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A Spectral Characterization of KMS States

J. De Canniere*
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Abstract. Let ω be a state on a C*-dynamical system (9X, U, α). For each of the
following properties of ω: (1) ω is β-KMS with respect to α for some given /}, 0
^ β < + oo, (2) ω is either a KMS state or a ground state, necessary and sufficient
conditions are given involving only the spectral subspaces of 91 associated with
α. The results provide a new insight in the concept of passivity, introduced by
W. Pusz and S. L. Woronowicz.

1. Introduction, Main Results, Preliminaries

Let (91, (R,α) be a C*-dynamical system [8, Chapter 7], β a nonzero positive real
number. A state ω on 91 is said to be β-KMS with respect to α if for every pair
x,ye9l there exists a bounded continuous complex function F on the closure of
the strip D = {z|0 < Im z < β} that is holomorphic on D and has boundary values

F(t) = ω(yφ))
(1.1)

F(t + ίβ) = ω(at(x)y) (teU).

This condition was introduced in the algebraic statistical theory of infinite quantum
systems by R. Haag, N. M. Hugenholtz and M. Winnink [4] to provide a substitute
for Gibbs states. The point of view that the KMS condition is to be satisfied by
equilibrium states at inverse temperature β is supported by a fair amount of
physically relevant mathematical evidence, a lot of which can be found in [2; 6].
Moreover the KMS condition plays a central role in the Tomita-Takesaki theory
[10] and in non-commutative integration.

On the other hand, one of the main tools to study C*-dynamical systems in
general is the notion of spectral subspaces, the introduction of which in the theory
of operator algebras is due to W. B. Arveson [1;8, Chapter 8]. It is known, for
instance, that α is completely determined if the spectral subspaces R(— oo, λ) a 9ί
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(defined below) are given for all λeU. Hence it is natural (and, as it turns out,
useful) to ask for a "harmonic analysis" version of the KMS condition (1.1), in
which the action α is to enter only via the associated "spectral resolution" of 21
in subspaces R(- oo,λ).

The main results of this paper, which we now proceed to summarize, provide
an answer to that question. In what follows (21, IR, α) is a C*-dynamical system.

Theorem 1.1. Let ω be a state on 2ί, and 0 < β < + oo. Then ω is β-KMS with
respect to α if and only if it is a-invariant and satisfies the following spectral
condition:

for all λeU and xeR{— oo,Λ), one has ω(x*x) ^ eβλω{xx*). (1.2)

Definition 1.2. A state ω on 21 will be called n-spectrally passive with respect to
a (where neN 0 ) if it is α-invariant and if the following property holds: for every

n

rc-tuple of real numbers A l5A2, ...,AM such that ]Γ Ay^O, and every n-tuple

x 1 ? x 2 , . . . , xπ of elements of 21 such that

XJER( - oo, λj) for all = 1,2,..., n,

the inequality

ϊx i )ω(x%x 2 ) . . . ω(x*xM) ^ ω(x x xf ) ω ( x 2 x | ) . . . ω(xπx*) (1.3)

is valid. If ω is n-spectrally passive for all neN 0 , it is said to be completely spectrally
passive with respect to α. An invariant state ω satisfying

xeR{ - oo, 0) =>ω(x*x) ̂  ω(xx*) (1.4)

is simply said to be spectrally passive (rather than 1-spectrally passive).

Theorem 1.3. For a state ω on 21 the following are equivalent:
(i) ω is completely spectrally passive with respect to α.
(ii) ω is either a KMS state or a ground state with respect to α.

In (ii) above, "ω is KMS" means either that ω is β-KMS for some strictly
positive β, or that it is an α-invariant tracial state (in which case we say that ω is
0-KMS); and ω is called a ground state if the "hamiltonian" H (defined below) in
the GNS representation generated by ω is a positive operator. As is well known
[2; 8] the ground state case corresponds to the limit β = + oo.

The reason for the terminology introduced in Definition 1.2 lies in the fact
that condition (1.4) contains the mathematical essence of the notion of passivity,
introduced on physical grounds by W. Pusz and S. L. Woronowicz in [9]. This
will be shown in Sect. 3. Actually, although of a purely mathematical nature, the
results in the present paper are closely related to those in [9]. The relationship is
discussed in some detail in our final Sect. 5.

The proofs of the Theorems 1.1 and 1.3 are to be found in Sect. 2 and 4,
respectively. Section 4 moreover contains both an example of an n-spectrally
passive state that is not (n + l)-spectrally passive, and a theorem to the effect that
spectral passivity does imply complete spectral passivity in the special case of a
weakly clustering state ω.
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We conclude this section with some preliminary material. Throughout it is
assumed that ω is an α-invariant state on 31. Let (jf, π, Ω) be the GNS representation
generated by ω[2, 2.3.3; 8, 3.3]: specifically, we have ω(x) = (Ω,π(x)Ω) for xe9l,
where ( , ) denotes the scalar product in j-f. There exists a unique strongly
continuous group of unitaries {U,}^ on jf with the properties

π(at{x)) = Utπ(x)U* {xe% teU)
and

UtΩ = Ω (teU).

Invoking Stone's theorem we write Ut = eitH, where H, the "hamiltonian," is a
self-adjoint operator on Jf7. On the von Neumann algebra $0 = π(3l)" generated
by π(3l) we define a continuous one-parameter group of automorphisms {αJίeK

by

δίt{A)=UtAU* (Ae^,teU).

