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Abstract. We bound rigorously the large order behaviour of Φ\ euclidean
perturbative quantum field theory, as the simplest example of renormalizable,
but non-super-renormalizable theory. The needed methods are developed to
take into account the structure of renormahzation, which plays a crucial role in
the estimates. As a main theorem, it is shown that the Schwinger functions at
order n are bounded by Knn!, which implies a finite radius of convergence for
the Borel transform of the perturbation series.

I. Introduction

In this work we give rigorous bounds on the Feynman amplitudes at large order
for renormalized Φ\ euclidean quantum field theory. We prove the "local
existence" of the Borel transform of its perturbative series for the connected
Green's functions (or Schwinger functions): the Borel transformed perturbative
series is shown to have a finite radius of convergence. Such a theorem is reached by
finding direct estimates of the renormalized amplitudes related to Feynman
graphs. We combine the Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ) re-
normalization scheme with the use of the so-called Hepp sectors to give bounds
which depend on the renormahzation structure of the graphs. Then we count the
number of graphs with a given renormahzation structure, and we can bound the
term of order n of any Schwinger function by Knn\, which proves our main result.

The same property was already known for Φ* in the super-renormalizable
domain Rev<4 [1]. Through Borel summability for integer dimensions v = 2,3
[2], perturbative and nonperturbative methods of constructive quantum field
theory are connected [3]. In this domain, each Feynman amplitude is uniformly
bounded by Kn. Conversely for v = 4, such a bound cannot exist and the situation
remains unresolved. Despite all efforts there has been almost no rigorous result. It
has been remarked that some graphs of order n grow like n\ [4]. (Of course we
recover this particular result and we show how few graphs are dangerous.)
Heuristic arguments have been given, to make plausible the appearance of
singularities, called renormalons, on the real positive axis of the Borel plane [5].
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That would destroy the usual Borel summability. However it was believed that the
Borel transformed series has a finite radius of convergence this has been evaluated
by semi-classical approximations [6].

Since we prove rigorously this last fact, we hope to provide a new incitement to
the study of renormalizable (but non-super-renormalizable) field theories. Starting
from this result, one could try to perform an analytic continuation of the function
we define in the Borel plane, or to use our methods for discovering a new
constructive approach.

This paper is organized as follows: Sect. II is devoted to the definitions and
main results. In Sect. Ill we define one of our main tools, the classification of
forests, and we give the proof of the bound on individual amplitudes. Sect. IV
gives a brief discussion on our results and their possible generalizations.
Appendices A-C solve the graphical and combinatoric problems, very different
from those encountered in the super-renormalizable case.

II. Definitions and Results

ILL The Φ\ Model

We consider an euclidean field theory of massive scalar self-interacting bosons in
4-dimensional space-time. The interaction is defined by

if7(Φ) = - λΦ4 + counter-terms.

Up to now this is a field theory only in the perturbative sense. We define the

truncated Schwinger function of N fields, N Ξ> 2, via a formal expansion in the

coupling constant:

Σ A, Σ 4r-<CW' (π.1)

where / = (/ l 9 ...,feN) is a set of external euclidean momenta, and a^ is a sum of
renormalized Feynman amplitudes, associated to Feynman graphs with n internal
vertices and N external legs. These graphs have exactly 4 lines attached at each
vertex.

The unrenormalized Feynman amplitude IG associated to the graph G is given
in the α-parametric representation by the following formal integral:

co oo t Γ / ί \1

IGW = ί ί Π d*t exp - μ 2 X ocM ZG(fa a), (II.2)
0 O ΐ = l L \ i = l /J

where a parameter at has been attached to each internal line i — 1,..., £ of the graph
G, and μ is the mass of the bosons, which we fix at the value 1 in the rest of the
paper.

ZG(>, α)-1/[C/G(α)]2 e x p [ - FG(>, α)/C/G(α)], (II.3)

S ίφS

Σ(Π
T \iφT
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UG and VG are the standard Symanzik polynomials: S runs over the spanning trees
(or "one-trees") of G, T over the 2-trees of G which separate the external lines of G
into two non-empty sets, one of which is Tv It is also convenient to define:

This is not a norm in the usual sense, but we have:

Before renormalizing, hence defining a finite part of the integral (II.2), we
introduce our definitions and notations for the graphs, used everywhere in the rest
of the paper.

11.2. Graph Theory

Throughout this paper, the word graph means a "labeled" graph, hence a set of
distinguished vertices with internal and external lines. For any graph G we define:

n(G) as the number of vertices of G,
/(G) as the number of internal lines of G,
N(G) as the number of external lines of G,
L(G) as the number of independent loops of G,
c{G) as the number of connected components of G.
We have the topological relation

L(G) = ί(G) - n(G) + c(G). (II.8)

Moreover if G appears in the expansion (II. 1) it has exactly 4 lines attached at each
vertex. Hence N(G) is even, and

) = 2n{G)-N(G)/2.

The superficial degree of convergence of G is defined by:

ω(GW(G)-2L(G). (11.10)

From (II.8) and (II.9) we have also, if G is a connected graph of Φ\

) = N{G)/2-2. (11.11)

Definition 11.1. A subgraph F of G is a set of internal lines of G, together with the
corresponding attached vertices. An external vertex of F is a vertex attached to at
least one external line of F.

We extend also the definitions of /, n, L, N, c, ω to subgraphs in the natural
way. FcF' means that the set of internal lines defining F is strictly included in the
set of internal lines defining F'. For non-strict inclusion we always use the symbol
ς.

Since we look at the expansion of truncated Schwinger functions with N ^ 2,
there will be no vacuum (N = 0) graphs or subgraphs in our problem. Moreover
the graphs containing tadpoles (subgraphs with only one external vertex) will
vanish in expansion (II. 1) after renormalization (see Subsect. II.3).
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Definition 11.2. A subgraph F of G is said to be divergent if ω(F)^0. Using (11.11)
we remark that the connected divergent subgraphs F have N(F) = 4 or N(F) = 2.
They will be called quadrupeds or bipeds, respectively.

Definition 113. Two subgraphs F, F' are disjoint if they have no line and no vertex
in common. They overlap if they are not disjoint and do not satisfy an inclusion
relation {FQF' or F'QF). A forest βF is a set of non-overlapping connected
subgraphs. F is said to be compatible with #" if ^u{F} is a forest.

