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Abstract. The purpose of this paper is to study the so-called spectral class Q of
anharmonic oscillators Q= — D2 + q having the same spectrum λn = 2n
(n ^ 0) as the harmonic oscillator <2° = — D2 + x2 — 1. The norming constants
tn = lim /g [(- l)n en(x)/en(— x)] of the eigenfunctions of Q form a complete

Jet oo

set of coordinates in Q in terms of which the potential may be expressed as
q = x2 - 1 - 2D Vg θ with

Γ

= det δ..
L

e® being the nth eigenfunction β°. The spectrum and norming constants are
canonically conjugate relative to the bracket [F, G] = jVFDVGdx, to wit:
[_λ., λ.] = 0, [ί., 2λj] = 1 or 0 according to whether ί =j or not, and [ί., ίy] = 0.
This prompts an investigation of the symplectic geometry of Q. The function θ
is related to the theta function of a singular algebraic curve. Numerical results
are also presented.

1. Introduction

The spectrum of the quantum-mechanical harmonic oscillator1 Q° = —D2 +
x2 — 1 is 0,2,4,6, etc. The corresponding unit eigenfunctions are the Hermite
functions:

4?(x) = (χ/π2"rc!)- 1/2eχ2/2Dne-χ2 (n ^0).

Let Aq belong to the class S(R) of real infinitely differentiable functions vanishing
rapidly at ± oo2. The anharmonic oscillator Q = - D2 + q with potential
q = x2 — I + Aq has a discrete spectrum of simple eigenvalues λn = λn[q], increasing
to + oo with n, and corresponding unit eigenfunctions en (n ̂  0) of class S. The

* Sloan Foundation Fellow.
1 D signifies differentiation with regard to x.
2 xLDjAq = o(l) for x -> + co and every ij ^ 0.
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purpose of this paper is to study the spectral class Q — Q[x2 — 1] of such oscillators
having the same spectrum λn = λ% = 2n as β°, i.e., the aim is to explain to what
extent the quantum-mechanical oscillator is specified by its spectrum. The principal
results and their geometrical motivation will now be described.

Isospectral Flows

The flow of translation dq/dt — dq/dx leads immediately out of the class x2 — 1 + S;
more drastically, the KDV flow dq/dt = 3qdq/dx — (l/2)d3q/dx3 does not even
exist for q ~ x2 as the individual terms cannot balance unless q is sublinear.
Fortunately, a wide class of isospectral flows suggests itself by elementary geo-
metrical reasoning: Q is defined by the relations λn = 2n(n^ 0), so the normal space
to Q at q is, or ought to be, the span of the gradients3 Vλn = e2

n(n ^ 0). Now Def is
perpendicular to e2 for every i and j, as is plain for i =7, while for i =/=j, it follows
from4

D[er e.] - ef] - eT.e. = (λ. - λ)e.e.

and

tfDe] = - lήDή = tflefDή - ήDef]

= k φ. , ej = (λt - λjΓ^le-.ejYl^ = 0.

This suggests that the tangent space to Q at q ought to be the span of De2

n(n ^ 0)
and that5 dq/dt = 2De2 = Xnq ought to be an isospectral flow. The perpendicularity
of ef and De2 can be phrased more elegantly in terms of the Poisson bracket,6

[F, G] = JVFDVGώc, as [Λ,., /I] = 0. This states that the eigenvalues are involutive
and suggests that the flows dq/dt = Xq ought to commute. It is a source of satis-
faction that ef and De2 span L2(R) so that no direction at q is left unclassified', also,
the gradients Vλn = β2 of the relations λn — 2n are highly independent in the sense
that no direction in the span of some subclass lies in the span of the complementary
class [see Sect. 4]. This indicates that Q is a smooth submanίfold of the ambient
space x2 — 1 H- S, though the point is not pursued below.

The Exponential Map

It is a pleasant fact that the flows dq/dt — 2De2 may be integrated in a simple and
explicit manner, obviating any discussion of existence and the like. Let Xn be the
vector field q-+ 2De2 and fix q° in Q[x2 — 1], not necessarily at q°(x) = x2 — 1.
Then the flow dq/dt — Xnq originating at q = q° is expressed by

q = q° - 2D

3 V is the gradient in function space. The evaluation is elementary from the simplicity of the eigenvalue,
the variational equation Qen + q'en = λnen + λnen, and theίact that \ene'n = 0 in view of JV = 1.
4 [e£, βj] = ete'. — e[e .