We want to recall the relationship between the spectral subspaces associated
with α, ά and [/. Let 0 be an open subset of U. With the definition1

f{λ) = \eiλtf(t)dt (λeU)

for the Fourier (co)transform of fel}(U\ let us define the spectral subspace R(Θ)
(respectively R(Θ)) to be the norm (respectively the σ-weak) closure of the space
spanned by all elements of 91 (respectively stf) of the form \f(t)at(x)dt with XE91
(respectively \f{t)at{A)dt with Aes/), where feL\U) and /has compact support
contained in #[8, p. 300]2. Also P will denote the projection-valued measure
associated to H, so that H = \λdPλ and Ut = j^ ίAίί/FA. The subspace P(6?)jf of jf
is precisely the spectral subspace of j f associated with U and corresponding to
the open subset Θ of (R [8, Proposition 8.3.2].

Lemma 1.4 Let Θ be an open subset ofU.
(i) R(Θ) is the σ-weak closure of π(R(Θ)) in stf.
(ii) P(Θ)3Ί? is the closure in jtf of either of the spaces π{R{Θ))Ω or R(Θ)Ω.

Proof (i) As π( $ f {t)at{x)dή = j f (t)at(π{x))dt for all xe9X and feI}(U), it is obvious
that π{R{Θ)y a R(Θ). The converse inclusion follows from the fact that the linear
map A^\f(t)at{A)dt(Aesrf) is σ-weakly continuous [1, Proposition 1.6].

(ii) Clearly {\f(t)dt{A)dt)Ω = \f{t)υtAΩdt{Ae^\ hence (R(Θ)Ω)-
Using the cyclicity of Ω one shows immediately that P(φ)je^(π{R(Θ))Ω) . Since
(i) implies (R{Θ)Ω)~ - (π(R(Θ))Ω)~, the lemma follows. D

Remark 1.5. The spectra sp(α) and sp(ά) of α and α in the sense of Arveson are
by definition the smallest of all closed subsets 3F of IR such that R(U\^) = {0},
respectively R{U\^) = {0} [8,8.1.6]. The lemma entails the inclusions σ(H) a sp(α)
czsp(α) [8, Proposition 8.1.9], where σ(H) is the operator spectrum of H (or,
equivalently, the spectrum of U in the sense of Arveson). If π is faithful, we have

1 Unless the limits of integration are explicitly stated, all integrations extend from — oo to + oo
2 We use R(- oo,Λ), PfΛμ], etc. instead of R((- oo, A)), P([λ,μ]\ etc.
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sp(ά) = sp(α). If Ω is separating for π(2ϊ), then σ(H) = sp(α) (and, in particular, H has a
symmetric spectrum [8, Corollary 8.3.4]). Hence if ω is faithful, the three sets
coincide [6, Remark 4.1].

Let x be an element of 21. As the complex valued functions ί»-*ω(x*αt(x)) and
t »-> ω(at(x)x*) are positive definite (by the α-invariance of ω) they are the Fourier
transforms of bounded positive Radon measures. It follows by polarization that
there exist (unique) bounded Radon measures μx y and vx y for every pair x, ye 21
such that

and V (1.5)

J
These measures are obviously related to the projection-valued measure P and to
each other. It is not difficult to check that

(1.6)

The spectrum sp(x) of an element xe2X (with respect to α) is defined by [1, Definition
2.1]:

λesp{x)of{λ) = 0 whenever \f(t)φ)dt = 0. (1.8)

Lemma 1.6. Let x,y be elements o/2I. Then suppμ x y a sp(y) and suppvx>y a sp(y).

Proof. Let fel}(U) be such that / has compact support contained in the
complement of sp(y). Then

= \f{t)ω{x*φ))dt by (1.5),

= 0 [1, p. 225, Remarks].

Now any geCc(U) (the space of complex continuous functions on U with compact
support) whose support is contained in tR\sp(j;) can be approximated uniformly
by functions / as above. Thus the first inclusion follows, whereas the second one
is proved similarly. •

Let us introduce the abbreviations μx and vx for the positive measures μxx and
vxx, respectively. The following characterization of KMS states is well known [4,
3.32; 2, Proposition 5.3.14]. It will be our working definition of the KMS condition
(1.1).

Lemma 1.7. Let ω be an ̂ -invariant state, 0 < β < + oo. Then the following are
equivalent:

(i) ω is β-KMS with respect to α.
(ii) For all xe% the measures μx and vx are equivalent, with Radon-Nikodym

derivative given by
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for vx-almost all λ.
The notation introduced above will be used throughout the paper, mostly

without explicit reference.

2. KMS States at Given Inverse Temperature

This short section is entirely devoted to the proof of Theorem 1.1. Therefore we
let (21, R, α) be a C*-dynamical system, 0 < β < + αo, and we first assume that the
state ω on 21 is β-KMS with respect to α. Then ω is α-invariant [8, Prop. 8.12.4].
Let λ be a real number and xeR{ — oo,Λ). We have

by (1.5) and Lemma 1.7. Since sp(x)cz(— oo,λ], as one easily checks using (1.8),
the support of vx is contained in (— oo,λ] as a consequence of Lemma 1.6. As
β > 0 this implies

$eβξdvx(ξ) S eβλ\dvx(ξ) = eβλω(xx*)

(again by (1.5)), which proves the "only if" part of Theorem 1.1.
Conversely, suppose that the α-invariant state ω satisfies the spectral condition

(1.2). Let xe2I and λι<λ2\ we claim that, for all positive geCc{U) with support
in {λι,λ2), the inequalities

eβλ^g(ξ)dvx(ξ) S ig(ξ)dμx(ζ) ύ eβλ^g(ξ)dvx(ξ) (2.1)

hold. As every such g can be uniformly approximated by functions | / | 2 , where
/eL^IR) and supp/ cz (λ1,λ2\ it suffices to check the claim for g = | / | 2 . If we put
y = $f(t)a<t(x)dt, then clearly yeR{ - oo, λ2)n R( - oo, - AJ*. Hence by assumption

epλιω(yy*) g ω(y*y) ^ eβλ2ω(yy*). (2.2)