For any $F and F compatible with SF, we define

' ' }
 F'TF

Ap(F) may be empty and generally does not belong to #", except if stfp(F) has
exactly one element. Conversely we denote B&(F) the smallest subgraph in $F
which strictly includes F

If there exists no such subgraph, we define B^(F) = G. If F C F' we have the usual
notion of reduced graph: F'/F is the graph obtained from F' when each connected
component of F has been reduced to a single vertex. If F is compatible with 3F we
define: F/^ = F/A^(F). Finally for Fe^ and any subgraph^, denote
the subgraph

Definition 11.4. A subgraph F is said to be one line reducible (OLR) if there exists a
line of F such that by its removal the number of connected components of F
increases. A single line is OLR. A connected subgraph which is not OLR is called
proper. A proper component of a subgraph F is a maximal proper subgraph F'QF.

Definition 11.5. A quadruped Q is said to be open if it is proper, and if there exists a
proper biped B such that QcB, and that both external vertices of B are external
vertices of Q. The biped B is then unique and is called the closure g* of Q. In other
words an open quadruped Q is obtained from its closure J3 = g* by removing a
single line, or a chain of proper bipeds, as pictured in Fig. 1.

B--Q*

Fig. 1

A proper subgraph F is said to be closed if

Vβ open quadruped, QζF=>Q*QF. (11.12)

Finally we define the closure F* of any proper subgraph F as the smallest closed
subgraph containing F. It is easy to verify that this extended definition coincides
with the former one for open quadrupeds, that a proper biped is always closed and
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that the closure preserves the inclusion relations:

VF 1 5 F 2 proper, F^F^FfQF*. (11.13)

Moreover if i7^ and Ff overlap, then Fx and F2 also overlap. A connected
divergent subgraph which is not closed is called unessential. Then either F is
proper and is an open quadruped Q (Fig. 1), or it is not proper (Fig. 2 for bipeds, or
Fig. 3 for quadrupeds).

Fig. 2 Fig. 3

A forest of proper (respectively closed, divergent closed, etc. ...) subgraphs is
called in brief a proper (respectively closed, divergent closed, etc. ...) forest. We
remark that in the reduction of a graph by a closed divergent forest no tadpole
may appear.

Definition 11.6. For any divergent forest 3F we define:

(11.14)

where q{^) and b(!F) are respectively the numbers of quadrupeds and of bipeds in
# \ Then we define

Λ(G)= Sup DWL (Π.15)
$F closed divergent forests of G

Sup [/(#!], if N(G)>29
.Ψ forests of quadrupeds of G

1+ Sup L/W], if iV(G) = 2.
J^ forests of quadrupeds of G

(11.16)

Lemma II. 1.

/i(G)^/ 2 (G). (11.17)

Proof. For any forest ^ we call SHJF) the subforest of its bipeds. Let $F be a
closed divergent forest, with SS{^)={BU ..., Bp ..., 2?Mj^}. We choose a line ix in
Bι—A^{B1) (which is not empty) and an external line i\ of Bl9 internal in G (if

•). Then we define

Any FeϊF which overlaps with R{BX) is replaced by FuR(B1) = Fi, and we define
a new forest J ^ by these replacements, by removing Bx and by adding Q{B^) and
RiBy) At this first step, since each F is proper, FnRiB^ is empty or is the vertex at
the end of i\ which does not belong to Bv In the second case N(FUJR(J5 1 )) = N(F)
(see Figs. 2 or 3) and J ^ satisfies the following conditions (H), which we take as
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induction hypotheses at the step j let us assume we have built a divergent forest
J^ such that

(H)

(HI)

and Vg non-closed proper component of F,

k with fc^/ ; (H2)

= {B]+ί,..., Bj,,..., £ £ w } and F = #},<>£;, proper component of F .

(H3)

Then defining ι\+1, î .+ 1, Q[Bj

j+1), R(Bj

j+1) in the same way as before, with 3F
replaced by J^ , it is easy to verify that

a) ij+1eBJ+X9

b) Qi&j+ΰΦ^j s i n c e ^ n a s a non-closed proper component whose closure is
B,+ 1 [see(H2)],

c) R(Bj

j+ i)φ ^ since it has Bj+ x as a proper component [see (H3)],
d) If Fe^j overlaps with R{Bj

j+ x), FnR(Bj

j+ x) is the vertex at the end of i'j+1

which does not belong to Bj

j+1 [see again (H3)].
This allows us to perform the step + 1, and to build ^j+1 still satisfying the

conditions (H). Finally S*^^ is a forest of quadrupeds with /(#") elements, or
possibly / ( # ! — 1 if G is a biped (in which case R(G) cannot be defined). In any
case, with the definintion (11.16), (11.17) is proved.

Remark. In fact, given a forest #" of quadrupeds, by considering the forest #"* of
the closures of the proper components of the subgraphs in #", one could show
/1(G) = /2(G). Since we do not use this equality, but only (11.17), we leave its
verification to the reader.

The numbers fx(G) and /2(G) will be useful to state precisely the results of the
next sections. It is proved in Appendix C that /2(G)^n(G). Hence by (11.17) we
have also

11.3. Renormalization

Following [7] we define the usual BPHZ renormalized Feynman amplitude with
subtractions at zero external momenta by an operator acting directly on the
integrand ZG in the α-parameters representation (II.2). By this subtraction
procedure, the graphs with tadpoles subgraphs vanish.

For every connected subgraph F of G we define a Taylor operator ^F acting on
ZG in the following way: let T be the usual Taylor operator of order r; if f(x) is
Γ a t x = 0we have

T7 = 0, if r<0,

^7=Zi/ ( s ) (°), if r̂ O.
S

Now if / is such that xmf is ^ at x = 0 for some integer m, we define

3rrj=x-
mτm+r{xmf).
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This definition is independent of m. Let ZG(ρF, α) be obtained from ZG(μ) by scaling
αf into ρFα for ΪGF; then βΓΈ is finally defined by

/ ρ F , α ) ] β F = 1 . (11.18)

The renormalized amplitude associated to G is then expressed by the following
absolutely convergent integral representation

00 00 ό

0 0 ί= 1

exp(- £ α^Z^α), (11.19)

p [ - KG(/U)/t/G(α)]}. (11.20)

The operator ^? may be defined in many equivalent ways, among which we select
the following one [7]

« = Σ Π K F ) . ( Π 2 1 )

where the sum is performed over all proper divergent forests of G, including the
empty one. We note that Taylor operators of non-overlapping subgraphs com-
mute, hence the products in (11.21) are taken in an arbitrary order.