5 The factor 2 is introduced with a view to the simplicity of subsequent formulas.
6 [F, G] is skew-symmetric and satisfies Jacobi's identity; see, for example, McKean-Moerbeke
[1975],
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with

eQ

n being the initial eigenfunction [β°e° — λne°~]. More generally, let the numbers
tn(n ^ 0) vanish rapidly as n t GO and let X = ΣtnXn. Then exq° belongs to Q and
may be expressed by the same formula with7

» = det
Γ 00 "I

δ.. + (eίl - 1) f e*e*:Q ^ U < °° I
L x J

The numbers tn have the interpretation of norming constants: cn = eje^( — oo)
and c + ̂  eM/£°( -f- oo) exist and satisfy the connection rule c~c + = 1, and tn =
/g c*/c~ in particular, if g°(x) = x2 - 1, as is mostly the preferred choice, then the
map t -> — £ corresponds to the reflection of potentials g(x) -» #( — x). The geo-
metrical content of all this is that the formula exq° = q° — 2D2 ^g θ establishes
an exponential map from the tangent space of Q at q° into Q: it is 1 :1 in view of
the meaning of the parameters £π,and in fact it is onto so that t is a global coordinate
on Q, relative, e.g., to the origin q°(x} = x2 - 1; in particular, x2 - 1 is the only
even potential in its class. The first fundamental form of Q at q is g.. = 4§De2De2,
i.e., \\dq \2

2 = ̂ g^dt^t.. This is a complicated animal even at the origin g° = x2 — 1,
and no attempt is made to deal with it beyond noting the formula

Σβ^V - 4(2πΓ 1/2(1 ~ ά)ll2(\ - b)1/2(l - ab)~ 1/2 ((K α, b < 1).

Symplectic Geometry

The quantities /L(j ̂  0) are involutive relative to the bracket [F, G], as noted
before. It turns out that so are quantities £. = lim / g [( — 1)' ̂ (x)/^ — x)], and

xt°o
the fact that the flow dq/dt = X.q = [q, 2λj] advances t. at speed 1 if i =j, and not
at all if ί =£ j, is to say that £ t(i ^ 0) and 2λ.(j ^ 0) are canonically conjugate relative
to the bracket:

A more global viewpoint is now adopted. The involutive quantities tn have an
existence outside Q[x2 — 1] and so produce commuting vector fields Yn : q -> DVtn

transversal to the isospectral fields envisaged before, leading off Q[x2 - 1] into
the ambient space; they fix the ί.'s and move the λ?s. It turns out that x2 - 1 + S
is too small an ambient space for the individual flows, but if S is appropriately
enlarged things appear to proceed nicely. The ambient space is now cut up by
two transverse foliations : one foliation has leaves Q defined by fixing λn(n ^ 0) not
at the eigenvalues ̂ [x2 — 1] = 2n, but at some other values with realistic comport-
ment as n I oo. The typical leaf P of the second foliation is obtained by fixing the
numbers tn(n ^ 0) in a similar fashion. Two leaves Q and P meet in a single point,

7 The formula is of Gelfand-Levitan-type; see, especially, Kay-Moses [1956] and Tanaka [1972/73].
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and the meeting is transversal as expressed by the fact that the corresponding
normal spaces, spanned by Vλ. and Vί j ? meet only in the null function and fill up
L2. The isospectral flows dq/dt = \q preserve the leaf Q and are integrated by
the previous rule: Δq = — 2Z>2/g[l -f (e* — 1)J^(£°)2]> likewise, the transversal
flows dq/dt = \nq preserve the leaf P and are integrated by a simple rule: Δq =
— 2D2 f% [e°, /°], /π° being any independent eigenfunction of β° with updated
eigenvalue λn= λ° + ί. The latter flows are of a different kind from the former in
that their parameters λn(n 1> 0) lie on the GO -dimensional simplex A0 < λ1 < λ2 <
etc. so that they have only a circumscribed existence; in this connection, it is
amusing to note that the leaf P[x2 — 1] appears to be precisely the class of even
potentials and so is perfectly nice, only it is incomplete as regards these flows.
This whole global picture is partly conjectural. The technical effort required to
confirm it seems disproportionate to the result, so only the leaf Q[x2 — 1] is
treated below, though the proofs have a wider applicability [see Sect. 4-5]. To be
candid, it is not even plain what the ambient space should be : for example, there
exist potentials outside the present class Q[x2 — 1] with spectrum λn = 2n but
exhibiting a charge: Δq(co) - Δq( — oo) = 4. It is conjectured that this charge is
always integral in any enlargement of Q[x2 — 1] and labels its connected pieces.

