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Abstract. We give a new, elementary proof for the existence of a deconfining
transition to a massless (QED) phase in the four-dimensional U(l) lattice gauge
theory and of an intermediate QED phase, accompanied by dynamical
restoration of local U(l) in variance, in the four dimensional ZN models, with N
large. Our methods can also be used to prove the existence of a phase transition
in the XY model in three or more dimensions, in three- and four-dimensional
abelian Higgs models, and in more general models admitting some local,
abelian gauge invariance.

1. Introduction and Summary of Results

In the past five years, there has been considerable progress in the understanding of
the phase diagram of lattice gauge theories with a discrete (abelian, or non-abelian)
"unbroken" group of gauge transformations. Among such models are

i) pure lattice gauge theories with a discrete gauge group
ii) lattice Higgs models with discrete or continuous gauge groups, broken down

by the Higgs scalars to a discrete, unbroken subgroup.
Such models are now known to have a strong coupling ("high temperature")

phase in which static quarks transforming non-trivially under the center of the
unbroken group are confined and a weak coupling (or "low temperature") phase
where static quarks are not confined but magnetic monopoles may be; see [1-6]
for a systematic review and further developments.

Proofs of these results are based on fairly standard high and low temperature
expansions. An excellent review of such expansions [7, 8] along with applications
to lattice gauge theories can be found in [6]. None of these expansion methods
require the use of duality transformations, so that non-abelian models with
discrete, unbroken groups are accessible. The applications to the study of Higgs
models with continuous gauge groups, but discrete unbroken subgroups is
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somewhat subtle. However, the methods developed in [9, 10], adapted to lattice
gauge theories, are in principle sufficient to study such models in various, extreme
regions of coupling constant space; see also [6].

As an example, consider a four-dimensional SU(2) Higgs model with a system
of Higgs scalars which leave only Z2 unbroken. Let g be the pure gauge coupling
constant, β=l/g2, and suppose that, in the unitary gauge, the interaction between
the lattice gauge field, g, and the matter fields is given by the action

), (LI)

where xy runs through all bonds (nearest neighbor pairs) of 2ζ4, χ1 is the spin 1
character of SU(2), ζ >0 is a coupling constant, and Rx is the radial component of
the Higgs system at the point xeZ4 which is supposed to be &R0>Q with high
probability.

Presently, those facts which are known rigorously about this model can be
summarized in the following diagram:

I: Confinement of static quarks in the fundamental representation [1, 4].
II: Confinement of TL2 monopoles [6].

C = c

Fig. 1

scalar lattice
theory (without
gauge fields)

0 pure S U ( 2 ) theory

On the line β=ao, the theory reduces to a lattice theory of scalar fields decoupled
from the gauge fields which has in general a phase transition, with a massless,
broken symmetry phase for ζ>Cc [1 li-

lt is conjectured that β = β and, more generally that regions I and II have a
common boundary from (β = β, ζ=ao) to some point P which is connected by a
line of singularities of e.g. the magnetic string tension to (/?= oo, ζ = ζc). Moreover,
domain I should extend to the broken line from P to (/?= oo, ζ = 0).

Among the obstructions which prevent one from proving the above conjec-
tures are: incomplete knowledge of the pure 7L2 theory the presumed roughening
transition in the pure SU(2) theory (see e.g. [12]) which appears to make it
impossible to extrapolate the high temperature expansion for ( = 0 to arbitrarily
large values of /?.
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The model discussed above may be amusing, but is not really relevant for
particle physics. More interesting examples would be lattice versions of the
Georgi-Glashow or the standard (Glashow-) Weinberg-Salam model of electro-
weak interactions. In these models a new difficulty appears: essentially no
powerful, analytical tools are known which would permit one to establish the
existence of electromagnetic phases with massless photons and unconfined,
charged leptons.

Let us consider, for example, the Georgi-Glashow model. In this model, the
Higgs scalar has isotopic spin 1, and the action describing the interactions between
the Higgs and the gauge field is given by

where φ is the Higgs field, Dί is the spin 1 representation of SU(2), ( , •) is the
scalar product on R3, C>0.

In this example the presumed phase diagram is described in Fig. 2 below.

ί=c

pure U (1 ) theory

classical Heisenberg
model (org\φ\u

ζr lattice theory)

Fig. 2 β

In domain I static "leptons" in the fundamental representation of SU(2) are
confined. This follows from the results of [1, 6] (high temperature expansions) or
from [4] (where correlation inequalities are used).

When ζ= oo the model reduces to the pure 17(1) lattice theory. One main result
of our paper is a new proof and a generalization of a result, already established by
Guth [13], which asserts that the four-dimensional U(l) model has a deconfining
transition, i.e. for β > βc9 static electric charges have only Coulombic interactions,
and the photon is massless (see Sect. 2).

Our method of proof is a descendant of a more involved one used to establish
the existence of the Berezinski-Kosterlitz-Thouless transition [14] in the two-
dimensional rotator model and the Coulomb gas which we presented in [15]. In
comparison with [15] simplifications arise in the analysis of the C7(l) model, due to
gauge invariance which enforces "local neutrality". Our methods have the
advantage over [13] of not being geared to a special form of the lattice action (the
Villain action), and they do not involve a cluster expansion (so that reasonable
bounds on βc might be obtained). Physically speaking, they consist in showing that
for large β, static electric charges are deconfined, because the dynamical magnetic
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monopoles of the lattice (7(l)-model are bound in neutral clusters which form a
dilute gas.

On the line β= oo, the model reduces to the classical Heisenberg model or the
three-component lattice g\φ\4 theory, and the degrees of freedom of the gauge field
are frozen. These models have a phase transition accompanied by spontaneous
breaking of 0(3): For ζ > ζc, global 0(3) invariance is broken, and there exist two
massless Goldstone modes. This has been proven in [11]. (For two-component
rotator models, a new proof of this result is given in Sect. 4.)

We expect that the critical points βc and ζc are connected by a line of critical
points above which the theory is in a massless QED phase with unconfined electric
charge and massive, magnetic monopoles (see domain II, Fig. 2). In the comple-
ment of domain II, and for β<oo, magnetic monopoles are expected to be
massless. For ζ sufficiently small and β below βroughening [for the pure SU(2) theory]
they are expected to form a condensate. In this range of parameters electric charge is
confined. Since our analysis of the (7(1) model involves using a duality transfor-
mation, it does not extend to the model with ζ < oo, in any obvious way1. This and
the absence of a detailed understanding of the presumed roughening transition in
the pure SU(2) theory are, at present, the obstructions against establishing the
conjectured phase diagram described above. At least, it is supported by the results in
Sect. 2 and [11].

In Sect. 3, we reconsider the TLΉ models with Villain or Wilson action. We show
that, in four dimensions and for N large enough, there exisUwo critical values of/?,
βc9 and βc>βc (depending on JV), such that for βe(βc,βc) the Wilson and the
disorder loop have perimeter decay. Thus there exist intermediate QED phases.
This reproduces and extends a result of Elitzur et al. [16]. The point of our
methods is to avoid using self-duality which only holds for the Villain action and
to exhibit a sequence of transformations of the ΈN model which map it to a model
with unbroken (7(1) gauge invariance, provided βe(jβc,βc). In other words, local
(7(1) invariance is restored in the intermediate phase. This is the analogue of global
(7(1) restoration in the intermediate phases of the two-dimensional TL^ models
which we described in [15].

The phenomenon that the "fixed point theory" of some class of spin systems or
lattice gauge theories, with respect to suitably chosen renormalization transfor-
mations, has a larger global or local symmetry than the original models is
presumably a rather general one. It is therefore of interest to analyze some
examples which exhibit that phenomenon.

We expect it to occur, for example, in any lattice gauge theory with a discrete
gauge group H of high order which is a subgroup of some Lie group: If G is the
smallest Lie group containing H as a subgroup, then we expect that a pure lattice
gauge theory with gauge group H has intermediate phases where local
G-in variance is restored, in the sense that certain correlations behave like ones in a
pure gauge theory with gauge group G.

In Sect. 4 we reconsider the classical rotator (XY) model in three or more
dimensions. By duality, the rotator model is equivalent to a statistical mechanical

1 It is an interesting problem to avoid the use of duality in the analysis of the U(l) model, or to
translate the methods developed in Sect. 2 back into the Wilson formulation of that model
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model of line defects characterized by integer flux numbers. In three dimensions,
this model is the £->• oo limit of the non-compact, abelian Higgs model, and the line
defects correspond to the Abrikosov vortices.

Our methods permit us to prove that, for a large class of lattice actions, the
classicalJf Y model in three- or more dimensions has a phase transition with long
range order, accompanied by spontaneous symmetry breaking. By the results of
[5] this also implies the existence of a superconductor — »QED transition in the
three-dimensional, abelian Higgs model. (In the superconducting phase,
vortices have a small activity and form a dilute gas, the photon is massive and
there is no confinement of fractionally charged static sources. In the QED phase,
vortices condense, the photon is massless, and fractionally charged sources are
confined by a logarithmic potential. These results were proven in [5], assuming the
results of [15] and of Sect. 4 of the present paper, by using correlation
inequalities.)

We conclude this introduction by establishing some notation: Let G be a
compact gauge group. With each link (nearest neighbor pair) xy in a simple, cubic
lattice 7LD we associate an element gxy of G. The a priori distribution of gxy is given
by the normalized Haar measure, dgxy, on G. Let A be some finite region in TLD, and
let χ be some unitary or orthogonal character of G, typically the character of the
fundamental representation of G (assumed here to be a matrix group).

Following Wilson [1], the action of a lattice theory in region Λ is defined by

, (1.3)
PC A

where β=l/g2 is the inverse square of the gauge coupling constant, p denotes a
unit lattice square (plaquette) in A, gA is shorthand for {gxy}xycΛ, and

. (1.4)
xyC dp

Here Y[*) denotes a path-ordered product. The Euclidean functional measure of
the lattice theory in A is given by

Π dgxy. (1.5)
xyCΛ

More generally, dμβ is defined by

dμβ(gΛ) = Zβί\ Π Ψβ(gdp) Π dgxy, (1.6)
pCΛ xycΛ

where φβ is some positive class function on G, i.e.