On the other hand,

= $if(s)f(t)ω(φ*)φ))dsdt

by (1.5) and Fubini's theorem

Similarly co(yy*) -=\\J(λ)\2dvx{λ). Consequently (2.2) becomes

e^' l\J(λ)\2dvx(λ) £ \\hλ)\2dμx{λ) g e»> J \f{λ)\2 dv x(λ\

This establishes our claim (2.1). By the Lebesgue-Radon-Nikodym theorem [5,
Theorem 12.17], μx is absolutely continuous with respect to vx (and vice versa),
and moreover the Radon-Nikodym derivative h = dμx/dvx verifies eβλl ^h^eβλl

vx-almost everywhere on (A1?A2).
It is now an easy exercise in measure theory to show that h(λ) — eβλ for vx-almost

all λ. For suppose there exist ε > 0 and a vx-measurable subset K of IR such that
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vx{K)>0 and \h(λ) - eβλ\ ^ ε for all λeK. By the inner regularity of vx we may
assume that K is compact. Then we can cover K with a finite number (n, say) of
open intervals (ξp ξj) such that eβξ'j - eβξj < ε for all j = 1,2,..., n. Since eβξj ^ ft(λ) ^
e ^ for vx-almost all λe(ξj9ξj), we also have \eβλ — h(λ)\ <ε for these values of λ.
But at least one of the n intervals (ξj9 ξ'j) has a non-negligible intersection with K
(with respect to vx), which leads to a contradiction.

Hence we have shown that -^(λ) = eβλ for v-almost all λ. By Lemma 1.7,

ω is jS-KMS with respect to α. Π

Remarks 2.1 (i) It is useful to observe that Theorem 1.1 remains true in the limiting
cases β = 0 and (at least formally) β = + oo. For if an α-invariant state ω satisfies

ω(x*x) S ω(xx*) whenever xeR(— oo, A)

for all λeU, then clearly xeR{-λ,λ) (with λ>0) will imply ω(x*x) = ω(xx*). As
1 J R( — λ, λ) is dense in $1 [8, Theorem 8.1.4], we conclude that ω is an α-invariant

λ>0

tracial state, i.e. a 0-KMS state.
On the other hand, by Lemma 1.4, ω is a ground state if and only if it satisfies

xeR( - oo,0) =>ω(x*x) = 0 (2.3)

(the α-invariance follows from the inequality |ω(x)|2 ^ω(x*x), cf. next remark).
This is exactly the condition one obtains by taking the limit β = + oo in (1.2) for
all λ < 0. This characterization of ground states is well known, cf. e.g. [2, Proposition
5.3.19].

(ii) The α-invariance of ω is of course a spectral property itself. In terms of the
spectral subspaces corresponding to open half lines it can be formulated as

We do not know whether the spectral condition (1.2) already implies that ω is
α-invariant, as does the ground state condition (2.3).

(iii) Recall that to each closed subset ^ of the real line there corresponds a
spectral subspace

[1, Definition 2.1]. Theorem 1.1 still holds when R(—oo,λ) is replaced with

M(-ao,λ] in (1.2).

3. Spectral Passivity

In view of Theorem 1.1, spectral passivity (Definition 1.2) appears as the most
elementary property of spectral type shared by all KMS states: it simply follows
by virtue of the observation that eβ0 = 1, whatever the value of β. It is remarkable
that this property turns out to be equivalent with a "differential inequality" ((3.1)
below) derived by W. Pusz and S. L. Woronowicz on physical grounds [9, 3.4]
(for a somewhat different derivation of this inequality, cf. [3]). This is the content
of the main theorem of this section.
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Lemma 3.1. Let ω be an invariant state of the C* -dynamical system (*&, U, α). Then
the following are equivalent:

(i) ω is spectrally passive.
(ii) μx <; vx on ( - oo,0) for all xeW.
(Hi) μx ;> vx on (0, -f αo) for all xe$l.

Proof. The equivalence of (ii) and (iii) is an immediate consequence of (1.7). Assume
ω is spectrally passive, xe% and the Fourier transform of fel}{R) has compact
support contained in (— oo,0). Then y = \ f(t)at(x)dteR{ — oo,0) and one computes
as in the previous section that

l\Kλ)\2dμx{λ) = ω(y*y) ^ ω(yy*)= \ΐ(λ)\2dvx(λ),

using the passivity assumption. This implies (ii).
Conversely, assume (ii) holds. Let ε be positive, and xeM(— oo, — ε]. Then the

support of μx and vx is contained in (— oo, — ε] by Lemma 1.6, and hence μx ^ vx.
This implies

ω(x*x) = \dμx{λ) ^ \dvx{λ) = ω(xx*).

Since M M(— oo, — ε] is dense in R(— oo,0), we conclude that ω is spectrally
ε > 0

passive. •

Remark 3.2. The condition

ω{x*x) g cφoc*) whenever xeM{— oo,0],

where ω is an α-invariant state, is strictly stronger than spectral passivity (this is
particularly obvious if α is trivial, but non-trivial examples are readily available
in low dimensions). In terms of the measures introduced in Sect. 1 it can be stated
as

sp(x) c ( - oo,0] =>μx ^ vx.