Theta Functions

The letter θ is used to point up the similarity between this determinant and the
Riemann-theta function as it appears in the inverse theory of Hill's equation;
see, for example, McKean- Trubowitz [1976]. A singular 2-sheeted curve of
infinite genus, with singular points λn = 2n(n ̂  0) or whatever, lies in the back-
ground. The associated Jacobi variety splits up into an uncountable number of
components indexed by the real number x9 provided with the family of singular
theta sums :

The numbers tn(n ^ 0) may even be expressed as sums, over the points of a certain
divisor on the curve, of integrals of differentials of the first kind [see Sect. 6].

Numerical Results

The appendix contains pictures of several potentials from Q[x2 — 1] displaying
the effect of the isospectral flows. They were made by O. McBryan by numerical
evaluation of θ.

Finite Interval

The whole situation is similar but technically simpler for operators Q acting, for
example, on functions of — 1 ̂  x ^ 1 vanishing at x = ±1. This will be dealt with
in detail in a forthcoming publication of E. Trubowitz.
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2. The Exponential Map

Let Q = Q[x2 — 1] be the spectral class of the quantum-mechanical oscillator
QQ = — D2 4- x2 — 1 obtained by fixing the eigenvalues λn = λ® = 2n(n ^ 0) in
the space x2 — 1 + S. It is proposed to make an exponential map of the tangent
vector* X - Σί.X. into Q via the rule exq° = q°-2D2έgθ = q with

= 0^1* '2-0 =

The initial potential q° is any point of Q; it is specialized to the origin x2 — I later.
The numbers t . vanish rapidly as 7 f oo . They have the meaning oϊnormίng constants :

*/*?(+ oo) = exp(±f/2).

This makes plain that the exponential map is 1:1; the proof that it is also onto is
postponed to Sect. 3.

Step 1. The discussion begins with a single parameter t = tn so that θ =
1 + (el - l)f "(e°)2 It is to be proved that q = q° - 2D2fgθ is an integral curve of the
vector field Xπ :g -» 2De2, i.e., dq/dt = Xq. The question of uniqueness is routine
and may be left aside.

Proof, θ is positive by inspection, so the recipe makes sense moreover, θ = 1
at oo and et at — oo, so Aq = — 2D2 *?g θ is class S. Now the function θ~ 1 et/2e® = f
is an eigenfunction of Q = — D2 + q with eigenvalue 2n, by direct computation,
and as it has precisely n roots in common with eQ

n and satisfies

it can only be the π'h eigenfunction en of Q. Besides,

dq/dt = - 2D2 fs [dθ/dt] = - 2D2Θ~ 1e' J (e°)2

by elementary computation, and since the flow preserves the spectrum of Q in
view of λm = 2[/lm, λn~] = 0,soq belongs to Q and may be identified as stated.

Amplification 1. The other eigenfunctions ofQ are

The computation is facilitated by the identity f e^e° = (λ° - λ°J



476 H. P. McKean and E. Trubowitz

Amplification 2. The preceding formula leads, after some tears, to the identity

1 *f} = ί &• ~ θ~ V - 1) ϊ eyn ] e»e« (i,j + «).
X X X X

This will be used presently.

Step 2 is to prove that

represents the action of ex upon cp for any tame combination X = ̂  ̂ X; of the indi-
vidual fields. l' = "

Proof. The formula of Step 1 and the commutativity of the individual flows9 imply
that qn = exq® can be expressed inductively as

with q_1 = qQ and θn = 1 + (etn - 1) J (e~)2, e~ being the nth eigenfunction of the
X

preceding potential qn_ί

iQ. Thus, Δq = qn — q_ 1 is ( — 2) x the second logarithmic
derivative of the product {"] 0., and it is required to identify the latter as the stated

i^n
determinant. This is done by Gaussian elimination with the help of Amplification 2 :
elimination of the first row of the determinant leads to the product of Θ0 and

[ Γoo oo oo ~j ~~|

Sy + ίe' -l) ί^-θoV0-!)/^!^ ί l ί i j ί n
L X X X J J

= det

in which en

+(n^0) are the eigenfunctions of et°x°q_ί =q0. The rule θ= Y[θ.

i^n
follows by induction.