φβ(h~1gh) = φp(g).

For example, φβ may be the heat kernel on G in which case the model is called the
Villain approximation. In this paper, we primarily study the Villain approximation
to the [/(I) model and the X Y model, except in Sect. 3, where we study Wilson's
form of the ZN lattice gauge theory in four dimensions. This restriction is not
inherent in our methods but is imposed for technical (mainly notational)
convenience. The techniques introduced in Sect. 6 and Appendix B of [15] permit
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us to extend all results of the present paper to the models with Wilson action. (This
is an advantage of our methods over the ones in [13].)

Our criterion for confinement (or deconfinement) of static sources is the usual
Wilson criterion. We are aware of the shortcomings of this criterion. Instead, we
could use the slightly more general criterion discussed in [5] which is correct in the
limit of infinitely heavy "quarks". This would merely result in a slight complication
of notations but does not alter our results. (It is an interesting open problem, not
studied in this paper, to introduce a confinement criterion which is valid in
theories with dynamical quarks of small mass.)

Let & = ̂ L x Γ be a rectangular loop in a lattice plane, with sides of length L
and T. Let

(1.7)
\xyc£

where χ0 is some character of G.
Consider the expectation

(1.8)

Let < — y(β)= lim < — yΛ(β) denote the vacuum functional in the thermody-
Λ?TLΌ

namic limit. (Some limit always exists by compactness2.) The "quark-anti-quark"
potential is defined by

V0(L) = lim - ilog<M^Lχr)>03) (1-9)
Γ-»oo 1

(For a more accurate definition see [5].) Quarks transforming under a repre-
sentation of G with character χ0 are expected to be permanently confined if

V0(L) diverges to + oo , as L-> oo . (1-10)

This is possible only if χ0 is non-trivial on the center of G [18]. Moreover,

F0(L)^constL, (1.11)

for arbitrary G, χ, χ0 [19].
If

limF0(L)<oo, (1.12)
L-κ»

"quarks" are expected to be deconfined, and physical states transforming non-
trivially under the action of global gauge transformations corresponding to certain
elements in the center of G are expected to exist. While this conclusion is correct in
a pure lattice gauge theory without dynamical quarks, it is wrong in theories with
dynamical quarks in which (1.12) is valid in general, although quarks may be
permanently confined. In order to establish the existence of a QED phase in the
four-dimensional (7(1) model, one should therefore really also establish the
masslessness of the photon (see Sect. 2).

In the abelian case, the existence of the limit follows from [17]
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For (1.12) to hold it suffices that

<W(<PLxT)yA(β)*expl-d(L+TΪ]9 (1.13)

for some /1-independent constant d, provided A is large enough. Inequality (1.13) is
proven in the next section for the (7(1) model in four dimensions, at large values of

β.
Apart from the behaviour of the Wilson loop expectation, < W(££)y(β\ we are

also interested in the behaviour of the expectation value of the disorder loop, D, in
the state < — >(/?). In four dimensions D is defined as follows : One chooses a loop,
&, in a coordinate plane of the lattice (Z4)*, dual to Z4. Let Σ be an arbitrary set of
plaquettes bounded by <&, i.e. dΣ = J2?, and let

(1.14)

Then

<A*>=f Π (<Pβ(0apz)/φP(9dp))dμβ(gA)9 (1.15)
PCΣ*

where z is an arbitrary, non-trivial element in the center of G. It has been shown in
[5] that in the four-dimensional Villain approximation to the (7(1) model

<D^χτ>(/?)^exp[-(5(L+T)], (1.16)

for all β<co. This can also be shown for the (7(1) model with Wilson action by
using the method of real translations (Sects. 5-7 of [15]) and Jensen's inequality.
Thus, in the (7(1) model, the disorder loop always has perimeter decay, i.e. static
magnetic monopoles are never confined.

In Sect. 3 we show that for sufficiently large JV, the ZN models with Wilson
action have an intermediate phase [for βe(βc,βc), with 0<^c</Jc<oo] in which
both inequalities, (1.13) and (1.15), hold. [It follows from standard high tempera-
ture expansions that (1.13) fails for small β and (1.15) for large β, for every JV< oo.]

In Sect. 4 we extend the concepts and results described above to a general class
of abelian models, "hypergauge theories", which includes the rotator model. We
determine the (lower) critical dimension of these models.

2. The Transition in the Four-Dimensional l/(l)-Model

2.1. Main Ideas

In this section we establish the existence of a transition to a deconfining, massless
phase in the four-dimensional, compact (7(1) lattice gauge theory. Previous work
concerning this model is contained in [1, 20, 5] and, in particular in [13]. (See also
[6] for a review of [13].)

The basic ideas of our method which evolved from [20] and [15] are as
follows:

ί) Use of Fourier transformation in the angular variables of the compact (7(1)
model: Transformation to the non-compact, dual model.

ii) Application of a sequence of renormalization transformations to the dual
model which map it to a neighborhood of the Gaussian model which describes
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free, non-compact electromagnetism. Our transformations represent a simplified
version of the ones used in the two-dimensional Coulomb gas, in order to establish
the existence of the Kosterlitz-Thouless transition [15]. The simplifications arise
as a consequence of gauge invariance.

iii) Change of field variables in the renormalized dual models (real trans-
lations see Sects. 5-7 of [15]) and application of Jensen's inequality to establish a
lower bound on the Wilson loop expectation, i.e. the disorder loop expectation of
the dual model, with perimeter decay. [This proves (1.13).]

2.2. Notation and Definitions

We explain our methods in terms of the Villain approximation to the (7(1) model,
but with some analytical complications taken into account (see Sect. 6 and
Appendix B of [15]) our methods and results extend to a large class of 17(1)
models with other actions, in particular the Wilson action, as well.

In this and the following sections we use the notation

gxy = eίθ**, θxye\_-π,π),

to denote the elements of (subgroups of) t/(l). We adopt the usual convention

θyx=~θxy. (2-1)

The a priori distribution of θxy is given by the Lebesgue measure, dθxy, on the unit
circle. Let A be a finite, rectangular array of sites in Z4, and θΛ = {θxy}xyζ.Λ, as in
Sect. 1. We define

<Pβ(θ) = Σ exp [ - 08/2) (θ + 2πn)2], 0e [ - π, π). (2.2)
neZ

This is the heat kernel on the unit circle appearing in the definition of the Villain
approximation.

The purpose of this section is to elucidate the properties of the following
distribution (the Euclidean functional measure for compact QED on the lattice):

-ι YY φβ(dθp) Yl dθxy, (2.3)
PC A xycΛ

where

xyC dp

(dp is the boundary of a plaquette p C Λ\ and

Π dθχy (2 4)
PC A xycA

The standard Wilson loop is defined by

Π eWχy> (2.5)
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where £β is as in Sect. 1, and we assume it to lie in the 0— 1 lattice plane. More
generally, let

xyCL

We now define

and m m ,

Existence of the limit is a standard consequence of Ginibre's inequalities [17] (for
the models with Wilson's and with Villain action [21]). By a standard high
temperature expansion (see e.g. [1]) or by using Simon's correlation inequalities
[22, 23] one shows that, for β sufficiently small,

0 ̂  < Wm(&)y(β) ^ exp [ - φi, β)L - T] , 1
with \ (2.7)

, as β^O. J

In the following, we propose to give a simple proof of the statement that, for β
large enough,

< Wm(&y>(β) ^ exp [ - φί, β) (L + T)] , (2.8)

for some finite constant d(m, β).
For reasons of simplicity of the exposition we concentrate on the model with

Villain action and m=l, but using some results in [15] it is not challenging to
extend our arguments to the general case. We now pause to review some exterior
difference calculus.

2.3. Exterior Difference Calculus

Let ck denote an oriented unit fc-cell in a simple, hypercubic lattice ΊLD. Let α be a
fc-form, i.e.

(2.9)

where K is a ring, (K = Z, IR or C), and α(cfc) = 0, except for finitely many ck. We let
ck denote the same fe-cell as ck, but with orientation reversed, and require that

α(O=-α(cfc). (2.10)

Given an oriented (fc-fl)-cell, ck+1, we define

(dα)(ci+1)= Σ «(O (2.H)
^kC δck + i

Here it is assumed that the orientation of some ckcdck+1 is the one prescribed by
the orientation of ck+1, and (2.10) is enforced. Let ck_1 be an oriented (k— l)-cell.
We set

(δα)(c fc_1)= Σ α(cfc), (2.12)
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assuming again that the orientations of the dcks are matched to the one of ck_ x and
(2.10) is enforced. Clearly, da is a (k-f-l)-form, while δu is a (k— l)-form. One
verifies easily that

dda = Q. (2.13)

For,

d(dα)(ct+2)= Σ I Σ «('*))•
Ck + i C dch + 2 We dck + i /

Now, with each cfc appearing in some dck+2, ck appears in the same dck+2, too.
Thus, by (2.10), the right side vanishes. Given arbitrary k-forms α and β, we set

(a,$ = £'^)/?(ck), (2.14)
Ck

where α and β are arbitrary k-forms, and Σ' extends over all positively oriented
k-cells. One has

where α is an arbitrary fc-form and β an arbitrary (k+l)-form. This identity is a
consequence of "summation by parts" :

s«£LL
-Σ( Σ

By (2.13) and (2.15),

δδβ = Q, (2.16)

for any k-form β.
One may finally introduce a discrete version of the Hodge * operation. Given a

k-cell ckCZD, let cg_ f e denote the (D-k)-cell in the dual lattice (ZD)* passing
through ck and with orientation chosen such that it matches the orientation of ck.
Given some k-form α, we define a (D — k)-form *α by

(*α)(cS-*) = α(c*). (2.17)

It is easy to see that

*d*α = ($α. (2.18)

For
(*d*α)(ck_1) = (d*α)(cS_ fc+1)

Σ M(cί-*)
CD-kC dCD-k+ 1

= Σ «(<*)
Ck^CkDCk- i

= (δα)(ck_1).
We will need the following
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Lemma 1 (Poincare). Let α be a k-form wzί/i values in K( — TL, IR, (C) such that δ& = 0.
Then there exists a (fe+ l)-form β with values in K such that

Moreover β can be chosen such that suppβ is contained in the smallest hyper cube Ωa

containing suppα, and max\β(ck+ί)\^ Σ' lα(c/c)l

Remark. Similar statements hold with δ replaced by d. They can be obtained from
Lemma 1 by using the * operation. The proof of Lemma 1 is quite elementary and
is not given here.

