = — £ Λklnλk if this series converges, oo otherwise.
k

We may also write S(p) in the form S(p) = tr(/(p)) where f(x) = - xlnx. The
results in this section will apply to any entropy functional S of this form when /
is a concave function on [0,1]. We will use a result of Wehrl [2, p. 239]:

Proposition 4.6 Lei p9p'eΣ(Jίf) and let {αk}, {αk} fre ίftg ordered sequence of
N N

eigenvalues (with multiplicity) for p and p' respectively. If ]Γ a'k^ ]Γ ak

for each positive integer JV, ί/zeπ S(p') ^ S(p) whenever the functional S is given by
S(p) = tr (/(p)) for some function f concave on [0,1].
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Proposition 4.7. Lei Φ: ^ p f ) - > ^ p f ) be a transition map given by Φx =

Σ AfxAi with A&
i= 1

00 00

Suppose that Σ AtAf = Σ AfAt=l. Then Φ is entropy-increasing in
i = 1 i = 1

ίΛe sense ίftαί /or any sίaίe p on St{2tf\ if p' — p°Φ, then S(p') ^ S(p).

Proof Let {φk} {{φ'k}) be a complete orthonormal set of eigenvectors for ρ(p')
and {ak} ({ak}) the corresponding eigenvalues. We assume the eigenvalues are
listed in decreasing order.

N N

We will show that for each positive integer JV, £ a'k^ £ αk. It will
k = l k = l

then follow that S(ρ') ^ S(p) by Proposition 4.6.
00 00

Note that p' = £ ^p^f, where p = ^ ^<Φh'>Φϊ τ h e n

i = 1 / = 1

Σ * ί = Σ <Φί>p'Φ'k>= Σ Σ <^fΦ
k = 1 k = 1 k = l i = 1

= Σ Σ Σ e,i<^f*;,^>i2=
k = l i = 1 1 = 1 i

where y, = £ Σ K^f^,Φ,>l2 We have
k - 1 i = l

oo iV oo

7ι= Σ Σ KΛ ̂ »Φi>l2^ Σ <A^
i = 1 k = l i = 1

Also
00 00 00 JV

Σ r / = Σ Σ Σ
1 = 1 1 = 1 k = l i = l

N oo N co

= Σ Σ <ΛfΦίM?&>= £ X <^,4^f^>
k = l i = l k = l i = l

= Σ <Φ'k,Φ'k> = N.
k= 1

00

Since 0 ^ yz ^ 1 for each I and ]Γ yt = N, {yj may be thought of as a measure
/ = l

of mass A/" on the positive integers with each integer having mass at most 1. Since
00

{at} is decreasing, the maximum value of £ y^ would occur if yι = 1 for
z = i

N oo N

1 ^ lύ N Therefore Σ βk = Σ ^ίαi = Σ aι > f r o m w n i c n t n e result
k = l Z = l Z = l

follows. •
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Theorem 4.8. Let ^0 be a commutative von Neumann algebra in J*(jf). // Φ is a
^Q-local transition map on 0β{2/?\ then Φ is entropy-increasing in the sense of
Proposition 4. 7.

Proof. From Corollary 3.5 we see that if Φ = £ AfΆi9 then A-v Af are in ^ = # 0 ,
i

so that A{ and Af commute and Proposition 4.7 applies. •

Lindblad has proven a similar result in [20]. Our result, however, depends not
on the exact form of the entropy functional, but only on the fact that S{p) = tr (/(p))
for some concave function / . In addition the hypotheses on Φ are more general
than Lindblad's.

5. Discussion

We have proven what we set out to prove in the case of a strong measurement.
Analogous results hold in the case of a weak measurement for which ^ 0 is not
maximal commutative, but these results require development of considerably more
background material and will be presented in a separate article.

Ever since the paper of Davies and Lewis [5], the concept of a "positive-map-
valued measure" has been the dominant idea in quantum measurement theory.
However, Srinivas [8] has shown that under certain assumptions the Davies-Lewis
formalism forces the use of non-normal conditional expectations, i.e. conditional
expectations satisfying the conditions in Sect. 1 except that of normality. The most
serious problem with non-normal conditional expectations is not the loss of
σ-additivity, but the fact that a non-normal conditional expectation will necessarily
map some normal states to non-normal states.

As the usual formulation of algebraic quantum mechanics allows a finite system
to have only normal states, it is desirable to discuss measurement of continuous
observables in a conditional expectation setting without using non-normal states.
This is what has been done in this paper. We have made no attempt to discuss a
"collapse postulate" as in [8]; the results therein indicate that the Davies-Lewis
formalism may not be the best approach. One promising possibility is the use of
"positive-map-valued distributions" (as opposed to measures), where the positive
maps used would be the subtransition maps defined in this paper.

Finally, the concept of local transition map provides an alternative to the
"coarse-graining" and "discrete spectrum approximation" formalisms of quantum
measurement ([1], [7]).
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