Amplification 3. The product rule for θ leads to a proof of its existence and non-
vanishing for general rapidly vanishing parameters:

and

independently ofx.

9 [λ^λ^ = 0 expresses this fact.
10 The abuse of notation is only momentary.
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Amplification 4. The evaluation Aq = — 2D2 /g θ and the rule dq/dtj = X.q =
2De] lead to the identity e] = - D[5^g θ/dt.](j ^ 0).

Amplification 5. The formula for the individual flows of Step 1 lead inductively to
the evaluations

whence the connection rule c~c£ = 1 and the interpretation of tk = /gc fe

+/c~ as a
norming constant. The fact that the (tame) exponential map is 1 : 1 is now plain.

Step 3 is to carry Step 2 over from tame to general rapidly vanishing ίM(n^>0).
Routine estimates based upon the expansion11

n= 1

] + Σ («" ~ l)(eίj - 1M|>?, ej] + etc.

show that Jg = — 2D2 £gθ is of class S. The isospectrality of q = qQ + Aq and its
identification as exq° will be plain, the only moot point being the interpretation
of the parameters tn as norming constants, as in Amplification 5. But that is clear
from the estimate

- 1

and Amplification 412 :

Amplification 6. Choose q°(x) = x2 — 1 α5 ί/ze oπ'gfm o/ Q. T/zen ί/ze alternately
even and odd parity of the Hermite functions e® implies

^( - ί0' ~ ̂ ' ~ * 2 > etc ) = ^-x^o' r i ' ̂ ' etc )?

i.e., ί/ιe map X -> — X expressing reflection in the tangent space is mirrored in the
reflection q(x) -* q( — x) of the potential q = ex q°. The present choice of origin is
to be understood until further notice.

3. Surjection

The fact that the exponential map is onto the whole of Q is harder to prove. The
ftth eigenfunction en of a fixed potential q of class Q is proportional to xne~χ2/2

12 The exponent — 1 in the sum signifies the inverse matrix. The fact that en(x) = 0 has precisely n
roots must also be used.
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at + oo, so the constants

^ =(*„/<)( -oo), C = (*,/<£)( + °°)
exist. It is required to prove the connection rule c~c^ = 1 and the rapid vanishing

of tn = ^g c"n/c~ , and to verify q = exqQ with X = Σ tXn .

Connection Rule

The first 2 steps are preparatory.

Step 1. Introduce the more-or-less standard Hermite- Weber function:

(x, A) - Γ(p)

with p = 1 + λ/2. The integral is performed about the contour of Fig. 1 and the
fractional power y~p is the principal branch in the plane cut along (— oo,0].
The allied function w°_ (x, λ) = w° ( — x, λ) is also introduced. The following
information comes from Bateman [1953: 116 et seq.] :

Fig. 1.

a) <2°w = λw for w — w°_ or vv° .
b) w + is comparable to xp~le~χ2>2 at x = oo and to x~peχ2/2 at x = — oo .
c) w° is an integral function of λ, of order 1 and maximal type for fixed x.
d) Δ°(λ) = [w°_, w°] is independent of x; it is an integral function of the same

class with simple roots at λ = 0,2,4,6 etc. and no others in particular, for λ=2n ̂  0,
both w°_ and w + are proportional to the Hermite function e%.

Step 2. The Hermite-Weber functions of Step 1 may be imitated for general Q
with Δq vanishing at ± oo. These new functions are designated w + (x,Λ) and to-
gether with Δ(λ) = [w_, w+] have the same properties a)-d) as their prototypes.
The routine discussion is based upon the recipe

OO

w+ (x) = < (x) + J [w°+ (x)W°_ (y) - w°_ (χ)w° (j)] w+(}^<7(y)^
X

and may be omitted. The comparison w+ = w°[l -f 0(/l~1/2)]5 valid for fixed
x and /I J, — oo, is noted for future use it may be differentiated by x.