2.4. Fourier Transformation

Next, we calculate the Fourier transform of the measure dμβ(9Λ) introduced in (2.3),
(2.4). Let φβ(n) denote the nih Fourier coefficient of φβ(θ). First, we reexpress the
partition function. Using (2.15), we obtain

Π dθxy
xyCΛ

= ί Π ( Σ WeίVd'>plΠ<%
PCΛ [npeZ J xycΛ /2 jm

= Σ ΠW ί eiβ^"^dθxy

n:δn = 0 pCΛ

where L(Λ) is the number of links (oriented bonds) in A. For φβ as in (2.2),

φβ(n) = ce-(1/2β}n\ (2.20)

for some positive constant c.
Thus

where (2.21)

ZΛ= Σ Π*- ( 1 / 2 W I*>
n:δn = 0 pCΛ

and P(A) is the number of plaquettes in A.
Since δn = Q,

n = δm, (2.22)

for some 3-form m, and the support of m can be chosen to lie within A (see
Lemma 1). Now,

ro = *α, (2.23)

where α is a 1-form on A*9 the dual of A. Thus

n = *da. (2.24)
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We note that α is not uniquely determined by n: If n = *da' then α' = α + dy, for
some scalar function y on (Z4)*. Next, using (2.24)

pCΛ pCΛ pCΛ

= (dat,doι)Λ*9 (2.25)

where p* is the plaquette dual to p. Hence

Y e-(l/2β)(n,n)

n:δn = Q

Y e-(l/2β)(da,da) ^ (2.26)

where [α] denotes the equivalence class {oc'ia'^a + dy, suppdyC/1*}, and Σ
[α]

indicates that only one configuration per equivalence class is retained in the
summation.

Next, we compute the Fourier (duality) transform of (W(Jίf)y Λ(β). Let Σ be the
rectangle in the 0—1 -lattice plane whose boundary is the loop J§f. The discrete
version of Stokes' theorem says

pCΣ

where all plaquettes pCΣ have the same orientation as «£?. Thus

<W(J?)yA(β) = Z-Λ^ Π Ψβ(dθp] Π ̂  Π dθxy.
pCΛ pCΣ xyCΛ

The nth Fourier coefficient of φβ(θ)elθ is φβ(n— 1). Thus, as in (2.19), we obtain

[n:δn = 0 pCΛ\Σ pel

V Π g-d/2^! ΓT e(l/β)np-l/2β

[n:δn = Q pCΛ pcΣ

As in (2.23)-(2.26),

(2-28)

where dμΛ(a) is the discrete measure on the space of equivalence classes, [α], which
assigns to [α] the weight

Z-ιe-(ii2β)(dχ,dΛ)Λ* (2.29)

< — >5(β) denotes expectations in this measure, and DdΣ is the disorder operator
defined by

DdΣ(a)=Yle(ί/βKd^*e-1/2β. (2.30)
PCΣ

More generally,

(2.31)
\PCΣ

for any choice of φβ.
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2.5. The Gaussian U(l) Lattice Model

Consider the (infrared) regularized Gaussian measure

^iβ(α) = N;i

1

ee-(1/2W(dα»lfaU* + β(β βU*) Π d*xy> (2 32)
xyCΛ*

where d&xy is the Lebesgue measure on E^α^^O, for xyφA*9 ε>0 is an (infrared)
regulator mass, and NΛ ε is a normalization factor chosen such that jdμ° ε(α) = 1.
Let ΠA* denote the orthogonal [with respect to ( , •)] projection onto the space of
1-forms with support in /I*. Let VA>ε be the inverse, on the space of 1-forms with
support in A*, of ΠΛ*(δd-\-ε). Clearly, dμ°>ε is the Gaussian measure with mean
zero and covariance V Λ t E . Thus

^^\ (2.33)

for any 1-form μ with suppμ£/L*. Here α(μ) = (α, μ)Λ* = ]Γ

where -A=dδ + δd, because (δd + ε)(l + ε~1dδ) = -A+ε + ε~1δddδ = —A+ε9 by
(2.13).]

When ε tends to 0 the right side of (2.33) tends to 0 on all of those 1 -forms μ
with suppμgyi* and (dμ,dμ)Λ* = Q, i.e. μ = dv, for some function v. Since {μ:δμ = Q,
suppμQA*} is orthogonal to {μ:dμ = Q, suppμ £./!*},

fe-(β/2)(μ,VΛμ)Λ* if δu — Q

limf^ ε(αXα^= t

 μ (2.34)
ε o J ^ εV [0, otherwise. v ;

Here VΛ is the inverse, on the space of 1-forms {μ:δμ = Q, suppμg/l*}, of ΠΛ*δd.
On that subspace

ΠΛMμ = ΠΛJ(dδ + δd)μ =-AAμ,

where AΛ is the finite difference Laplacian with 0 Dirichlet data on the outer
boundary of A*, so that

(μ,VΛμ}Λ* = (μ,(-ΔΛΓ
lμ}Λ* if δμ = Q. (2.35)

We denote by dμ°(α) the measure on the space of equivalence classes,
[α] = {αx :doΐ = da}, determined by

ΔΛΓ ίμ^ , (2. 36)

for all 1 -forms μ, with δμ = 0.

2.6. The Poisson Summation

We now reexpress the discrete measure dμΛ introduced in (2.28), (2.29) in terms of
dμQ

Λ by inserting the constraints

α x y GZ, for all xyCA*: dμ» = S;1 Π j Σ ^-
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where ΞA is the normalization factor for which JdμΛ(α) = l. We now apply the
Poisson summation formula:

Σ 5(0^-^)=!+ 2 J cosfo^). (2.37)

00

Let {zq}™= ! be a sequence of numbers such that 2 Σ zg~ * = l (A specific such

sequence will be chosen later.) Then

OO 00

Let

xyc Λ*

By (2.37) and (2.38)

We now need some definitions:
A current distribution (or density) ρ is a mapping from the set ̂  of directed

bonds (links) to 2πZ, of finite support. An ensemble $ is a family of current
densities, ρ, with the properties that

suppρg/1*, for all

suppρnsuppρ' = 0, for all ρ and ρ' in <? with ρΦρ'.

A fc-ensemble, $k, is an ensemble with the property that

where dist(ρ,ρ') denotes the Euclidean distance between suppρ and suppρ'.

Finally, let α(ρ) = Σ' &XyQxy
xy

Lemma 2.

Πjl + zqχycos(qxyxxy)) = Σ S Π [1 + K(ρ)cos(α(ρ))], (2.41)

where y ranges over some finite index set, each $γ is a l-ensemble and

i) cγ > 0, for all y

ϋ)
x>»C suppρ

ΛΓ^suppρ) w ίfe number of links within distance ^1 o/ί/z^ support of ρ.

Proof. Lemma 2 is a simple special case of Lemma 2.2 in [15]. For this reason we
only present a sketch of the proof. (The reader will find it easy to supply the
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details.) The proof follows by successive applications of the identity

cos(α(ρι))] [1 +K2 cos(α(ρ2))]

! cos(α(ρι))] + 1/3[1 + 3K2 cos(α(ρ2))]

3K1K2cos(α(ρ1-ρ2))]

+ 3KiK2 cos(a(ρ1 + ρ2))] .

First (2.42) is applied to any two factors,

(1 + zqχy cos(qxyaxy)) , (1 + zqχiy cos(qx.y,, <xx,y,)) ,

in (2.43)
IΛ*= Π (i+^coΦxΛ,))

xyCΛ*

for which dist(xy,xy) = 0. The right side of (2.42) is, for each such pair of factors,
inserted in 1A^ and the result is expanded as a sum of products. After a finite
number of such expansion steps one obtains

IA = ΣCI Π [l + K'(ρ)cos(α(ρ))], (2.44)
λ ρe$λ

where {$λ} is some family of ensembles, and by (2.42) each cλ is the product of a
power of 1/3 and a power of 1/6. If all $λ are 1 -ensembles, no further applications of
(2.42) are necessary, and (2.41) is proven.

If however some ensembles $λί,$λ2, ... are not 1-ensembles, yet, one applies
(2.42) to any pair of factors [i+K'(ρ1)cos((x(ρ1))~], [l + K'(ρ2)cos(α(ρ2))], with the
property that ρ l 5 ρ2 are in $λ., for some z, and dist(ρ1? ρ2) ̂  1, the right side of (2.42)
is inserted on the right side of (2.44) and expanded as a sum of products for all
z '=l,2,. . . . Since Λ* is finite, the combinatorial expansion described here ter-
minates after finitely many applications of (2.42), (when all resulting ensembles are
1-ensembles), and (2.41) follows.

We now check i) and ii) in Lemma 2. If a current density ρ has been obtained
by pairing ρί and ρ2, in the sense of identity (2.42), e.g. ρ = ρ1+ρ2, then

If Q = Qap α = 1, 2, i.e. one of the first two terms on the right side of (2.42) has been
retained,

Thus, given some ρe^1, for some γ, one easily verifies that

3^ Π Z | f e | > (2.45)

where n(ρ) is the number of applications of (2.42) that were necessary to obtain ρ. A
minute of reflection shows that

which establishes ii) (see also Sect. 2 of [15]). Finally, cy is clearly of the form
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where nγ and mγ are the following positive integers : The total number of times
(2.42) has been applied in the inductive construction of S^ is ny + my, and ny times
one of the first two terms on the right side of (2.42) has been retained, whereas my

times one of the second two terms has been retained. This yields i). Π

Remarks. 1) Combining (2.40) and (2.41) one obtains

Π [l + K(ρ)cos(α(ρ))]dμ>), (2.46)

where {Λ^1} is a family of 1 -ensembles, and dy>09 for all 7. Moreover, K(ρ) still
satisfies ii) of Lemma 2.