Theorem 3.3. Let (%U9 a) be a C*-dynamical system, and let δ {with domain D{δ))
be the infinitesimal generator of the group {αt}ίeR. Then ω is spectrally passive with
respect to α if and only if

- iω(xδ(x)) ^ 0 for all x = x*eD(δ). (3.1)

Proof. First we observe as in [9, p. 283] that the condition (3.1) is equivalent with

- iω(x*δ(x)) - iω(xδ{x*)) ^ 0 for all xeD(δ). (3.2)

Suppose now ω is spectrally passive and xeD(δ). Then π(x)Ω belongs to the domain
of H and

- iω(x*δ(x)) = - i(π(x)Ω,π{δ{x))Ω)

= (π(x)Ω,Hπ(x)Ω)

= ίλd(π(x)Ω,PAπ(x)Ω)
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by (1.6); and, using (1.7),

-iω(xδ(x*)) = -\λdvx(λ).

Summing these equations we obtain

- iω{x*δ(x)) - iω{xδ(x*)) = j ( - λ)(dvx(λ) - dμx(λ))
(-oo,0)

+ J λ(dμx(λ)-dvx(λ))^O
(0, + oo)

by Lemma 3.1. This proves (3.2) and hence the "only if part of the Theorem.
Conversely, let us assume that (3.1) holds. Then ω is α-invariant [2, Lemma

5.3.16]. Reasoning as in the second part of the proof of Lemma 3.1 we see that it

is enough to show that μx <; vx whenever XEM\ — n, — L where n is an arbitrary

natural number. Under these assumptions, let g be a continuously differentiable
complex valued function on U with compact support (i.e. geC^R)), and put
y = \g{t)<φήdt. Clearly yeD(δ) and

δ{y)=-\g\t)φ)dt,

where g' denotes the derivative of g. One easily computes

- iω(y*δ(y)) = i^gf(s)g(t)ω(at(x*)as{x))dsdt

= l\(g'ΐ(λ)g(λ)dμx(λ)

= \λ\g(λ)\2dμx(λ)

(notice that μx has compact support!), and similarly

-iω(yδ(y*))=-μ\g(λ)\2dvx(λ).

Therefore (3.2) implies

μ\g(λ)\2(dμx(λ) - dvx(λ)) ̂  0 for all geCl(M). (3.3)

Using the facts that μx and vx have compact support and that the image of Cl(U)
under Fourier transformation is uniformly dense in C0(R), we can strengthen (3.3):

\λh{λ)(dμx{λ) - dvx(λ)) ̂  0 for all heCQ(U)+. (3.4)

Finally, suppose / is a continuous positive function with compact support
contained in (— oo,0). As the function h defined by

h(λ)= -λ-ιf(λ\ if Ae(-oo,0)

= 0, if/le[O, + oo)

belongs to C0([R) + , substitution in (3.4) leads to the conclusion that μx <; vx
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on (— oo,0). But then μx ^ vx, since both μx and vx are supported in — n, —

by Lemma 1.6. •

4. KMS States at Unspecified Inverse Temperatures

It follows immediately from Theorem 1.1 and Remark 2.1 (i) that all KMS states
(in the broad sense: ground states and invariant traces are included) are completely
spectrally passive (Definition 1.2). To prove Theorem 1.3 we have to show that
the converse holds as well. This will be achieved through a series of lemmas
concerning a state ω of (91, U, α) on which, for the sake of clarity, the requirement
of complete spectral passivity with respect to α will be imposed only gradually.

Definition 4.1. For every λeU we define two closed sets of nonnegative real
numbers

Sλ = {a ^ 0|ω(x*x) ^ αω(xx*), VxeR(- oo, λ)}
and

Tλ = {b ^ 0|ω(x*x) ^ bω(xx*\ VxeR(λ, + oo)}.

They determine two functions s and t of a real variable, with values in [0, -f oo]:

s(λ)=+OO, i f S λ = 0 ,

= infSλ, otherwise,

t(λ) = sup Tλ (notice that Oe Tλ for all λ).

Since λ^μ implies Sμ a Sλ and Tλ a Tμ, it is clear that both s and t are
monotonically increasing. Other elementary properties of 5 and t are described next.

Lemma 4.2. (i) s(λ) = 0 if and only if t(— λ) = +00.

s(λ) = + 00 if and only if t( - λ) = 0.

// 0 < s(λ) < + 00, then t(-λ) = s(λ)~\

(ii) The function s (respectively t) is everywhere continuous from the left
(respectively right).

(iii) Let ω be ot-invariant. If λ<μ, [A, μ) n sp(α) = 0 , then s(λ) = s(μ) (a similar
property holds for ί, of course).

Proof, (i) Notice that s(λ) = 0 if and only if ω(x*x) = 0 for all xeR(— 00,λ). Now
XER(— 00,λ) is equivalent with x*e#(— λ, + 00) [8, Lemma 8.3.3]. Hence s(λ) = 0
if and only if T_λ = [0, + 00), or ί ( - A) = + 00. On the other hand s(λ) = + 00 if
and only if for every ε > 0 there exists xeR( — 00, λ) such that ω(x*x) > ε~ίω{xx*).
Equivalently (putting y = x*), for every ε > 0 there exists )^GR( — A, + 00) such that
ω(y*y) < εω(yy*\ which means precisely that T_λ = {0}. Finally, if 0 < s(λ) < + 00,
one has 0^5^ ψ 0 , and aeSλ if and only if a~ιeT_λ.