It is however possible to simplify formulae (11.18) and (11.21) to obtain a more
practical form of the renormalization, adapted to our specific Φ\ model. We
introduce the following notations, for F a subgraph of G: SF (respectively TF) is the
set of spanning trees (respectively two-trees) whose restriction to F is a spanning
tree of F SF (respectively TF) is the set of spanning trees (respectively two-trees)
whose restriction to F is not a spanning tree of F.

UF, Up, VF, VF are defined by formulae (II.4) and (II.5) with the sums
respectively restricted to SF, SF, TF, TF. These notations help us to give explicitly
the action of the Taylor operators:

i) if F is convergent,

^ F Z G = 0, (11.22)

ii) if F is a quadruped, we have

UG(ρF, a) = ρ « F ) [ UF(cή + ρF UF(ρF, α ) ] ,

VG(ρF, A α) = ρF

mίVF(^, a) + ρFVF(ρF, fi, α ) ] ,

where Up = UF/ρF and VF = VF/ρF are regular at ρ f = 0. Hence

SΓFZG = ί/ίUF(a)Y e x p ( - FF(>, cή/UJμ)) = ^χ°FZG(χF, / , α), (11.23)

with

By Taylor's integral formula

(1 - SΓF)ZG = } dχF / - ZG(χF, /, α)
a

exp -
UF+χFUF

(11.25)
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iii) if F is a biped, we remark that a spanning tree or a two-tree which are not
spanning trees in F have at most two connected components in F, each one
containing one of the external vertices of F.

Hence

UG(βF, α) = QL

F

fF)ίUF (α) + ρFt/F(α)],

V0(ρF, / , α) = Q^XV^, a)+ρFVF(/, α)] .

It follows that

- T H , (Π.26)

and finally

1 d2

• - ^F)ZG = J dχF(l - χF) J - 2 2 G (χ F , / , α)
o " A F

+

UF+XFUF

 + \ UF+XFUF

( I L 2 7 )

In the whole ϊM operation, further simplifications appear since in fact Taylor
operators for unessential subgraphs are unessential: the connected divergent
subgraphs which are not proper already do not appear in (11.21). But we will show
also that open quadrupeds do not contribute to the 01 operation, which is not a
result quoted in [7]. Before proving it, we state for non-closed subgraphs a more
general lemma which is useful in Sect. I l l :

Lemma Π.2. Let F be a proper subgraph and F* its closure. Then

SP*gSp\ 7>*£7>. (11.28)

Proof. If F is an open quadruped, by definition (II.5) every external vertex of F* is
an external vertex of F. By induction, this remains true for any proper non-closed
subgraph F, since F* is obtained from F by adding some lines or chains of bipeds
which have both ends in F.

Now let S be a one-tree (respectively Ta two-tree) which is not a one-tree in F*.
Then SnF* (respectively TnF*) has at least two connected components yv y2,
some of them possibly reduced to a single vertex, and each of them must contain at
least one external vertex of F*, say vv v2. There is no path in Sr\F* (respectively in
TnF*) from v1 to v2, therefore no path in SnF (respectively in TnF) from vx to v2,
which proves that S (respectively T) is not a one-tree in F.

Now from Lemma II.2 and formulae (11.23) and (11.27) it is easy to conclude
that if F is an open quadruped,

^ ( 1 - ^ ) Z G = O. (11.29)

A definition of the £k operator follows which is more convenient for the next
sections:
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Lemma II.3.

« = Σ Π K F ) . (Π.30)
& F6JF

where the sum is performed over all (possibly empty) closed divergent forests of G.

Proof Let us consider all forests J^ in which a given open quadruped F is maximal
among the open quadrupeds of #". Then F* is a proper biped, which cannot
overlap with any closed biped or quadruped (see Appendix B). Hence F* cannot
overlap with any subgraph of any such # \ This means that in the sum (11.21) one
can factorize ^ ( 1 — 5^*) and the sum vanishes by (11.29). In the same way we
eliminate inductively all forests containing any open quadruped, which proves
Lemma II.3.

11.4. Borel Transform and Results

The coefficients in the expansion (II. 1) are now precisely defined by

a*(/) = Σ'£(/)> (11-31)
G

where the sum is performed over all possible sets of Wick contractions which give
connected graphs G with n(G) = n and N(G) = N, without tadpoles. The expansion
(II.1) probably has a vanishing radius of convergence, and we will give a meaning
only to its Borel transform in a small disk. We define the Borel transformed
Schwinger functions B^ by

B £ ( M = S ( £ A) Σ fe?a*W (π 32)
\fl=l J n = 0 lnlΔ

Our main results are:

Theorem I. For any graph G in euclidean Φ\ theory, and any set of external momenta
fι, we have

IJg^r^GJHK^ir^C/^G)]!, (11.33)

where K1 is a constant and

ωR{G) = Sup{1, N(G)/2- 2}. (11.34)

The proof is in Sect. Ill and Appendices A and B.

Remark. The extra factor^ ! in (11.33) does not appear in Φ* theory, Rev<4 [1]. It
is characteristic of a renormalizable (and non-super-renormalizable) theory. fx can
be seen as the maximal number of subtractions due to the renormalization. Indeed
we have seen that, in the sense of (11.23) and (11.29), the Taylor operators subtract
once for quadrupeds, and twice for bipeds.

Theorem II. There exist C(N) and a constant K2 such that ify{N, n,f) is the number
of (labeled) graphs G with N{G) = N, n{G) = n andf2{G) = f9 then

γ{N, nj) S Kn

2 ^ - nNI2C(N). (11.35)

The proof is in Appendix C. As a simple corollary of Theorems I, II, Lemma II. 1
and formulae (11.31) and (11.32) we obtain:
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Theorem III. The expansion (11.32) converges and defines an analytic function oft, at
least in a disk of radius l/\fe\K1K2>

Remark. Inequality (11.33) is only an upper bound on l£. We will come back to this
point in Sect. IV, and give some examples of classes of graphs which in fact
increase more slowly with n(G).