Since any two current densities ρλ and ρ2^^ι in some JΓ^ satisfy

dist(ρ l 5ρ2)j^ ]/2, we conclude that, for each subensemble ^gJ^,1,

f Π £(ρ)cos(α(ρ))dμ°(α) = 0,
Qe*l

unless <5ρ = 0, for all ρe^1, for all γ. This follows from (2.34) and (2.36). Thus all
factors on the right side of (2.46) labelled by some current density ρ for which
(5ρΦθ may be omitted. Therefore

Π [l+K(ρ)cos(α(ρ))]dμ». (2.47)

2) For the study of more general lattice gauge theories it is interesting to note
that Lemma 2 can be generalized by replacing 1 -ensembles by /c-ensembles,
k = 2, 3, ..., on the right side of (2.41). In ii) the exponent JV^suppρ) must then be
replaced by a quantity 7Vk(suppρ), the definition of which along with upper bounds
can easily be inferred from Theorem 2.1 and Lemma 2.2 of [15]. The resulting
combinatorial scheme can be used, for example, to give a simple, new form of the
high and (in the discrete case) low temperature expansion for the expectation of the
Wilson (or disorder) loop in lattice gauge theories with interactions of finite range.
This permits us to prove, in particular, that any pure lattice gauge theory with a
discrete (abelian or non-abelίan) gauge group and interaction of finite range does
not confine static quarks if β is large enough. This extends the result in [2].

2.7. A Change of Variables

Our purpose is now to start estimating

see 2.4, (2.28)-(2.31), by making use of Eq. (2.47) for dμΛ(a) and changing variables

α^α + τ, (2.48)

where τ is a 1-form defined as follows: Let σ be the 2-form given by

,2.40,
, otherwise, v '
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where Σ is the rectangle defined in 2.4, with dΣ = ££. [If A is large enough, ΣcΛ

and dist(Σ,δΛ)>0.] We set

τ=-δΔΛ

1σ, (2.50)

where ΛΛ is the finite difference Laplacian with 0 Dirichlet data on the outer
boundary of A* introduced in 2.5. Clearly

,
with (2.51)

εΛ=-ΠΛ*δdAΛ

lσ.

Under this change of variables

pel

.e(l/β)(σ,εΛ)e-(l/2β)(εΛ,εΛ) Q 52)

This follows from the definition of dμ°(α), see 2.5, (2.32)-(2.34) and of τ by using the
fact that (dα, εΛ)Λ* = 0.

By (2.30)

pel

= e-(llβ)(σ,εΛ) ΓΊ e(ί/β)(da)p*el/2β /2 53)

pe^

Combining (2.52) and (2.53) we get

/)aι(α)^>)-^β-(1/2Λ(^ e^>) . (2.54)

Finally,

Π [l + K(ρ)cos(α(ρ))]^ Π [l + K(ρ)cos(α(ρ) + τ(ρ))]. (2.55)
ρe^^ ρejV^,
δρ~Q δρ=0

Since δρ = Q, ρ = δμQ, where μρ is a 2-form with μρ(/?*)e2πZ, for all p*C^i*, and
suppμρQΩρQA* (see 2.3, Lemma 1). Thus, using (2.51) we see that

τ(ρ) = (dτ, μρ)Λ* = (σ, μρ) - (εA, μβ)A* , (2.56)

so that by (2.49) and the periodicity of the cosine

cos(φ) + τ(ρ)) = cos(α(ρ) - (εΛ, μρ)A*) . (2.57)

Combining representation (2.47) of dμA(oc) with (2.54)-(2.57) we obtain

•I Π lί+K(ρ)Cos(a(ρ)-(εA,μΰ)Λ.)-]dμ0

Λ(a), (158)

ρe^<5ρ = 0

where
Π [l + «(ρ)cos(α(ρ))]dμ». (2.59)
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2.8. The Renormalization Transformation

In this section we propose to renormalize the current densities ρ, ρ->ρ, and
activities K(ρ), K(ρ)-^z(β,ρ)9 in such a way that

ί Π

= ί Π

with z(β,ρ)<^l, for β sufficiently large. Here θρ ( = 0 or (ε^MρXi*) are real phases.
Given some current density ρe«yKj, it is easy to see that we can choose a subset J*ρ

of links in suppρ with the property that two different links in 38 Q do not belong to
a common plaquette and that

Σ Iί?x,l2^c||ρ||l, (2.61)

where ||ρ||^Ξ^]|ρχ>?|
p, p=l,2,3, ..., and c is a purely geometrical constant, namely

=card{b / :b / =t=fe, b'eδp for some p with

= 18, in four dimensions . (2.62)

Since dist(ρ1?ρ2)^ ]/2, for two current densities ρ1 and ρ2φ£?ι in some ensemble
Λ^1, the choice of J*ρ, for a given current density ρeΛ^1, can be made
independently of all other current densities in ̂  in such a way that (2.61) holds.

Our renormalization transformation is based on the following simple identity

Lemma 3. Let xyCΛ*, and let G(α) be a function which does not depend on uxy. Then

J eίρcίχyG((x)dμ0

Λ (α) = e " ̂ 2n-y)β2 . J e - ̂ ^G(α) °̂(α) , (2.63)

where

and

nxy = card {p* :p* C /I*, δ

= 6, in dimension 4

(unless xy belongs to the boundary of Λ*).

Remark. It is important to note that oίxy is independent of axy and that nxy ̂  6, so
that

e - (βlnxy)Q2 <e- view ^ (2.64)

/ In the following, all formal calculations hold rigorously if dμ°(α) is first
replaced by djU°>ε(α). Since the existence of the limit ε|0 does not pose any problem
(for finite A), that regularization is omitted right away.
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Our proof relies on explicitly integrating over axy, using the following obvious
equation for dμ° (α) :

dμ°M = deΛ~(x,W Π e-(1/2Λ(<te)'*dαx,, (2.65)
p*

xy<=dp*C Λ*

where dρΛ^(xy) (α) is a finite measure independent of αxr By changing variables,

we obtain

J

= Γ TΊ

dp*3xy

Γ ΓT £-(l/2/?)(dα)£*jα (266)

By combining (2.65) and (2.66) we obtain

J e^G(α)dμ>) = e " W2"*^2 { e - I>ί?α-G(α)^(α) . (2.67)

We set ~^ρΞsuppρ~ $Q and define a renormalized current density ρ by the
equation

Ξ Σ «xAy+ Σ *xyQxy (2 68)
xye^ίe xye~^e

for an arbitrary 1-form α, with suppα£/l*. Furthermore,

z08,ρ) = JC(ρ)exp-(j8/2) Σ C^l (2 69)

By (2.61), (2.62), and (2.64)

z(j8, ρ) ̂  lC(ρ) exp [ - 08/21 6) || ρ || 2] . (2.70)

Corollary 4.

Π
0

Π

• cos(α(ρ) - (ε^, μQ)

Proof. We apply the following obvious identities :

cos (α(ρ) - θe) = i^'(α(ρ) " θe} + \e ~ ί(α(ρ) " θ

whence

Π [l + «(β)cos(α(ρ)-θβ)]= Σ Σ Π
(e) = ± i}ee#, es^
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where the first sum extends over all subensembles S^ ζ ̂

e± ί(a(Q) - θe) _ e + iθρ ΓT e±ίρxyotxy ΓT g±iρXyΛxy

xye&ρ xye ~ 38 β

We then use Lemma 3 to successively integrate out

Γί ΓT eίσ(Q)QxyΛχy

ρe£$ xye&ρ

for all ( fygΛ^ 1 and all {σ(ρ)}. Since dist(ρ1,ρ2)^ ]/2 for arbitrary ρ l 5ρ 2 in Jί^
with ρ1φρ2, and by our definition of ^ρ, ρe^F1, the hypotheses of Lemma 3
remain valid after an arbitrary number n = 0,1,2,... of integrations. When all
integrations in each term have been carried out the above identities are applied in
reverse, with α(ρ) replaced by α(ρ) and K(ρ) replaced by z(β, ρ). Π

2.9. Estimates on z(β9 ρ)

We recall that

xycsuppρ

where {zq} is a sequence with the property that

(2.72)

see 2.6 [(2.37), (2.38), and Lemma 2]. We now choose this sequence explicitly, for
example as follows :

zq = ***2, (2.73)

where /?0 is that positive constant for which (2.72) holds. A simple, geometric
estimate on ΛΓ

1(suppρ) then yields

Q<K(ρ}^ Σ eβl}ρxyl\ (2.74)
xyC supp ρ

for some finite constant βv

Combining (2.74) with (2.70) we obtain

. (2.75)

Thus, if β>2l6β1 (a fairly large number, alas)

so that

[l+z(#ρ)cos(α(ρ)-6g]^0, for all ρe^ς1. (2.76)

Moreover, under the same condition,

z(β,Q)£eιp[%β1-β/2l6)\\Q\\ΐ] exp[i(/?! -^/216)L(ρ)] , (2.77)

where L(ρ)(^ ||ρ|||) is the number of links in the support of ρ.
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2.10. Lower Bound on (W(J£)yΛ(β) with Perimeter Decay

It follows from (2.76) that for sufficiently large β

Π [1 + z(β, Q) cos(α©)]^» (2.78)

is a positive measure. This permits us to apply Jensen's inequality to derive a lower
bound on (W(£P)yΛ(β). Let < — > ι̂ denote the normalized expectation correspond-
ing to (2.78).