(ii) By (i) it is sufficient to show that t is continuous from the right at every
λeU. If t(λ) = + 00 this is obviously true, so assume t(λ) < + 00. Then

00), ω(xx*) f 0}, (4.1)
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this set being nonempty by assumption. Hence for all ε > 0 there exists xeR(λ, + oo)
with ω(xx*) Φ 0 and co(x*x)ω(xx*)~1 < t{λ) + ε/2. Since R(λ, + oo) is the closure
of (J R(μ, + oo) [8, Theorem 8.1.4], there exist μ> λ and yeR(μ, + oo) such

μ> A

that ω(yy*) ^ 0 and \ω(y*y)ω(yy*y* — ω(x*x)ω(xx*)~x | < ε/2. Consequently
t(μ) ^ ω(y*y)ω(χy*)~* < t{λ) + ε, which implies the conclusion as t is increasing,

(iii) The property will be established if we prove the following facts:

Sλ = {a Z 0| \\AΩ\\2 S a\\A*Ω\\2, VAeR(- oo, A)} (4.2)

if A < μ, [A, μ)n sp (α) = 0 , then £( - oo, A) = R( - oo, μ). (4.3)

To show (4.2), one observes (using Lemma 1.4 and [2, Theorem 2.4.7]) that every
AeR{— oo,λ) is the σ-strong* limit of a net {π(xf)} with {x } c K(— oo, A), so that
MΩ| | 2 =limω(x / *x i ) and \\A*Ω\\2 =\imω{xixi*). To prove (4.3), let M(-oo,v]
denote the spectral subspace of j / associated to α and corresponding to the closed
subset (— oo, v] of IR. If [A, μ) nsp(ά) = 0 , there exists ε > 0 such that (λ — ε, μ) n
S P © = 0 , since sp(α) is closed. Suppose λ ^ v < μ, ^ G J ^ :

A G M ( - oo,v]osp(/l)c:(— oo,v], by definition

<=>sp(,4)£z(— oo, λ — ε], since sp(yl) c sp(ά),

<=>AeM(— oo,/ί — ε].

But R(— oo,μ) = ( IJ M(— oo,v])~ (σ-weak closure) by [8, Theorem 8.1.4], hence
v <μ

R{ — oo, μ) = M( — oo, λ — ε] c ,R( — oo, A).

The converse inclusion is obvious. •

Definition 4.3. Putting f(λ) = inf s(μ), g(λ) = sup ί(μ), we define two func-

tions / and g on U with positive (possibly infinite) values; both are increasing,
and moreover / is right continuous, whereas g is left continuous. Obviously s ^ /,
g^t. The next lemma gives an important property of the pair (/, g) not shared
by the pair (5, t).

Lemma 4.4. If ω is an a-inυariant state on 91, then g(λ)^f{λ) for all λeσ{H)u

Proof. First suppose - λeσ(H). If μ < A < v one has P(- v, - μ)jf φ {0}. By
Lemma 1.4 it follows that there exists xeR(μ, v) such that ω(xx*) = ||π(x*)Ω||2 φ 0.
Since JR(μ, v) c Λ(μ, + 00)nJR(- 00, v), we conclude that

t(μ) S ω(x*x)ω(xx*)~x ^
Hence

If Aeσ(H), the first part of the proof implies g(-λ)^f( — λ). But it clearly follows
from Lemma 4.2 (i) that g(-λ)=f(λ)~1 and / ( - λ) = g(λ)"1 (if we agree that
1/0 = + 00 and 1/ + 00 = 0). Hence g(λ)^f(λ) in this case as well. •
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Next we dispose of the ground state case.

Lemma 4.5. Let ω be a state on 21. Then ω is a ground state if and only if s(0) = 0,
or equivalently g(λ) = + oo for all λ>0.

Proof. The state ω is a ground state if and only if ω(x*x) = ||π(x)Ώ||2 = 0 for all
xeR( - oo, 0) (Remark 2.1. (i)), i.e. if and only if s(0) = 0. On the other hand s(0) = 0
is equivalent with ί(0) = + oo (Lemma 4.2. (i)); since g ^ t and t is right continuous,
this in turn is equivalent with g(λ) = + oo for all λ > 0. •

Now we want to show that, if ω is completely spectrally passive but not a
ground state, there exists a nonnegative β such that s(λ) ̂  eβλ for all λ. This will
imply that ω is KMS by Theorem 1.1 (and Remark 2.1 (i)). The exclusion of the
ground state case, combined with complete spectral passivity, has some very
important consequences (as shown in the next lemma), most surprisingly a
strengthening of the complete spectral passivity condition (1.3) itself.

Lemma 4.6. Let ω be completely spectrally passive but not a ground state:
(i) s(λ) < + oo and {equivalently) g(λ) > 0 for all λeU.
(ii) Ω is separating for jrf, and hence σ(H) = sp(ά).
(iii) g(λ) < + oo whenever λesp(ti).
(iv) For allneN0 and ε > 0 there exists δ = <5(n,ε) > 0 with the following property:

if λu λ2,. , λn and x l 5 x2, ...,xnare n-tuples of real numbers, respectively of elements
n

of ϊ ί such that £ λ3 ^ δ and XJER(— co,λj) for all j , 1 Sj S n> then
J = l

ω(x 1*x 1)ω(x 2*x 2)... c φ c / x j ^ (1 + ε)ω(x1x1*)ω(x2x2*)... ω ( x Λ * ) .

Proof, (i) Since ω is not a ground state, Lemma 4.5 implies the existence of some
μ > 0 such that s(— μ)> 0. Hence there exists yeR(μ, + oo) such that ω(yy*) > 0.
Let n be any natural number and xeR( — oo, nμ). Since ω is (n -f l)-spectrally passive,

and consequently

s(nμ) ̂  ω(};*y)liω(iy3;*)"11 < + oo.

As s is increasing, this suffices to conclude that s is everywhere finite. The equivalence
with the nonvanishing of g follows from Lemma 4.2 (i).