III. Proof of Theorem I

IH.ί. Hepp's Sectors and Classification of Forests

We call <5G the group of permutations of the internal lines of G. For any σe SG, we
call Gf the subgraph of G made from the lines σ(l), ...,σ(ϊ). The Hepp's sector hσ

associated to σ is defined by

( ) ^ . . . ^ α σ ( o } . (III.l)

We split the integral (11.19) into corresponding contributions:

ίS= Σ i$.β, (πi.2)

h σ ί = l ί = 1

For a given sector, we group the divergent closed forests appearing in the 0t
operation according to appropriate classes. This classification is inspired by the
Ω-construction of [7], which classifies the nests. The presentation here will be
quite different because we want to avoid difficulties related to the unessential
divergent subgraphs.

To any closed divergent forest #" we associate a larger proper forest Ωσ{3?) in
the following way: for

\/Fe^u{G} we consider F n [ G ? u ^ ( F ) ] , (III.4)

and we take the proper components of this subgraph. By varying F in #"u{G} and
i from 1 to { we thus obtain a set ΏF(βF) of proper subgraphs.

Since

F C F=>FnG?uΛ^(F) Q F Q A^(F') Q F 'nGJu A^(F;), ViJ, (III.5)

Gf C GJ=>Λ^(F) S F n G? ̂ A^F) Q FnG'vA^F) Q F, (III.7)

it is easy to verify that Ω ^ ^ ) is a forest which contains #\
Next for any FeϊF we define an index x(F,^\ and a subgraph X(F,^) in

Ω σ (^) by
a) X(F, J^) is a proper component of Fr)Gσ

x{F ^KJA^F),

c) Vz<x(F,J^) and V7a proper component of FnGfuA^(F), 7 * φ i \
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We also define inductively, starting from the maximal elements of J^, an index
y{F,^) for any Fe^, and a subforest £?(&) by

d) ST(&) = {F\Fe & χ(F, &) > y(F, &)},
e) if Ge#", y(G, ̂ ) = Z + 1 by convention,
ί) if F e J % F φ G , is a quadruped, j/(F,#") = Inf j ,

g) if FE^ is a biped, j/(F, # ^ = Sup j , except when one external line of F is an
σ(j)eE

external line of G, in which case we put y(F, #~) = / + l.
In f) and g), E is the set of external lines of F, internal in 5^ ( i F )(F) and B^^^F) is

defined in Sect. II as the smallest subgraph in Sf^) containing F [if there is no
such subgraph B9>{^)(F) = G~\. It is clear from these definitions that Gφ£f(lF) and
that

Lemma III.l . Let F,H be two distinct subgraphs in a closed divergent forest
Then ifHφSf(^) we have

(III. 10)

~ {H}), (III. 11)

F/&r-{H}). (111.12)

Proof. (III. 11) is a simple corollary of (III.9) and (III. 10). (III. 10) is trivial from the
definitions of y and £f. (III.9) and (111.12) are trivial except when Hes/^(F). In this
last case (III. 12) could only be violated if the reduction by the subgraph H would
add supplementary loops to G°nF. But this is not possible since

i) either i > x ( H , ^ ) and Gfn#2X(H, #"),
ii) or i^x{H,^)<y(H,^) which means that H is disjoint from (G°nF)

— (G?nH) (if H is a quadruped), or joined by at most one line to it (if if is a biped).
To prove (III.9) when Hesfp{F\ we remark that FnG°^Λ^_{H)(F) is included

in FnG^A^(F\ hence

We show the converse inequality

x{F, &) ^ x{F, #" - {H}) (III. 13)

by distinguishing two cases:

i) either X(F, ^) is disjoint from if, then X(F, #") is a proper component of

P^G^p^uA^^F) and X*(F,#1 = F,

which proves (III. 13),
ii) or X(F,!F)DH, then X(F,^) contains at least two external legs of ϋ ,

internal in F, and
x(F, #") ̂  y(H, ^ ) > x(H, &). (III. 14)

Now X(F^)DH and X*(H,^) = H imply that the subgraph
7 =X{F, # 1 - [H -X(H, #")] is proper. Then 7* = F and by (III. 14) Yis contained
in a proper component of

This proves (III. 13) and achieves the proof of the lemma.
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Definition IIIJ. A closed divergent forest is called a skeleton forest if
By simple induction one sees from Lemma IΠ.l that for any closed divergent

forest #", 9>{§F) is a skeleton forest itself: 9?{9?{^)) = Sf(#").

Definition III2. For a skeleton forest $F we define:

r H is a closed divergent subgraph, compatible with #"

Lemma III.2. βFutfiβt) is a forest

Proof We only have to verify that two different subgraphs Hί and H2 in Jf cannot
overlap. But we have seen in Sect. II that the closures of two non-overlapping
subgraphs cannot overlap. Thus it is sufficient to prove th&tX(Hv<&ru{Hi}) and
X(H2, J Γ u{H 2 }) cannot overlap. This is true since both subgraphs belong to

\ being proper components of

for j = 1,2 respectively.
By Lemmas IΠ.l and III.2 we can conclude:

Lemma III.3. Given a skeleton forest ϊF and an arbitrary closed divergent forest ίF
we have

(III. 15)

We may now use Lemma III.3 to write the M operation and the renormalized
amplitude (III.2) in another form, by grouping all the closed divergent forests
according to their skeleton forests

where the first sum runs over all closed divergent forests of G, ®% is the set of
σe &G such that #" is a skeleton forest for σ and,

!**= ί Π rf«iexp(- Σ «,)1 Π (-^) Π (1- W , . (IΠ.17)
L

Although it is not obvious, the main interest of this classification lies in the fact
that each integral (III. 17) is absolutely convergent and may be explicitly estimated,
as we will show now. Such a classification seems to realize, in a given sector hσ, the
smallest and most practical partial sums of terms in the M operation, which give a
finite result when applied to ZG and integrated over hσ.