We shall make use of the following simple estimate :

^ ,„ , Γ zcosα(cosθ— l) + zsinαsinθl
l + zcos(α-0) = (l + zcosα) 1 + - '

1 + zcosα J

( z \ 2

Ί^7) 0 2

?

where

E(α, θ) = (1 + z cosα)~ *z cosα(cos θ — 1),

and

0(oί,θ) = (l + zcosα)~ 1zsinαsinθ.

This inequality follows from Taylor's theorem with remainder, applied to the
function log(lH-x), along with elementary estimates on trigonometric functions.

Thus, by Jensen's inequality,

j Π [l+z(j8,ρ)cos(α(ρ)-θβ)]dAt»

ΓΉ (2-79)

But <0(α(ρ), 0e)>^ ι = 0, since 0 is odd in α, while < —>^ι is even in α, and

We now set

θ = (εΛ9 μ )Λ* and γ(z) = l/2 h2 ^.

By combining Corollary 4 with inequality (2.79) we obtain the lower bound

Π e-x*(β.*>m (2.80)

where 0^λ^ι = dy(Z^i/ΞA\ and Z^i is the total mass of the measure (2.78). By
Corollary 4,

Σ>lrι = l . (2.81)
/ J e/V Λ ^ 7
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Next, by Lemma 1, Sect. 2.3, and the definition of μρ, see (2.56), Sect. 2.7,

\θβ\ = \(ZΛ> μQ)Λ\ ^
 m*x |e»l max |μρ(p)| card(Ωρ) . (2.82)

p

For each ρeΛ^1, we now choose a plaquette p(ρ) containing a link in suppρ and

such that pto1)Φpto2X f°r anY two current densities ρ x φρ 2 in ^/ ^Y tne

definition of Ωρ (see Lemma 1, Sect. 2.3),

for some geometrical constant c.
We now recall definition (2.51), Sect. 2.7, of ελ. From that definition it follows

that

max <constL(ρ)3. (2.83)
\P-P(Q}\^C L(Q) \εΛ(p(ρ))\ ~

Moreover by Lemma 1, Sect. 2.3,

m a x l μ ^ l ^ H ρ l l i g l l ρ l l i . (2.84)

Finally,

Q)^ const L(ρ)4 (2.85)

(an elementary isoperimetric inequality). Let c(β) = i/2(βί — β/216). We choose β so
large that

z(β, ρ) ̂ e-
c(β}M2e-c(β}L(Q} ^ 1 - δ , (2.86)

for some (5>0, for all ρeΛς1 and all y [see (2.77), Sect. 2.9].
We then derive from (2.82)-(2.86) that

for some finite constant
By (2.80), (2.81), and (2.87),

< W(#)yΛ(β) ^ exp [ - {(1/2)8) + d(β)}(^ ε J]

,εj]; (2.88)

The right side of (2.88) is a Gaussian expectation value of DdΣ(a) [see (2.54),
Sect. 2.7]. Recalling the definition (2.51), Sect. 2.7, of εA, we observe that

(εA9 εj ̂  const (L+T),

as/l/Z4.
T/zis completes our proof of perimeter decay of <VF(JS?)>(j8), /^r sufficiently

large β.
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This result can be extended to the compact [/(I) model on Z4 with Wilson's
action by combining the present techniques with an adaptation of Appendix B,
Lemma 4.3 and of the methods in Sect. 6 of [15] to the (7(1) gauge theory. Since,
due to the analytical subtleties of modified Bessel functions, the details are rather
lengthy but fairly uninteresting we do not wish to present them here. (The reader
familiar with [15] will have no problems to supply them; see also Sect. 3.)

2.11. Masslessness of the Photon for Large β

We finally prove a result which we believe is new and somewhat important.
The lattice approximation of the electromagnetic field strength is given by

- iί — φβ}(dθ)φβ(dθ)~1, for the [/(l)-model with Villain action,
\dθ ' (2.89)

iβsin(dθp), for Wilson's l/(l)-model.

We propose to show that, for large β, the two-point (more precisely: two-
plaquette) correlation of Φp cannot have summable ("integrable") fall-off. This
proves that the large β phase of the compact (7(1) model is massless, i.e. the photon
is massless, for sufficiently large β.

As in previous sections, we only present the proof for the Villain approxima-
tion to the compact [7(1) model. Most of our arguments extend, however, to a
general class of actions, and we believe that the result is a general feature of the
[/(I) model in the weak coupling regime.

The observable corresponding to Φp, after a duality transformation, is (dα)p*. It
is therefore enough to estimate the behaviour of the two-point functions
< Iα(μ)|2>(/?), where μ is an arbitrary 1-form satisfying δμ = ΰ. We propose to prove
that

β"(μ,(~ΔΓlμ)^\v(μ}\2y(β}^β(μ,(-AΓlμ), (2.90)

for some function β"(β)<β which diverges to + oo, as β^oo.
Let (dα)μv denote the μv-component of the curl of α (the field strength), and let

(dα)μv denote its Fourier transform. By Fourier transformation, (2.90) provides a
lower and an upper bound on

in terms of an expectation value of \(doί)μv(k)\2 in the Gaussian measure dμ°(a) with
charge g2 = β~1

ί (β")'1, respectively. These Gaussian expectations are well known
to be discontinuous at k = 0 :

(291)

Thus, <|(ίZα)μv(/c)|2X/0 is discontinuous at k = 0. As a consequence,
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cannot have summable fall-off, as dist(p,p')^>ao. [Here p and p' are two arbitrary
plaquettes parallel to the μv-lattice plane, and (da)μv(p) = (dά)p*.~\

This proves our contention. (See also [21] for more details concerning a similar
argument for dipole gases.)

Next, we note that, by polarization, it suffices to prove (2.90) for real-valued
1-forms, μ, with δμ = Q, i.e.

/Γ(μ, (— Δ)~ 1μ) ̂  <(α(μ)2> (β) ̂  β(μ, (— Δ)~ 1μ), (2.92)

with β" as in (2.90), μ real.
A stronger version of (2.92) is

exp

rgexp
ε2β

(2.93)

for arbitrary real ε and real μ, with δμ = Q. By expanding (2.93) in powers of ε,
subtracting 1, dividing by ε2 and taking the limit ε = 0, (2.92) follows.

Finally, it is clearly enough to prove (2.93) in an arbitrary, finite region A,
replacing (-zlΓ1 by VΛ, and <->(j5) by <->^).

2Λ2. Proof of (2.93) in Finite Volume

We fix a real 1-form μ, with δμ = 0anά such that suppμ is in the interior of A*. We
then define a 1-form, τ, by

τ = εβVΛμ, (2.94)

where VΛ is the Green's function of ΠΛ*δd. Next, by (2.47), Sect. 2.6

Π

We now change variables,

with τ given by (2.94).
By (2.52) and (2.55), Sect. 2.7,

Π

with δμρ = ρ, for all ρ.
Moreover,

εoί(μ)^ετ(μ)
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We now observe that

-(l/2β)(dτ,dτ)A.= --τ(μ),

and
τ(μ) = εβ(μ,VΛμ). (2.96)

Therefore

where

«/y(τ) = J Y[ [l+£(ρ)cos(α(ρ) + dτ(μρ))]dμ°(α). (2.98)

Since dμ°(α) and cos(α(ρ)) are of positive type in α, and K(ρ)>0, for all ρ, we
immediately conclude that

:ΞΞO). J (2.99)

Since

ΣdySy(τΞΞθ) = ΞΛ, (2.100)

the upper bound in (2.93) follows from (2.97) and (2.99), by letting A /Z4.
Finally, we establish a lower bound on J>y(τ). This is achieved by using the

results in Sects. 2.8-2.10, with

By (2.79) and (2.80), Sect. 2.10,

/ ( Y l > Y / l ι ΓT p-yMP'QWo (2101)^ y V c / == Z-f Λ^ 1 1 ^ ' \^.L\jί)

for sufficiently large β, where

jYγ J JL J. L \Γ 1 tί.

and

y(z)^4z, for z^l/2; (2.102)

see (2.78H2.80), Sect. 2.10.

3 This part of the argument does not obviously extend to Wilson's form of the 17(1) model and has to
be replaced by a more complicated, direct one
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By (2.77)

(2.103)

where β1 is a finite constant, and L(ρ) is the number of links in suppρ, provided

j8>216j81.

Next, using Lemma 1, Sect. 2.3, one finds

|θβ| = \dr(μβ)\ gmax \(dτ)p\ \\Q\\ t card(Ωβ)
peΩe

τ)p\ - \\ρ\\2

2 -const L(ρ)4 , (2.104)

see also (2.82).
We now fix a plaquette, p0, and a positive integer L. We must estimate the

cardinality of the set, «Λ^τ(p0ϊ L), of current distributions defined by

^τ(p0, L) Ξ Jρe Λς1 max |(̂ | = \(dτ)po\9 L(ρ) = Z

ς{ρ:p0Cθ f i,L(ρ) = L}. (2.105)

Clearly, the length of the edges of Ωρ, for some ρ satisfying L(ρ) = L, is bounded by
L. Thus the support of every ρ with the properties

L(ρ) = L and ΩQ3p0

is contained in a cube with edges of length at most 2L.
Given a cube, Ώ, with edges of length 2L, the maximal number of current

distributions {ρ^} C^1 with disjoint supports, all contained in Ω, and L(Q}) = L9 for
all 7, is bounded by

. (2.106)

Thus, for β so large that β==l/2(βί-β/216)>0,

ρ

2 ̂  \(dτ)po\
2 Σ Hβ I I 2 constL8y(z(ft ρ))

l le lh

^ const β~1\(dτ)po\
2L11e~βL.

Hence

00

ί °° ]

L = 4 P° J '

for some function c(β) which tends to 0, as ^-^o°, exponentially fast. [We have used
that ^T(p0,L) = 0, for L<4.]
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If we now insert (2.107) into (2.101) we find

By (2.97),

- 2c(β}/β](μ,VΛμ)

where we have used (2.96).
This completes our proof of the basic lower bound (2.93) in finite volume and

thus of the masslessness of the photon for large β.