Step 3 is the proof of the connection rule: Off spectrum, the Green's function
(Q-ty'y1 may be expressed either as - Δ~i\v_(x)w+(y)(x < y) or as the sum
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Σ(λn - xΓXfrKίy), whence13

[J (An)]~ V_(x, Λ>+(j;, An) = en(x)e(y) (x < y\

by matching residues at λ = λn, and c~cπ

+ = J0'/^0 at A = /U But A and its proto-
type A° are integral functions of order 1 vanishing simply at λn = 2n(π ^ 0), and
A(λ) ~ A°(λ) for λ I — oo by the comparison of Step 2. A = AQ and c~c^ = 1
follow: such a function A differs from its Hadamard product only by a factor

ea+bλ ancj two Sucj1 factors coincide if their ratio tends to 1 along a ray.

It will be necessary to know that c*/c~ = l(n ^ 0) only at the origin of Q, i.e.,
only ifq(x) = x2 — 1. It is a corollary that x2 — I is the only even potential of class Q
iϊq(x) = q( — x), then its eigenfunctions, like those of q°(x) = x2 — 1, are alternately
even or odd, so that c^ /c~ = 1. The proof of uniqueness is modeled upon Levinson
[1949] and is the analogue of a theorem of Borg [1945].

Step 1 consists of preliminary estimates. Fix a number x and let qx(y) be y2 — 1
or q(y) according as y < x or y ^ x. The eigenvalues λ* and the eigenfunctions
ex

n(y) of the corresponding operator Qx — - d2/dy2 + qx move with x, and it is easy
to see that

dλx

φ) = an [sm(λ^lz(y + bn] + 0(n~ 1/2L3)]

by an elementary appraisal, and from the inequality 1 = J(e*)2 ^a2[
o(l)]2L, the evaluation λ™ = 2n, and the rapid vanishing of Aq, it develops that

The same trick applies to the eigenfunction:

rc — P*~\ v i/ lπ\ Y i > i / / i P^I ~y\p ( V i
^v ~ SW^^W Z^ \Ak An> ^fcW^fcW'

K _L

so

L / 1 2 + ϊ = /0^-1/4^

But the Hermite function e™(y) — 0(n~1/4) by routine appraisal, so e*(y) =
0(n~1/4+), and this is improved to 0(n~1/4)plain by substituting back; in particular,
en(y) = e~co(y)= 0(n~i/4\ The improvement also applies to the eigenvalue:
λx = 2n + 0(n~ll2\ independently of x.

13 signifies differentiation with regard to λ.
14 c — \c + ] means any number slightly smaller [larger] than <
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Step 2 is to explain the plan of the proof: Q and Q° have common spectrum
λn = 2n and if also c^/c~ = 1, then their eigenfunctions en and e® are common
multiplies of w+ and w+, respectively, for λ = 2n. This permits you to write 15

^[Δe (x)]2 Aw (x, λ)Δw + (x, λ) Λ , ,
_ L — ?Λ_>J_ — ~ v ' ' +v ; evaluated at λ = λ ,

-A(λ)

for fixed x and /l_ 1 < 0, the sum being taken over n ̂  N and the integral about a
circle of odd radius 2N + 1 enclosing A _ 1 . The plan is to prove that / = o(l) as
N |oo. Then

_
at Λ — Λ < —

The estimate w = w°[l 4- O(λ 1/2)] for λ[ — oo permits the left-hand side to be
replaced by the free Green's function (Q° — λ_i)~χ

ί x 0(l/λ_ί\ all of which is
o ( ί / λ _ ί ) for /L L J —oo, and comparison with the sum implies \_Δen(x)Y = 0
for every n ̂  0. Q = Q° is immediate from that.

Step 3 is to carry out the appraisal of /. Let Δx(λ) be the value of [w°_, w+] at x
and Gx

λ the Green's function for the operator Qx based upon the potential qx(y) =
y2 — I or q(y) according as y < x or not. Then Gx

λ(x,y)= — [zlx(A)]~1w°(x, λ)
w+(y,λ) for y > x, and the integral / of Step 2 is recognized as a sum of four pieces, of
which

/ = f r *( \ _ oo f dλ

and

are typical. The bracketed part of the first integrand is

00

GILqx - ί00] GΓ (x, x) = ί GA

x(x, y)Δq(y)G* (y, x)dy,
x

and so is controlled by

< V Q("-1 / 2)_0 ί Ar-ι/2 )=άι»-^r ( }

by the preliminary estimates e* = O(n~l/4} and A^ = In + O(^z"1/2) of Step 1. This
disposes of /1 = 0(JV ~1/2). The discussion of 72 is similar: The preliminary estimates