1112. The Subtraction Process

In this paragraph we write explicitly the result of the subtractions in the integrand
of (III. 17). For J^ and σ fixed, ϊF being a skeleton forest for σ, denote by $
(respectively 3) the forest of bipeds (respectively quadrupeds) in J^, with b
(respectively q) elements; 2tf the forest Jf(J^); 3β' (respectively 2!) the forest of
bipeds (respectively quadrupeds) in Jf, with V (respectively qf) elements;
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In order to apply repeatedly formulae (11.23) and (Π.25)-(Π.27) it is convenient
to introduce the following definitions:

Definition III.3. J and β being two disjoint subforests of #"u^f, we call S^β
(respectively Tββ) the set of spanning trees (respectively two-trees) of G whose
restriction to F is a spanning tree of F for any F e / , and is not a spanning tree of F
for any Fe/. Then U<?β (respectively V^β) is defined by formula (II.4)
[respectively (Π.5)] in which the sum is restricted to S^β (respectively Ύ^β). Finally
we attach a variable χF to every F e J ^ u J f , and if </, β, X are three disjoint
subforests of J^uJf, we put

u5/= Σ (Yl

Kf/= Σ

With these notations we find:

Lemma 111.4.

Π ( - f F ) Π (1 - ^H)ZG = Σ Z G ( A *)» (ΠI.20)
F e ^ H e ^ δ

where

a) the index δ runs over a set of at most 4 ^ u ^ ) elements.
si

1

b) i-2-fc

Feif m = l

Π pJexpC-^feα,/)], (ΠI.21)
J

(ε, Jf, JSf, fe, P m , αnrf W depend on the index δ).

c) ε = ± l ; W=V*/U*2:0; Pm^0, (111.22)

(111.23)

(111.24)

d) P m = C/ί-> or Ff-> (in both cases denote it Pf™β ) . (111.25)

(111.26)

Moreover Pm=Vf^jmfor at most fiβF^jffl) values of m.
e) W

2'=>3!wi, f e / m ,

F e J*=> either FeJmMm, orllm, F e / w ,

f) Vm,#'£ t / m u < / m flwd J ^ u J Γ g ^ u ^ u J ^ . (111.27)

g) If Fefm and F ' e j / ^ ^ F ) , ίften FΈJmκjfm, except perhaps if'Fe$' and
' in this last case, mγ and m2 being the indices defined in (III.26),
F ' (z φ \)0 ΩYld
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Proof. The proof is by induction on b, q, b\ q'. We add new subgraphs one by one,
starting from the maximal elements of the final forest. Assuming Lemma III.4 at a
given step, we add a new subgraph F and perform the corresponding 3ΓF or 1 — 3ΓF

operation. The dependence on the corresponding χF is obtained by replacing j f by
Jfu{F}. Then we use (11.23), (11.25), (11.26) or (11.27) and verify that Lemma III.4
remains true. Among all possible cases, we write explicitly the most complicated

one, i.e.: Fe@' (hence we perform 1-$~F) and ' [hence B^(F)efm and
B^(F)e/m2, which is the most difficult case for the verification of item g)]. We
simplify the notations by numbering the indices in such a way that mί = 1, m2 = 2.
Then the 1 — ^~F operator subtracts 0, 1, or 2 times and we obtain

(111.28)

= ί Π dχF. Π (
0 F'zCtT F'eSe

Π'-i

Σ

Π

π ^
m = l
mΦί

k

Π
(111.29)

ί = l m = l
mΦί

(111.30)

Π dz,. Π
/Jfu{F}\ k

We can verify Lemma III.4 on these formulae. The other cases, following F and
Bg-(F) belong to ^, Ά, (%'\ Ά\ give formulae which are shorter. The verification of
items a)-g) is easier, and is left to the reader.

(IIL32)

Corollaries of Lemma III.4. From (111.21) αnύ? (111.22) we conclude

l r k

\Zδ

G(/ι, α)| ̂  7j(>, α) = J Π ^XF Π pm [^ί] ~2~k.
0 FeJΓ Lm = 1

From g) and (111.26), it is easy to verify

k
v<5, Σ Σ Φ7Λ* u /m)^ 2 Σ ΛF/^^J^)^2ί(G). (111.33)
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III.3. Change of Variables and Estimates

In the integrand of (III. 17) expressed by means of Lemma III.4, we perform the
usual change of variables

«*= Π βf ( m 3 4 )
G?3k

Each variable β. varies from 0 to 1, except β£ which varies from 0 to oo. Since the
various polynomials U, V, Pm are homogeneous with respect to βe, we perform first
the βe integration, [using (111.26) if G is divergent] and we obtain from (III. 17),
(111.20), and (111.32)

K^ ί i 'ff βl'dβilΣm/tJti nωZiG)). (11135)
0 0 i=l [δ J

Since the global homogeneity in β£ has been taken out, Ύ^,β^ as defined in
(111.32) is only a function of βv ...,/?,_ l 5 and ωR(G) is defined in (11.34).

Lemma III.5.

V«5,}...} 'Π βi-'dβJ^β^iK^lY^U J—, (111.36)
0 0 ί = l ί = l i V i V σ J

where

Σ (11137)

The proof of Lemma III.5 is rahter lengthy and we give it in the next
subsection. As a consequence of the definition of the skeleton forests, N^σ) never
vanish. Then we are left with the sum over Hepp's sectors. This problem is treated
in Appendix B, where the following result is proved :

Lemma III.6.

i j R κ (πu8)

From Lemma C.I and Definition II.6, the index δ runs over a set of at most
Anf1 l/sl elements. Finally we can bound the sum in (III. 16), using Appendix A to

bound the possible choices of SF, and (111.35), (111.36), (111.38) to bound £ j £ σ .

Hence Theorem I is proved.

Ill A. Proof of Lemma III.5

To prove Lemma III.5 we will define a natural correspondence between the
subsets SJ;rnβnι or T^m/m which index the sums Pm in the numerator of (III.32), and
the subset S^ which indexes the denominator U% of (III.32).

To fix the language we only consider the case Pm = Uj™ym. The case Pm

f would be treated along the same lines, with minor changes which we



84 C. de Calan and V. Rivasseau

indicate later in a remark. In this case, we bound at the beginning the dependence
on the external momenta by (II.7).