Remarks. 1) Using correlation inequalities [17, 24] one derives from the results in
this section the existence of massless, deconfining phases in all D-dimensional 17(1)
gauge theories with D^4. Alternatively, a direct proof can be given by using a
duality transformation and a straightforward modification of the techniques
developed in this section (see also [15] and Sect. 4).

2) It appears that the techniques of this section along with connections
between the four-dimensional, dual U(l) theory and bond percolation are useful to
study the scaling limits for large β (ordinary, free QED) and for β?βcήt (massive,
confining QED). Our ideas and some results on bond percolation suggest that the
latter theory might be a non-trivial, confining version of QED.

3. QED Phases in the Four-Dimensional ΊLN Lattice Gauge Theories, for Large N

3.1. Preliminary Remarks

In this section we prove inequalities (1.13) and (1.15), i.e.

L x T}YN\β) ^ exp [ - d(L + T)] ,

for the four-dimensional ZN models, for all

[the critical value of β for the £7(1) model], and all

N>N(β), (3.3)

where N(β) is an integer- valued function of β which diverges to + oo, as /?->> oo. Here
< y(N\β) is the infinite volume state of the ZN model at "temperature" β'1 =g2. It
follows that for

N>NC, with Nc^N(j3crit(lΓ(l))<oo (3.4)

there exist βc(N) and βc(N)9 with

βc(N)<βc(N)<κ, and £(N)^jBcrit(l/(l)), (3.5)
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such that for

βc(N)<β<βc(N)

both inequalities in (3.1) hold.
A standard high temperature expansion shows that (W(^}y(N\β) has area

decay, for sufficiently small β (depending on AT), and a low temperature expansion
(or a high temperature expansion applied to the dual model) can be used to prove
that (D<z>y(N\β) has area decay when β is sufficiently large (depending on N).

Thus, for N>NC, the TL^ models have a "quark" confining high temperature
phase and a "magnetic mpnopole" confining low temperature phase, separated by
an open interval, (βc(N\βc(N)\ of QED phases. It is believed that Nc = 5.

For the Villain approximation of the ZN models this result follows from [13] by
using self-duality and correlation inequalities, as shown in [16].

We reconsider the ΈN models for the following reasons :
1) Our method will not rely on self-duality. This permits us to analyze a large

class of actions, including Wilson's action, and to exhibit intermediate QED phases
in D-dimensional ZN lattice gauge theories for arbitrary D ̂  4.

2) Our methods involve a renormalization transformation which maps some
class of ZN expectations in the intermediate QED phase onto expectations in a model
with local U(i) gauge invariance. (This is the phenomenon described in Sect. 1.)

3.2. Interpolation Between the U(l) and TLN Models

We consider a family of models interpolating between the U(i) and a ΈN model Let
dμβ(θ) denote the infinite volume limit of the measures

dμβ(θΛ) = Z^Λ Πe"cosW Y\dθxy,

xyCdp

which correspond to the four-dimensional l/(l)-model with Wilson action in a finite
region A. Instead, we could define dμβ(θA) to be the finite volume functional measure

«m^dμβ(θ), (3.7)
xycΛ

of the Villain model by replacing exp β cos (dθp) by £ exp — — (dθp + 2πn)21. In
n= -oo L ^

both cases the limit /t/X 4 exists, thanks to Ginibre's inequalities [17].
We now define

where

Λ , „ , , (3.8)
and ' v '

A Λ = f Πp, Λ J 11

xycΛ

Clearly, dμh

β(θA) approaches the Euclidean functional measure of the TLN model in a
finite region A with free boundary conditions (b.c.), as h-> oo. [Actually b.c. turn out
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to be quite irrelevant in our analysis : We could replace dμβ(θ) by dμβ(θΛ) in (3.7) and
(3.8) which would merely slightly complicate notations in subsequent formulas.]

Let < — > (β) denote the 17(1) expectation, and < — yA(β, h) the one determined by
the measure (3.7). By Ginibre's inequality [17], <W(JS?LxT)X1(βΌ is monotone
increasing in A and in /ι, so that

τ)yA(β, h) ̂  < W(&L x Γ)> (β) ,

for arbitrary ΛQZ4, fe^O, and

) = lim lim < W(&L x τ»A(β, h)
Λ / / 4 hΐoo

Thus, for 0>j8crit(E7(l)),

Γ)> (ft Λ)

)] (3.9)

which proves the first inequality in (3.1).

3.3. Disorder Operator

We now turn to the analysis of the expectation value of the disorder operator and
propose to establish perimeter decay for sufficiently small β.

We closely follow the scheme developed in Sects. 2.4 through 2.10. The first step
consists in using the Fourier expansion

£ λ(q)cos(qNΘ}, (3.10)
q=ί

where

2π

=?L-f exphcos(NΘ)cos(qNΘ)dθ.
π o

Clearly

0<λ(q)<2, and λ(q)-*29 as /ι->oo. (3.11)

Let {ζ(q)} be a sequence of positive numbers with the property that

e.g. β-1 , (3.12)
ζ(q) = cte», (c^ε-1),

for some ε > 0 chosen later.
Then

1+ Σ λ(q)cos(qNΘ)= £ C^-^l + zβJV cos (̂ 0)) , (3.13)
q=l q=l
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with

0<zqN = ζ(q)λ(q)<2ε~1eεq. (3.14)

With (3.7) this yields the following expression for the functional measure of the ZN

model in finite volume

where

= Σ cqΛ Π (1 + *Wfa, ™(qxyNθxy)), (3.16)
qΛ xycΛ

and

4Λ = {<lXy}XycΛ> CqΛ= Π ί(flχy) * •
xycA

We now redefine a current distribution, ρ, to be a function on the set, ,̂ of
directed bonds in A with values in NTL, of finite support. A 1 -ensemble, <f \ is a family
of current distributions, ρ, with the properties

suppρg/L, for all ,

for all ρ and ρ' in $ 1 with ρφρ' (see Sect. 2.6). Repeating the combinatorial
expansion of Sect. 2.6, see Lemma 2 and (2.46), we obtain

Π (l+K(β)cosθ(ρ)), (3.18)
7 ρeΛ^1

where θ(ρ) = ̂  θxyρxy, y ranges over a finite index set, each Ji^ is a 1 -ensemble, and
xy

i) dy>0, for a l l y , i

ϋ)

[We recall that Λ/\(suppρ) is the number of bonds within distance ^ 1 of suppρ.]
Since the measure dμβ(θ) is invariant under £7(1) gauge transformations, we can

impose the condition

<5ρ = 0, (3.20)

as long as we only want to compute expectations of gauge-invariant observables in
the measure dμh

β(θA).
Next, we discuss the expectation value of the disorder operator D#L x τ. We

choose the definition of D<?Lx τ, for 0 ̂ h ̂  oo, such that for h = 0 (£7(1) model) and
h= oo (ZN model) it agrees with the one proposed in (1.14). Thus

ΓT κSfo\ghcos(NΘxy)

xyCΛ

9), (3.21)
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where

_(2πξ/N, for p*eΣ,
φ'=\0, otherwise, (3'22)

^ = 1,2, .. .,7V— 1, and Z1 is the rectangular array of plaquettes in the 0—1 plane
bounded by ̂ L x Γ.

By (3.15), (3.18), and (3.20),

Σdyl Π [l+KU?)cos0te)]l
ι &*} I

δΰ=0 1

s(dθp + φp) - cos(dθp) ]dμβ(θ) . (3.23)
P

In each term on the right side of (3.23) we make a real change of variables

Θxy^θxy + τxy9 (3.24)

where τ is the 1-form determined by

τ = δA~1φ, (3.25)

with φ given by (3.22). (We are repeating here the change of variables already used in
Sect. 2.7.) Now, notice that

= -φp + sp. (3.26)

By definition of φ,

[0, otherwise.
Hence

where d is the distance between p and J2?L x Γ.
Inserting (3.24)-(3.26) into the right side of (3.23) we find, using the periodicity of

the cosine and Lemma 1, Sect. 2.3,

< ,̂ x T>ΛA Λ) = (Zh

β, A) ~ l Σ <*Λ(β) ^ (3-28)

where

Λ(£) = ί Π [l + K(ρ)cos(θ(ρ) + ε(̂ ))]̂ θ + ε)^(θ), (3.29)

and

ε) = Π exp β[cos (dflp + dτp + φp) - cos (dθj\
P

= Π exp β[oos(dθf + εp) - cos(dθj] . (3.30)
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[We have used (3.26), the fact that μρ takes values in NTL and the periodicity of the
cosine to get rid of φ.~\

3.4. The Renormalization Transformation

Next, we must perform the renormalίzatίon transformation. It is a straightforward
variant of the one described in Sect. 2.8. (We draw on some ideas from Sect. 4 of

[15].)
Given any current distribution ρ in a 1 -ensemble, Λ^1, we choose a set of links

&Q contained in suppρ, with the property that two different links in g$Q do not
belong to a common plaquette and such that

Σ IβJ ^ ( l / l S J I I e l l ! , (3.31)
xyeόβρ

see (2.62), Sect. 2.8. Since

for any two distributions ρ1} ρ2 in Λ^1, ρί φ ρ2, the choice of $ρ only depends on ρ
but is independent of Jf^ ~ {ρ}, and there is no plaquette containing a link of $Q

and a link of Jy, for any ρ'e.yKJ,1.
Our renormalization transformation consists of integration out all variables

As in the proof of Lemma 3, Sect. 2.8, one sees that this can be reduced to evaluating
the integrals

p dp^xy

This is achieved by performing a complex translation,

(see also Lemma 4.3 of [15]). Under this change of variables

S(p ) = e-
Λeχye6β(cosha-l) Γ eiQxyθxy

• Π i^ dθp + εy^O' + ̂ dθ^, (3.32)
p .dp^xy

where

i ((χ^(iθ} = e~β(cosh(ί~l}eβ[cos(dΘ + ia}~cos(dθ}] (3 33)

Using the identity

cos(φ + ϊ'α) — cosφ = cosφ(coshα— 1)— is inφsinhα,

one sees that

max|^(α; ) l^ l . (3.34)

Thus, the optimal choice of α in (3.32) apparently corresponds to minimizing

— uρxy + 6β(coshα — 1) .
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For our purposes it suffices to choose

u = axy =

hence

where c0 and ci are finite constants.
We now define

Π Π iβ(«*y'>dθP + εp)
xyc^e p .dplxy

.̂)) Γ] Π ^(-α^ ̂  + ε,). (3.36)
*K^e p dpDxy

By (3.33), F(ρ;dθ + s) is a real-valued function of 0 which, by (3.34), is bounded in
modulus by 1 and, for ε = 0, is even in θ. Furthermore, we define

c0\\Q\\J. (3.37)

By repeating the arguments used in the proof of Corollary 4, Sect. 2.8, and making
use of (3.31)-(3.33), (3.36), and (3.37) we obtain

Λ(βH Π V+z(β9ρ)F(ριdO + B]βa(dθ + ε)dμβ(θ). (3.38)
ρe^ i
δρ=0

3.5. The Lower Bound for «/y(ε)

We now estimate z(β,ρ) and then prove a lower bound on J^γ(ε) which will
establish our main result, the perimeter decay of the expectation value (3.28) of the
disorder operator, Dj?L χ τ, for N > N(jβ) and all finite values of β.