(ii) Let Q denote the orthogonal projection onto the closure of s&Ώ in jf. We
have to show that Q = 1. Choose λeU,ΛeR( — oo, λ) and aeSλ (that Sλ is nonempty
follows from the first part of the Lemma). Since QΩ = Ω, one has A*(l — Q)Ω = 0.

On the other hand Q is α-invariant, so that (1 — Q)AeR{ — oo,λ). Hence by (4.2)

\\(1 - Q)AΩ\\2 ^a\\A*(l - Q)Ω\\2 =0,

or (1 — Q)AΩ=Q. But (J JR(— ao,λ) is σ-strongly dense in jtf. By the cyclicity
λeU

of Ω, it follows that 1 — Q = 0, as desired, and also σ(H) = sρ(ά), as was pointed
out in Remark 1.5.

(iii) If λesp(α) = σ(H) and g(λ) = + oo, we would have /(A) = + oo by Lemma 4.4,
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contradicting the finiteness of s ((i) above).
(iv) Suppose there are ne No and ε > 0 such that for all δ > 0 there exist n-tuples

n

λ1,λ2,. .,λn and x1,x2i...,xn satisfying £ λj^ δ, XJER( — oo,λj) for j = 1, 2,...,n

and

ω(x 1*x 1)ω(x 2*x 2)... ω(xπ*xπ) > (1 + ε)ω(x1x1*)ω(x2x2*)... ω(xπxΛ*). (4.4)

Fix λ>0. For an arbitrary nonzero positive integer m, put δ = — and find
m

Λ,1? A2,..., λn, x l 5 x2,... ,xπ as above. For all yeR{λ, + oo), we have

ω(x1*x1)
wω(x2*x2)

m... ΦSxjrφy*) ύ afc^Sr

ω(x2x2*Γ Φ A T Φ * Λ (4 5)
since ω is (nm + l)-spectrally passive. Now either ω{XjX*) = 0 for some j , 1 ̂ j ^ n,
or ω(xjxj*) φ 0 for all j . In the first case (4.5) implies that ω(yy*) = 0, since
ω(xj*Xj) φ 0 for all j by (4.4); hence t(λ) = + oo. In the second case, (4.4) and (4.5)
lead to

ω(y*y) ^ ω(x 1*x 1)mω(x 1x 1*)-mω(x 2*x 2)mω(x 2x 2*)"m . . .

... ω(xn*xn)
mω(xnxn*ymω(yy*) > (1 + ε)mω(yy*).

Hence t(λ) ̂  (1 + ε)m for all m, so t(λ) = + oo in this case as well. Anyway we find
g(λ) = + oo for all λ > 0, contradicting the fact that ω is not a ground state, by
Lemma 4.5. •

The proof of (i) above gives the first indication to the effect that the growth
of s is at most exponential. Also the property (iv) for n = 2 implies / ^ g, whereas
2-spectral passivity only entails the weaker inequality s^t. More generally we
have the following:

Lemma 4.7. Let ω be a completely spectrally passive state, but not a ground state.
(i) Let λuλ2,...,λn be elements of sp(α). Then

If μi,μ2, - ,μm are real numbers with £ μ; rg ^ λk, one has
j = i k=ί

f(μi)f(μ2) ./(μ«) ^

(ii) // moreover μ l 5 μ 2 , . . .,μwesp(ά),

g(μi)g{μ2) ^ m

Proof, (i) Let /ί1? /12,...,/In, μ1? μ2,...,μw be as in the statement, and fix ε > 0 . Choose
δ' = δ(ε, n +1) and δ" = δ(ε, m + ή) according to Lemma 4.6 (iv), and ζ>0. With

- (
m
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Lemma 4.6 (iv) implies that

ω{x*x)ω(y1yί*)ω{y2y2*)... ω(ynyn*)

^ (1 + ε)ω(xx*)ω(yί*y1)ω(y2*y2)... ω{yn*yn)
and

ω (xί*xί)ω{x2*x2)... ω ^ / x J ω O ^ ^ c φ ^ * ) . . . ω(ynyn*)

ε)ω(x1x1*)ω(x2x2*)... ω(xmxm*)ω(j;1*};1)ω(3;2*^2)... ω(yn*yn).

Requiring moreover that ω(ykyk*)φ0 for k = l , 2 , . . . , n (which is possible since

-ζ j ^ gf(λk) < + oo), by Lem

s{λί+λ2 + ... +λn + δ' -ζ)

K — C ) = 9(λk) < + °°λ t>y Lemma 4.6 (iii) we obtain

and

Using (4.1) (cf. the proof of Lemma 4.2), this yields

s(λί+λ2+...+λn + δ'-Q

and

Passing to the limit ζ ̂  0, we obtain

and

because s is increasing and continuous from the left (Lemma 4.2 (ii)). As ε was
arbitrary, this proves (i).

(ii) If μ l J μ 2 , . . . ,μ m esp(ά) = σ(H), then g(μJ)^f(μj) for all j - l , 2 , . . . , m by
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Lemma 4.4, hence (ii) follows immediately from (i). •

Now we are ready to prove Theorem 1.3. We suppose as before that ω is
completely spectrally passive but not a ground state. Let Γ denote the subgroup
of U generated by sp(ά). Define a function y on Γ with positive real values by

where Ayesp(ά) for j = 1,2,..., n. Then y is well-defined and increasing by Lemma
4.7 (ii) and f\Γ ^ y by the first part of Lemma 4.7 (i). Moreover, as g never vanishes
(Lemma 4.6 (i)), y is by its very definition a homomorphism of Γ into the
multiplicative group M£ of the nonzero positive real numbers.