Let us now describe a first elementary mapping φF in the set of spanning trees.
We put Smv/m = £m, and VFe/ w we define SmF = {F\F'eδn\ FcF}. Let S be
a spanning tree of G whose restriction to each FΈSmF is a spanning tree of F .
Then we define a mapping φF from SSmF into SSmFKj{F) in the following way:

1) If S is a one-tree in F/Sm (hence a one-tree in F) we put

φF(S) = S. (111.39)

2) If S is not a one-tree in F/<ίm, by Lemma II.2 S is not a one-tree in XF

= X(F,S'm)/S>

m; hence SnX^ has several connected components (some of them
eventually reduced to a single vertex) since each of these connected components
must contain an external vertex of F, their number cF(S) satisfies:

2^cF(S)SN(F)^4. (111.40)

We choose an arbitrary connected component y of Sc\XF. Since XF is connected,
and all its vertices belong to S, there exists another connected component y' of
SnXF linked to y by one line λ'φS. Then if ϊ is the rank of λ' in the sector, λ' = σ(i'),
we have by (III.9) and (111.27):

i'^x(F,fiJ = x(F9&). (111.41)

Next we define an external line λ of F by distinguishing three cases:
a) If £^(F)e J , then S is a one-tree in B^{F) by (111.26). Then there is a path in

SnB^(F) from y to /, which contains at least two external lines of F, one attached
to y, the other one to /. Among these two lines, we call λ the one which has the
highest rank in the sector σ.

b) If B^{F)e M and F is a biped, there is a path in S from y to y' which contains
both external lines of F, one attached to γ and the other one to /. Moreover these
two lines are internal in B^(F) since B^{F) is proper. We define λ in the same way
as in case a).

c) If B^(F)e^ and F is a quadruped, there is a path in S from y to y' which
contains at least two external lines of F, one attached to y, the other one to y'.
These two lines cannot be both external lines of B^(F) since F is closed, and we
define λ as one of these two lines which is internal in B^(F) (any one of them if
both are).

In the three cases a)-c), we conclude that if λ = σ(z) then i ̂  y(F, <fm), hence by
(111.27) and (III. 10)

λ = σ(ϊ)=>ί^y{F,^). (111.42)

By construction Su{λf} — {λ} is a one-tree in G and has cF(S) — l connected
components in F/Sm. Iterating this operation cF(S) — 1 times, we build

φF(S) = SuU' 1 , . . . ,λ; F ( S ) _ 1 }-U 1 , . . . ,λ C F ( S ) _ 1 }, (111.43)

which is a one-tree in F/$m, hence in F.
We note that by this construction, there are at most 2 4 2€{FISm) one-trees S such

that φF(S) is equal to some given one-tree.
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Remark. When Pm=Vf^ym, we associate a one-tree φF(T) to a two-tree T by an
almost identical algorithm: if γ and / cannot be joined by a path in 7̂  λ cannot be
defined and we simply add X without removing any line, which gives a one-tree. If
λ can be defined at each step, we simply add an arbitrary line at the end, to get a
one-tree.

Now we define a second mapping φm for any SeSJrnβm by

0, (111.44)

the product (in the sense of the composition of mappings) being taken in an order
compatible with the inclusion relations of the subgraphs F: if Q)mF is the set of
FΈSm such that φF, is applied before φF, we have F'e@mF=>F£F'. By this
definition, φm(S) is a one-tree; VF' compatible with $m,

i s a one-tree in F, (111.45)

since the number of lines of SnF' can only increase by applying φF. The mapping
φm maps S^mtβm into SgmQS^ since i^£<^m by (111.27). By construction, the
number of one-trees which become a given one-tree Sx by this mapping is
bounded by

By (III. 18) we have

Σ fΠ U(S),

where

By (111.27)

'= Σ f Π
Fetf

u[s)= Π Π A
i'φSGfsί'

Therefore by (111.45) and (111.46)

Sup
u(S)

(111.46)

(111.47)

(111.48)

(111.49)

(IIL50)

Lemma III.7.

Sup

S' = φmίβ)

u(S)

S' = φm(S)

Π Π ft

Π ΠA"
(111.51)

where

if it . (111.52)
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Proof. We analyse the action of φm by looking at the composition of mappings: for

βm and ¥efm we examine how φF acts on S' = [ J~J φF>](S).

a) If F e J*, then by (111.40) φF acts on S' by changing at most one line λ of S'
into another line λ\ and by (111.41) and (111.42) this implies

Π AΓ 1 . (ΠL53)
u(S') •

b) If F e J f and S' is not a one-tree in F, then φF{S') is given by (111.43), and we
have directly from (111.41) and (111.42)

s IΊ A (ΠL54)

c) If F e Jf7 and 5' is a one-tree in F, then φF(S') = S'.
Since SeS^mβm, S is not a one-tree in F, and there must exist some FίcF with

1 ^1 = f Π ΦF'](^)
 n o t a o n e " t r e ^ m ^

ΦFI(^I) o n e t r e e m ^

In other words, φ F i removes from Sx at least one line λ which is external in F
and F 1 ? and internal in B^FJ. This implies

F.CFCB^F,).

More generally the whole set {F 1 ,F 2 , ...,Fr} of subgraphs F ; , such that
F1QFjCBp(Fί) and A is external in Fp is totally ordered by inclusion:
F1CF2C...CFrC B^iFi). Applying inductively the argument given in the proof of
Lemma III.l, we have as a generalization of (III. 14)

where k is the rank of λ in the sector: λ = σ(k). From (111.41) and (111.42) again, we
have

U^r^ Π M Π Π A (πi-55)

In particular, like (III.54), (III.55) contains the factor

Π A
jc(F,J^i<y(F,J^)

Gathering the results a)-c) with the definition (111.44) achieves the proof of Lemma
III.7.

By Lemma III.7, (111.25), (111.26), (111.32), (111.33), and (111.50), we can perform
trivially the χF integrations and use U%φi9 χF) ̂  UFu^i) to get

Π Π AlfΠ Π A
2 2 W ) 2 W ) [Π Π AlfΠ Π A]2

1 1 1 1 Pi
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Γ k 1
we have used (111.26) to obtain: Σ L/J^/PH + fcC^/^G^^G). From

L m = i J
(111.56) we deduce

^J(Λ βi) ̂  WG)' 22'(G)' 2 4" ( G ) Π β? > ( I Π 5 7 )

with

ηi=-2 Σ L(G°nF/^uJt?)+ Σ 2 + Σ 1 - £ l . (111.58)
Fe^u^uίG} Fe^' FeJ' Fe^

Mjr9i Mpsi MFBΪ

Therefore (111.36) and Lemma III.5 will be proved by the following:

Lemma III.8.