From the upper bound (3.37) on z(β,ρ) we derive, using inequalities (3.14)
[bound on zqN] and (3.19) [bound on

£ exp \_c2(β)L(Q) -(c3N- s) (ί/N) \\ρ\\J (3'39)

for some function c2(β)^c^β + c^ and some finite constants c3>0 and c4. It
follows from the fact that a current distribution takes values in NZ that

so that if N>l+ε/c 3

cJIρllJ, (3.40)

for some positive constants c5 and c6. [Given ^9 and AT, one may now optimize in
the choice of ε, see (3.12).]

Thus if N>c1β + cΊ, for some constant c7<oo,

z(β,ρ)<ί,
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and
z(j8,ρ)->0, as ΛΓ ̂ oo, (3.41)

exponentially fast, for arbitrary β<co.
We now analyze the dependence on εp of the integrand on the right side of

expression (3.38) for «/y(ε). For this purpose we rewrite the factors
1 + z(β, ρ)F(ρ dθ + ε), namely

1 + z(β, ρ)F(ρ dθ + ε) = [1 + z(β9 ρ)F(ρ dθj]

z(β,ρ){F(ρ'9dθ + ε)-F(
• exp In 1

l+z(β,ρ)F(ρ dθ)

and apply Taylor's theorem with remainder to the functions ln(l+x) and
)-F(ρ,dθ). This yields

1 + z(β ρ)F(ρ dθ + ε) = [1 + z(β, ρ)F(ρ dθ)]

- expOfi(ε dθ) expKρ(ε dθ) , (3.42)

where

which is an odrf function of 0, because jF(ρ rfθ) is even in θ, and

(344)
θ) ' l ' '

for some numbers t and s in the interval (0, 1). By inspecting the explicit expression
(3.36) for F(ρ;dθ + λε) and estimating the first and second derivative in A one
shows quite easily that

\Ra(ε;dθ)\^kβ(ε)2z(β,ρ),

where (3.45)

max |

for some finite constant C, provided N is chosen so large that z(β, ρ) < 1/2, for all
ρeΛ^1 and all y. [By (3.40) this is the case for all sufficiently large TV.]

Furthermore, from definition (3.30) of ffl(dθ + ε), Sect. 3.3, and Taylor's theo-
rem with remainder we derive

e°(ε >dθ}eR(ε >dθ\ (3.46)

where 0(ε dθ) is an odd function of θ, and

with
\R(ε dθp)\ί(β/2)ε2

p

(3.47)
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We now insert the right sides of (3.42) and (3.46) into (3.38) and subsequently apply
estimates (3.45) and (3.47). This yields the following lower bound on

22 Π
ee^ i
δρ = 0

-f Π [l+zOβ,ρ)F(ρ;dθ)]e"°«(e;dβ)e-0(e;dβ)^(θ). (3.48)
QejV^
δρ = 0

Since Y[ [l+z(j8, ρ)F(ρι dθ)~\dμβ(θ) is an even, positive measure in θ if N is so
ρeΛ $
<5ρ = 0

large that z(j8, ρ) < 1, for all ρe Λ^1 and all y, while £ Oρ(ε dθ) and 0(ε dθ) are
ee^ i
(5ρ = 0

odd functions of θ, Jensen's inequality finally yields

We now estimate feρ(ε).
Using Lemma 1, Sect. 2.3, we obtain

max
I pesuppρ

^ C(const || ρ || ̂ (ρ)4 + βL(ρ)) max |εp

see (2.104), Sect. 2.12, so that by repeating the arguments leading to (2.105) and
(2.106) and inserting the upper bound (3.40) on z(/?,ρ) we find

00

X fcρ(ε)2z(/?,ρ)^C2/?max(||ρ||2e-<'IHI') % {L^e^-'ΊW }^
QeJT^ ρe^ L = 4
δρ = 0

ίc(β,N)\\ε\\2

2, (3.50)

for some function c(β,N) which tends to 0, as ΛΓ— »oo, exponentially fast, for each
β<oo.

We now return to our basic identity (3.28) for the expectation value of the
disorder operator and insert the lower bounds (3.49) and (3.50). This yields

I, (3.51)

where

λy = (Zhβ9Λ)~1dγJ'y(0), hence Σ^ = l >

and
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By (3.22) and (3.25), (3.26)

). (3.53)

Thus, for arbitrary h^oo and A C Z4,

<^k x τ>A(β, h) ̂ e—^2^ , (3.54)

for each β< oo and N>N(β)9 for some function N(β)<oo (with N(β) /oo, as βfao).
This completes our proof of the lower bounds in (3.1).

Remarks. 1) The main results of this section are identities (3.51) and (3.52), the
bounds (3.49) and (3.50) and the final inequality (3.54).

2) Identities (3.51) and (3.52) relate (D<?LxτyA(β,h) to (a convex combination
of) expectation values of an observable, somewhat analogous to the disorder
operator, in the measures

Π tt + z(β>Q)F(Q',dθϊ]dμβ(θ) (3.55)

which correspond to lattice gauge theories invariant under U(l) gauge transfor-
mations. [The observable is defined as the substitution

dθ\-»dθ + ε,

to be compared with definition (1.14) of disorder operators. It can be viewed as a
renormalized disorder operator.]

The same comments apply to <PF(^fLx τ)yA(β, h\ but we do not wish to present
the appropriate renormalization transformations for this expectation in the
present paper. (See however [15] for the solution of a similar problem concerning
correlations of fractional charges in a two-dimensional Coulomb gas.)

3) The techniques presented in this section can be extended to TLN gauge
theories in dimension > 3.

4. Transitions in Classical XY Models and "Hypergauge Theories"

4.1. Definition of Models

In this section we comment on the phase diagram of a general class of 17(1) lattice
models and their duals which are natural generalizations of the X Y model and the
17(1) lattice gauge theory. They are of some interest for the statistical mechanics of
defect gases. For the group TL2 such a class of models (generalizations of the Ising
model and the TL2 lattice gauge theory) were first studied by Wegner in his basic
paper [25].

As a byproduct we obtain results on the phase transition in three- or higher
dimensional classically models, and, by combining the results of this section and
of [15] with correlation inequalities [17, 24], some of the essential features of the
phase diagram of abelian Higgs lattice theories in three and four dimensions can
be established; see [5].

Thus, for the classically model [11] and the Villain approximation in three
or more dimensions we find a proof of existence of a phase transition, accom-
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panied by spontaneous breaking of 17(1) and the appearance of a Goldstone
excitation, and for the Higgs models we conclude the existence of a
superconductor->QED transition, [5].

A rank-k V(i) lattice theory is defined as follows: The configurations of a
rank-/c U(l) lattice theory are functions

defined on /c-cells, ck, in TIP with values in the unit circle, identified with [ — π, π),
and with the property that

θ(ck)=-θ(ck-), (4.2)

where ck is the same /c-cell as ck, but with reversed orientation; see Sect. 2.3.
We set

dθ(ck+1)= £ θ(cj), (4.3)

where the orientation of ck is the one prescribed by the orientation of ck+1.
Let ψβ be a function on S1 of positive type, e.g.

exp^cosθ, (44)

expl - ' '"-L'J-^2

) L

The vacuum functional (equilibrium state) of a rank-k (7(1) lattice theory with
inverse square coupling (inverse temperature) β in a finite region A cf is given by

dμ (θ ) = Z~1 Γf φ (dθ(c )) Γf dθ(c ), (4.5)

where ZβiΛ is the usual partition function. Π
We propose to derive the phase diagram and the lower critical dimension, Dc,

of rank-/c ί/(l) lattice theories. We claim that

(4.6)

except for k = 0 (X Y model) where

Dc = 2 ; see [15].

A natural observable to analyze is the following: Let Sk be some closed, oriented
surface built out of /c-cells in TLD. We define

Wm(SJ= Π eimθ(Ck} (4.7)
CkCSk

and

< Wm(Sύ>Λ(β) - \dμβ(Θ^Wm(S^. (4.8)

F^ is the analogue of the Wegner-Wilson loop. Let Γ f c + 1 be a bounded, (fc+1)-
dimensional region in TLD built out of oriented (fc+l)-cells with boundary

Π eimdθ(Ck+i}. (4.9)
k + i C Σk + i
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Note that, for fc>l, dμβ(θΛ) and Wm(Sk) are invariant under the gauge
transformations

(4.10)
dω(ck)= £ ωO:̂ ),

Ck- i C d c f c

where ω is an arbitrary function defined on the (fc— l)-cells in TIP with values
in S1.