Now we make a distinction between two possible cases:
(a) Γ has no smallest positive element, i.e. Γ is dense in U. As y is an increasing

homomorphism of Γ into M%9 it extends to a continuous increasing homomor-
phism on the whole of U. Hence there exists β ^ 0 such that y(λ) = eβλ,λeΓ. The
inequalities s(λ) ̂  f(λ) ^ y(λ)(λeΓ) imply s{λ) ̂  eβλ for all λeR, by the left continuity
of s. By the definition of 5 and Theorem 1.1 (and Remark 2.1 (i)), we conclude
that ω is β-KMS with respect to α.

(b) Γ has a smallest positive element μ > 0, i.e. Γ = Zμ (notice that Γ = {0}
corresponds to the ground state case). Then again γ(λ) = eβλ for all λeΓ (where
now β = μ'1 logy(μ). To show that s{λ) ^ eβλ for all real λ, however, we need a last
lemma (a slight modification of Lemma 4.2 (Hi)):

Lemma 4.8. Let ω be an oc-ίnυarίant state on 91. // λ < μ, (λ,μ] nsp(α) = 0 , then

Proof. As sp (α) is closed, there exists ε > 0 such that (A, μ 4- ε) n sp (α) = 0 . For all
real (5 such that 0 < δ ^ μ - A, Lemma 4.2 (iii) implies s(/l + δ) = s(μ + ε). In the
limit <5^0 this yields f(λ) = s(μ + ε). The desired conclusion follows from the
inequalities f(λ) ^ f(μ) S s{μ 4- e). Π

Let us now finish the proof of Theorem 1.3 by showing that s(λ) ^ eβλ for all
λeU under assumption (b) above. This is clear for λeΓ. If nμ < λ < {n + l)μ for
some neZ, we have

s{λ) S f(λ) = f{nμ) S y{nμ) = eβnμ S eβ\

where the first equality follows from Lemma 4.8, since sp(α) c Zμ. Hence we are
done.

Example 4.9. In order to show that one really needs complete spectral passivity
in Theorem 1.3, we give an example of a C*-dynamical system (91, U, α) and an
α-invariant state ω on 9ί such that ω is m-spectrally passive for all m^n, but not
(n + l)-spectrally passive (where neN0 is arbitrary).

In fact, let 9ί be the algebra of complex qx q matrices ("finite quantum spin

system"), and ejk(l ^j,k^ q) the usual matrix units. We define α by oct(x) = eίth ix
q

e~ith, where h = ^ μ^^ and μ. (l ^j^q) are real numbers. It is immediate
j
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that x = £ Xj/ĉ /Tc (X/7cEQ belongs to JR(— oo,A) if and only if xjk = 0 whenever
j,k=l

μj -μk^λ.
Let τ be the trace on $1 (i.e. τ(ejk) = (S;7c). Any state ω on 9ί is given by a density

matrix p with the properties p ^ O , τ(ρ) = 1, ω(x) = τ(px) for all xe$ί. If ω is
α-invariant, p and /ι commute. Hence we may suppose

(performing a unitary transformation in Cq if necessary).
Since

h,k=ί

a
ω ( x x * ) = ^ Pjlxjfel2,

j,k=ί

q

if x = £ xjfcej7c, one finds that ω is spectrally passive with respect to α if and

only if

μj-μk<0=>pk^Pj (4.6)
(cf. [7, p. 579]).

Similarly it is easy to show that m-spectral passivity of ω is equivalent with
the following property: for all choices of integers jj, /cje{l, 2,...,g}, with 1 ̂  / ̂  m,

m

such that £ (μ j2 — μkj) < 0, one has

(cf. [7, p. 583]).
To construct our example we fix a nonzero natural number n and put q — 3.

We choose

μi=0> M2 = 1 , μ3

 = rc + -, (4.8)

and require

P i = P 2 > p 3 (4 9)

Then ω is m-spectrally passive with respect to α for all m^n. The reason is that if

m m

Σ μh < Σ Mkί,
J = l 1 = 1

then because of our choice (4.8) the term μ3 has to appear at least as often in the
right hand side as in the left hand side (as long as m ̂  ή). By (4.9) it follows that
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because the factor p 3 appears at least as often in the left hand side as in the right
hand side. On the other hand ω is not (n + l)-spectrally passive, since nμί + μ3 <
(n + l)μ2 but P γ ι > p»p39 by (4.8) and (4.9).

There is an important case, however, where complete spectral passivity is
implied by spectral passivity, viz. the case where ω is weakly clustering.

Definition 4.10. Let (2ί, G, y) be a C*-dynamical system, and let ω be a y-invariant
state on 51. Then ω is called G-weakly clustering if for all x, y

inϊ\ω(xyf) - ω(x)ω(y)\ = 0

when y' runs over the convex hull of {yg(y)\geG} in $ί.

Theorem 4.11. Let (51, U, α) be a C*-dynamical system, and let G be a locally
compact group acting continuously on 5ί by *-automorphisms yg(geG\ which all
commute with the αt(ίelR). Let the y-invariant state ω on 51 be spectrally passive
with respect to α and G-weakly clustering. Then ω is completely spectrally passive
with respect to α {and hence a KMS state or a ground state).

Proof. We shall show that under the above assumptions n-spectral passivity implies
(n + l)-spectral passivity. The hypothesis of spectral passivity therefore provides
a basis for induction on n. First, however, we have to introduce some notation
and establish a few preliminary facts.