Vi, i + η^^M. (IIU9)
6

Proof. Using inductively (111.12) we can change (111.58) into

i + rjt= Σ ω(GfnF/^)+ Σ 2+ Σ 1 " Σ l ( I Π 6 0 )
FeJ^ufG} Fe^' FeJ' Fe^

MF^Ϊ M>3Ϊ MF31

In this formula, any connected component C of G°nF/έF can contain vertices with
only two lines, by reduction of elements of J*. Hence if b(C) is the number of such
vertices, (11.11) has to be modified into

ω(Q = —^ - 2 + b(C). (111.61)

But for FeJ>, ieMF, we have y(F, &) S i < x(F, #") therefore by definition of
y(F, #") there exists in B^(F)/^ a connected component C of G^nB^(F)/^ which
contains the reduction vertex of F.

Thus we have

Σ f Σ b(C)}~ Σ 1^ Σ 1, (ΠI.62)
Cconn. comp.

and (IIL60) becomes

i+i^ Σ f Σ F F - 2 ) | + Σ 2 + Σ i+ Σ i.(iπ.63)
Fe<^u{G} LC conn. comp. \ ^ /J FeM' FeΆ' Feέffl

We can now evaluate i + ηi9 by distinguishing, given Fe^u{G}, the possible cases
for connected components C of G\r\Fj^:

a) I fif!-2>0, then ^ - 2 6 ^ . (ΠL64,

b) If — 2 ^ 0 and C is not proper, then C is represented by Figs 2 or 3 and

contains a proper biped B(C) which satisfies B(C) = B'/^r, B'effl and M~9z from
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the definitions of Subsect. III.l. Hence we have

c) I f — 2 ^ 0 and C is proper but not closed, then C is a quadruped, C*

B'I^ and β'
Either Bed? and MB,si Hence

l)+2 2>ψ. (111.66)
) 6

Or else BeOS; then X(B\ &)/& C C, that is
Hence

d) If — ~ - 2 ^ 0 and C is proper and closed, then C = F/J^ with the following

possibilities:

F e J ' , MF,si, hence β ^ 2 -2^1 + 1 = 1> ̂ ^ , (111.68)
V 2 / 6

MF,9ί, hence (^-2)+2 = l>^β, (111.69)
\ 2 / 6

FeJ, hence F = F and^^-2 = 0, (111.70)

F'eSS, hence F = F,x(F9^)^i and ί ^ ^ - 2 ] + 1 = 0 . (111.71)

All these cases are mutually exclusive and allow us to bound the sum in the right-
hand side of (111.63), proving Lemma III.8. The cases (111.70) and (111.71)
correspond to the restriction G f n F / J ^ φ F / ^ in (111.37).

IV. Discussion

I V.I. Discussion of Theorem 1

We mainly want to emphasize that Theorem I gives only an upper bound on the
renormalized Feynman amplitudes, but that their true behaviour may be quite
different. First we note that (III.33) does not describe the true behaviour of these
amplitudes at large momenta, because we used in (111.32) the very crude bound
exp(— W)^l. The asymptotic behaviour of a given amplitude, when any set of
external momenta is scaled to infinity, can be computed in a systematic way, for
instance by the multiple or complete Mellin techniques [8]. The result is an
expansion in powers and powers of logarithms, which generalizes the Weinberg
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theorem. In particular the leading term, when all external momenta are scaled by ρ
and ρ goes to infinity, behaves like

Sup (-2ω(F))

ρFςG ln ζ ( G ) ρ, (IV. 1)

where

= 0 or

r = / F 1 C . . . C F r . . . C F m , with ω(Fr)= Inf (ω(F))Vr
1 FCG

(IV.2)

We believe that it is possible to take into account the decrease of exp( — W) in
(111.21), to improve Theorem I and obtain bounds at large order with the right
behaviour (IV. 1) at large momenta. More generally it would be interesting to
estimate jointly the large order and the various large momenta behaviours of
Feynman amplitudes. Both problems are linked, in fact, the large momenta
behaviour of the chain in Fig. 4 led to the discovery of the factorial behaviour of
some Feynman amplitudes [4].

poooooo^
Fig. 4

Even at fixed external momenta, Theorem I does not give the right large order
behaviour (up to exponentials of the order). As a first trivial example, when the
graph is one-vertex reducible, one can bound its amplitude by the product of the
bounds on its one-vertex irreducible components, which generally improves the
bound of Theorem I.

We also remark that a biped does not necessarily have to be counted twice in
the true factorial behaviour at large order. As a simple example of this fact, one
can study the graph of Fig. 5 and prove easily:

V

Fig. 5

Proposition IV.l. Let Gm be the graph of Fig. 5, with n vertices and m = n/2~3/2
proper bipeds. Then there exists two positive constants K6 and KΊ such that

Therefore the large order behaviour of I*m is given by (nl)1/2 rather than nl. This
discrepancy could perhaps be corrected by identifying all the reduction lines in a
chain of proper bipeds. In the properly modified α-parametric representation,
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there would be fewer Hepp's sectors our definition of skeleton forests in Subsect.
III.1 would become more natural by treating bipeds and quadrupeds in the same
way.

Finally we must mention that we did not try to find the smallest possible
constants in Theorems I and II. By looking at many places in Sect. Ill and in the
appendices, one could lower these constants.

IV.2. Analytic Continuation in the Borel Plane and Renormalons

Although the expansion in the coupling constant is Borel summable for Φ\ or Φ\
field theory [2], this is not believed to be the case for Φ% The analytic continuation
of the function Bj depends in a crucial way on the signs of the coefficients a^, and
the renormalization is supposed to destroy the alternation of signs in the
perturbative expansion. More precisely it has been argued [5] that the partial
series retaining only the graphs of Fig. 4 (since they behave like Knn! and present
no alternation of signs) is responsible for the appearance of a singularity
("renormalon") of Bj(ί), at the positive real value t — ί/K. Of course this is not a
rigorous argument: there could be a conspiracy between the graphs of Fig. 4 and
the other ones, which cancels the singularity. Such a cancellation would certainly
be spectacular, but we are not sure it can be ruled out a priori. For example, if we
separate the expansion of the Schwinger functions of Φ\ into two parts, re-
spectively given by the amplitudes with even and odd number of vertices, each of
these parts presents singularities on the positive real axis of the Borel plane.
Constructive field theory proves that these singularities disappear when we add
them, a property which is not obvious at all at the perturbative level.