When fc = 0, i.e. for the classically model, Sk=Q = {x,y}, (two sites in TLD\

Wm(S0) = jm(θχ-θy)= Yleimdθ\ (4.11)
beli

where Γ1 is a line of oriented links joining x to y, and gauge invariance is replaced
by invariance under the global symmetry

Θx-+θx + ω9 ωe[-π,π). (4.12)

For the XY model, Dc = 2 (see [15]).
The results of this section concern the models in D ̂  3 dimensions which have

the property that the dual models are TL (hyper)gauge theories to which our
methods apply.

The methods of Sect. 3 permit us to also study rank-fc ZN-models in dimension
D^/c+3. (They are defined in the obvious way.) As in Sect. 3 one can prove the
existence of intermediate phases, for sufficiently large N.

4.2. The Duality Transformation

Our analysis of rank-fc (7(1) theories relies on a duality transformation. Let
ΦCk+1(n\ neTL, denote the nth Fourier coefficient of a function φck+1(θ) on S1. By
Fourier transformation

ί Π Φc t + lW*+l)) Π^C*)
C k + ί C A ckCA

= Σ Π Φ^.Wc^)), (4.13)
n:δn = 0 Ch + i C Λ

where each n is a divergence-free, integer-valued (fc+l)-form with support in A
[see (2.19)]. Given some integer-valued (fe+l)-form n, suppnC/t, there exists
an integer- valued (fe + 2)-form, m, with

n = δm, and suppmCΛ (4.14)

[see Lemma 1, Sect. 2.3]. (A is assumed to have trivial homology. The multiplicity
of solutions, m, of (4.14) is then independent of n. For details concerning the special
case £) = 2, fc=l see Appendix A of [15].) We define

α=*ra, (4.15)

which is a k* = D — k — 2 form. Thus

I Π φck+l(dθ(ck+l)) l\dθ(Ck)
ck+ιCΛ ckCA

= Σ Π Φ^^dα)(ck+l)), (4.16)
[α] ck + i C A



Massless Phases and Symmetry Restoration 449

where Σ ranges over all equivalence classes of integer-valued /c*-forms, α, with
[α]

n=*da, suppαC/1*. (4.17)

Applications. 1) φck+ί = φβ, for all ck+ίcΛ. This yields

Zβ A= Σ Π Φ/(*^α)(c/c+ι)) (4-18)
[α] c/c+ i C Λ ί

2)

With (4.18) this yields

)
Π Φβ((*da)(ck+1)) Π ^(*dαXc4+1)-m)l. (4.19)

As an example, we consider the rank-k Villain models. One chooses

£ j8 J
φ(β)= 2^ exp (θ + 2π^) ,

/= -oo 2 J

i.e.

φ/n) - const exp [ - n2/2jS] . (4.20)

Then

<Wm(Sk)yΛ(β} = Z-^Σ Π ^xp[-i(dα + φXc* + 1)
2]l,

where

fc*+1 [0, otherwise.

For the three-dimensional Villain model (k = 0) we obtain

so that

1 ,
) = Zί-.i Σ Π

[α]

—

where

Γ _ ι if h = n* r y.
(4.23)

otherwise,

and I'1 is a path of links, fc, (dual to plaquettes for D = 3) joining x to y.
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Remark. One may also introduce disorder operators, £fs D _ k _ 1 ? for rank-/c 11(1}
theories, in analogy with (1.14) and (3.21). It is easy to show that

Π Φ,((*<foXc*+ι)) Π ^α<cί" (4-24)
[Λ\Ck+ιCΛ ct*C(dSn-k-ι)*

For /c>0 and φβ as in (4.20)

This follows from the result for the Gaussian expectation value, by using the
correlation inequalities of [24]. For the Villain model (fc = 0), (DlsΌ- ^Λ(β) *s

related to the surface tension which vanishes in the thermodynamic limit. The
asymptotic behaviour for large SD_ 1? ΛΐTlP, can be determined by combining the
results of [15] (fc = 0, D = 2) with correlation inequalities. See [5] for the three-
dimensional model.

4.3. The Main Results

We now study the expectation value (Wm(Sk)yΛ(β) for a rank-/c Villain model. As
in Sect. 2.6 we reexpress the dual model in terms of a Gaussian measure, dμ^(α),
defined, for £>-fc-2^1, i.e. D^fe + 3, by

te^, if δμ = 0

(4.25)
0, otherwise,

where VΛ is the Green's function of ΠΛ*δd [see (2.34), Sect. 2.5]. When
D — /c — 2 = 0, α i s a scalar lattice field, and dμ°(α) is the usual Gaussian measure
with Dirichlet b.c. at dA. In this case, the dual of the rank-/c Villain model is
isomorphic to a D-dimensional Coulomb gas. For D = 2 this gas is analyzed in
[15], where it is shown that it exhibits a Kosterlitz-Thouless transition. For D^3,
it is believed that there are no bulk phase transitions in this gas and that it exhibits
Debye screening [10], for all values of β. [This is because the Coulomb potential
behaves like dist ~D+ 2, for D ̂  3, while in D = 2 it behaves like log(dist).] The main
result of this section is that when

D>k + 2

the rank-A; Villain model has a massive small β phase in which

1)] , (4.26)

where Σ°+ 1 is a minimal region with dΣ°+ 1=Sk; (this follows from a standard high
temperature expansion), and a massless large β phase where

(^mWX^^expί-constvol^)]. (4.27)

The proof of (4.27) is a straightforward variant of the one in Sects. 2.4-2.10 which
we sketch below.

In conclusion, the lower critical dimension is

, for fe^l. (4.28)
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4.4. Sketch of the Proof

As in Sect. 2.6 one shows that, for a rank-/c Villain model,

ck*cΛ

where

= ZΪ,Λ$ Π j l+2 £ co*(q<4c»))\aφ(d*)dμ°A(*), (4.29)
ck*cΛ* ( (2π)-lq=l )

#Φ(dα) = Π exP - ™ {2(rfα> <
ck*cΛ* L ZP

We now apply the combinatorial expansion of Sect. 2.6 to

ί °° 1
J(«Λ= Π 1+2 Σ cos^αM) . (4.30)

We define a rank-fc* current distribution, ρ, as a function on (k* = D — k — 2)-cells
in A* with values in 2πTL.

By mimicking the combinatorial scheme of Sect. 2.6 we obtain

«=Σ<ίy Π [l+Kte)cosα(ρ)], (4.31)
y ρe^l

where 7 ranges over some finite index set, each Λ^1 is a 1 -ensemble, [i.e.

dist(ρ1,ρ2)^ j/2, for two distinct rank-/c* current distributions ρ1 and ρ2 in Λ7^1],
and

i) cy>0, for all γ

π)
Ck*Csuppρ

where N^suppρ) is the number of fc*-cells within distance ^ 1 of suppρ, and

z =eβoq2
^q V ,

for some constant β0 with the property that

Thus

Because of (4.25) we may omit all factors from the right side of (4.32) for which
, provided D^/c + 3. (See [15] for D = 2, fc = 0.)

Next, we change variables :

,
where _ 1 (4.33)
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and φ is given by (4.21). Since

ΠA*dτ=-φ + εA, }
with ϋ Λ.-! (4 34)

<P\

we obtain, using Lemma 1, Sect. 2.3, and the periodicity of the cosine,

<Wm(S^A(β) = Z^ JΣd y I Π [1 + K(ρ)cos(α(ρ) + fi>ρ))] <*/*> + ejl.(4.35)
I y aejrϊ f
I δρ = 0 }

The renormalization of the right side of (4.35) is performed as in Sect. 2.8 (see also
Sect. 3.5, and Sect. 4 of [15]). It yields

I δρ = C

where

for β>max(c1/dl,c2/d2). HereL(ρ)is the number of (k* = D — k — 2)-cells in suppρ,
and c1? c2, dί9 and d2 are finite, positive constants. A straightforward variant of the
estimates in Sect. 2.10 and of (2.104)-(2.107), Sect. 2.11, yields.

±(>»*4 (4.38)

provided β is sufficiently large. Here

where d(β) is a finite function which tends to 0, as β-*oo, exponentially fast [see
(2.80) and (2.87), (2.88), Sect. 2.10]. Finally, from (4.34) and the fact that the
gradient of the Green's function of the Laplacian, A = — (dδ 4- δd), decays like,
(l/dist)0"1, we conclude that

lim (εκ,eJ^constvol(SΛ), (4.39)

for D^3. This completes our sketch of the proof of (4.27).
In the example of the three (or higher) dimensional Villain model (k — 0) we

obtain from (4.38), (4.39), and (4.23)

= υmD<sx.syyA(β)

S^exp — ——const vol (S0)[ 2β'

= exp(-C/j8), (4.40)

for some finite constant C independent of x and y, provided D^3 and β is
sufficiently large. (The limit ΛΐTlP exists, as follows from Ginibre's inequalities.)
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Inequality (4.40) expresses long range order in the spin-spin correlation of the
Villain model, for sufficiently large values of β. Thus, in the pure phases obtained
by ergodic decomposition of < — >(/?), the continuous, global [/(!) symmetry is
broken.

The masslessness of the large β phases of rank-fc Villain models, with D ̂  k + 3,
can be proven by generalizing the techniques developed in Sects. 2.11 and 2.12 in a
straightforward way.

The techniques of our paper do not depend upon imposing special b.c. (They
apply to a very large class of £/(l)-in variant b.c., see e.g. Appendix A of [15] for a
discussion of such b.c. for the two-dimensional, classical -XT model.) None of our
estimates relies on translation invariance. Using the tools in Sects. 6 and 7 and
Appendix B and C of [15], we can extend our results to a fairly large class of
functions, φβ, in particular

These are definite advantages over the methods of [11] which rely on
translation invariance and reflection positivity. (Those methods do, however,
permit one to analyze spin systems with non-abelian symmetry groups for which
no useful notion of duality exists, such as the classical Heisenberg model.)

We believe that our methods ought to be useful for the analysis of the quantum
mechanically model, models of interacting Bose gases and statistical mechanical
models of defects and dislocations in ordered media.
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