As ω is γ-invariant, we can perform the constructions of Sect. 1 with respect
to y instead of α: we define the unitary operators Vg on jίf and the *-automorphisms
yg on si by

Vgπ(x)Ω = π(yg(x))Ω
and

yg{A)=VgAVg-ί (geG,xe%Ae^\

Also (as in the proof of Lemma 4.6 (ii)) let Q denote the orthogonal projection on
the closure of si'Q. Finally, we use E for the orthogonal projection onto the space
of F-invariant vectors in jήf.

By the mean ergodic theorem [2, Prop. 4.3.4], E is the strong operator limit

of a net i £ cikVgJieI >, where gikeG, 0 < c l 7 c ^ l and ]Γ cik = l for all
[k=l l J fc=l

iel and 1 ̂  k ^ nt. As is well known, the assumption that ω is G-weakly clustering
is equivalent with the fact that E is the projection onto the space of scalar multiples
of Ω [2, Theorem 4.3.22]. It follows immediately that for all Aesi,

l i m Σ cikγgJA)Q = ]im £ cikγg-ΛA)Q=(Ω,AΩ)Q
fc = 1 Λ = 1

in the weak operator sense, and hence that

lim Σ cik\\ygJA)QBΩ\\2 =lim J cik\\yg-k> {A)QBΩ\\2 = ||,4Ω||2i|βB£2||2 (4.10)

for all V4,£<EJ3/.

To conclude these introductory remarks, suppose that ω is spectrally passive.
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Then by Lemma 1.4 (i) we have ||J3Ω|| ^ \\B*Ω\\ for all BeR(- oo,0). In particular,
since Q is ά-invariant,

or
QBΩ = BΩ for all BeR(- oo,0). (4.11)

Now we prove the induction step outlined in the beginning of the proof: we
assume that ω is G-weakly clustering, spectrally passive and rc-spectrally passive
with respect to α. By Lemma 1.4 (i) the last assumption is equivalent with the

following: if λl9λ2,...9λneM, A1,A2,...,Ane^ satisfy Σ λj^O and Ajβ

R{- oo9λj){j = 1,2,...,n), then

\\A1Ω\\\\A2Ω\\...\\AnΩ\\^\\Ax*Ω\\\\A2*Ω\\...\\An*Ωl ( 4 1 2 )

n

Suppose now μ^μ^^^μ^eU, £ 7f/^0 and *yei?( - oo, μ,-) (/ = 1,...,Λ).
j o

Rearranging if necessary we may assume μ0 ^ 0, Since y and α commute, and
since Q is α-invariant, we have

Vg(π(Xi))βπ(xo)eK(- ocμo + μ j

for all geG [8, Lemma 8.3.3 (iii)]. Hence by (4.12) (with λί = μ0 + μ1? λ} = μ} for
j ^ 2) we obtain

\\yg(Φι))QΦo)Ω\\2ω{x2*x2)ω{x3*x3).. .ω(xn*xn)

^\\π(x0ηQγg(π(xiη)Ω\\2ω(x2x2ηω(x3x3η.^ω(xnxnη. (4.13)

On the other hand, with cik and gik as above,

l i m Σ c i kllyβ>(x 1))βπ(x 0)Ωlί2 = llπlxOΩfllβπfxoίΩH2, by (4.10)

= | |π(x1)Ω||2 | |π(x0)Ω||2

= ω(xo*x0)ω(x1*x1), by (4.11)

as π(xo)eJR(— oo,0). Moreover, using the fact that Q is also y-invariant, we have

lim X C ; J | π ( x 0 * ) ρ ) ί i ) χ x 1 * ) ) Ω | | 2 = l i m ^ c ; J |^,( π (x 0 *))βπ(x 1 *)Ω! | 2

•k = 1

= IWxo*)Ω|l2llβπ(x1*)Ω||2, by (4.10)

Hence taking the limit of the convex combinations of the inequality (4.13) with
g = gik and coefficients cik as above, we obtain

x 1 ) . . . ω{xn*xn) ^ ω(xoxo*)ω(x1x1*)... ω(xwxΠ*).
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The conclusion is that ω is (n + l)-spectrally passive, thus completely passive by
induction. •

5. Discussion

In [9], a state ω of a C*-dynamical system ($1, (R, α) is called passive if (roughly
speaking) the system is unable to perform work in a cyclic process with initial
state ω. As the precise definition of this concept [9, Definition 1.1] has been shown
to entail the inequality (3.1) above, it follows from Theorem 3.3 that passivity
implies spectral passivity. Hence our Theorem 4.11 provides a new proof of [9,
Theorem 1.3]. Actually, an inspection of the proof of that theorem reveals that it
still goes through if the assumption of passivity is replaced with (3.1) (see also [2,
Theorem 5.3.22]).

A similar relationship exists between the notions of complete passivity [9,
Definition 1.3] and complete spectral passivity on the one hand, and between [9,
Theorem 1.4] and Theorem 1.3 above on the other hand. A state ω is said to be

n

completely passive in [9] if all its tensor powers (x) ω are passive states of the

corresponding C*-dynamical systems I (g) 9Ϊ, R, (g) α I (neN0). Likewise a state

whose nth tensor power is spectrally passive has to be ^-spectrally passive; however
the converse is not obvious a priori. One of the main benefits of our approach is
indeed that we got rid of tensor products and of the cumbersome technicalities
that inevitably go with them. It is also worthwhile to observe that our proofs are
independent of the Tomita-Takesaki theory.

Finally, one should notice that our results generalize those obtained by
A. Lenard for finite quantum spin systems [7]. In this case (i.e. when 2ί is a full
matrix algebra) passivity and spectral passivity are equivalent. We do not know
whether this holds in general.

Acknowledgement. I would like to thank W. B. Arveson, J. Block and P. Hislop for stimulating and
clarifying discussions.
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