On this open problem of the existence of renormalons, we may note that our
study generalizes the argument based on the graphs of Fig. 4. For example the
amplitudes of the Gm in Fig. 5 also define a partial series with no alternation of
signs. Since their number is about n\, and they grow as (n!) 1 / 2, the corresponding
partial series in the Borel plane has an infinite radius of convergence. However, it
defines a function which incrases like exp(ί2) at infinity on the real positive axis,
destroying Borel summability. Such a feature can be thought of as a "renormalon
at infinity". Since some factorial behaviour is a very common property of the
renormalized amplitudes, there could be many such "renormalons at infinity".
Again, we cannot say whether they cancel or not in the analytic continuation of
the whole function Bj.

Finally let us mention that our methods can be applied to other renormalizable
theories, in spite of the tedious complications due to spinor fields. Our opinion is
that the Borel transform exists locally again, for the Yukawa model or quantum
electrodynamics in 4 dimensions for instance. Yet the problem of the analytic
continuation may present very different features, depending on the model.

Appendix A

In this appendix we bound the number of closed divergent forests in the graphs
with n vertices.
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A.I. Overlapping Divergent Subgraphs

If two subgraphs F1 and F2 overlap, we have evidently

) = N(F1 uF2) + N(F± nF2), (A.1)

where N(F) is the number of external lines of F. If F1 and F2 are divergent,.
and N(F2) may be equal to 2 or 4. Moreover if Fλ and F2 are proper, F1 nF2 must
be linked to F1—(F1nF2) by at least two lines, and to F2 — (F1nF2) by at least
two different lines. Thus

N(FιnF2)^4. (A.2)

Hence two proper bipeds cannot overlap if there is no vacuum graph, and we are
left with the following cases:

Fig. 7 Fig. 8 Fig. 9

N(F± u F 2 ) = 2 N(F1 nF2) - 6 (Figs. 7-9)

Fig. 10

) = 4. (Fig. 10)

lϊF1 and F2 are closed, Figs. 6-8 are forbidden. We see in particular that a proper
biped cannot overlap with any closed divergent subgraph.

A.2. Closed Divergent Forests

A closed divergent subgraph F of G is said to be maximal if F C G, and there exists
no other closed divergent subgraph F' satisfying FcF'cG. A closed divergent
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forest is maximal if there is no other closed divergent forest containing it. Given a
maximal closed divergent forest J^:

i) either the biggest subgraphs in #" (apart from G itself if Ge#") are the
maximal closed divergent subgraphs of G.

ii) or there exists a maximal subgraph of G, say Fv with FX$!F. 3F being
maximal, J ^ u ^ } is not a forest, that is F x must overlap with at least one biggest
subgraph in 3F, say F2. From (A.I) and (A.2) F1\JF2 is divergent, since F1 is
maximal, Fx u F 2 = G and G has the structure of Fig. 9 (respectively Fig. 10) if G is
a biped (respectively a quadruped). By writing the complete 3- (respectively
2-)particles reducibility of G, the possible biggest subgraphs in $F are obtained in
cutting some set of 3 (respectively 2) lines as in Fig. 11 (respectively Fig. 12).

Fig. 11 Fig. 12

Let d{G) be the number of maximal closed divergent forests of G, and dn the
maximal value of d(G) over all graphs G with n vertices. Since there is at least one
vertex in each maximal divergent closed subgraph and in each bubble of Figs. 11
and 12, we may conclude in both cases i) and ii) that

dn= Σ dn>dn_n,. (A.3)

Lemma A.I.

dnS4n. (A.4)

n - l

Proof Putting e w = Σ en>en-n' w ^ t n ^i = l5

 a n d defining
n' — 1

oo

we have e2(z) = e(z)-z, or e(z) = l/2[l—(1—4z)1 / 2], which is analytic for |z |<l/4.
It is easy to verify, by computing the nth derivative of e(z\ that en^4n. Now from
(A.3), dn^en, which proves the lemma.

Finally any closed divergent forest is a subset of a maximal closed divergent
forest, which contains at most n subgraphs by Lemma C.I. Using Lemma A.I we
may conclude:

Lemma A.2. Let v(G) be the number of closed divergent forests of a graph G of 'Φj,
with n vertices. Then

v(G)^8\ (A.5)

Appendix B

This appendix is devoted to the proof of Lemma III.6. We fix a given closed
divergent forest IF, with s elements. We number in an arbitrary way the elements
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Fj of #"u{G} by an index jej = {ί, ...,s + l}. A spanning tree S of G is called an
#4ree of G if 5 n F 7 is a spanning tree of Fy for every jeJ. Any #"-tree of G is
defined as well by the family {Sj},jeJ, where Sj = SnFj/&r is a spanning tree of

Then to every permutation
corresponding family {Sj(σ)}

Sj(σ) = {σ(i)\c

and we define

k{σ)= Sup i,
σ(i)eSj(σ)

ξ = {σ\σs<5*,k1(σ)<k2(σ)< ...

we associate an J^-tree S(σ) by defining the

= L(G?_inFj/#r)}, (B.I)

(B.2)

(B.3)

Since there are (5+1)! ways to choose the arbitrary numbering of the subgraphs
Fp and since

( s +1) ! is! = s + 1 ^ n(G) + 1 ^ 2"(G), (B.4)

we see that Lemma III.6 is a direct consequence of the existence of a constant K4

such that

π
V

Π
1

σ(i)φS(σ)
Nt(σ)

(B.5)

In order to prove (B.5), we introduce some new definitions: Given two subgraphs
F and F\ with F' Q F denote by NF(F') the number of internal lines of F which are
external lines of F'. Given an J^-tree S (defined by the family {Sj}, jeJ) and a
permutation σE<3s, we define fe; (σ) by (B.2) and we put

... <fe s + 1(σ)},

Σ
(B.6)

(B.7)

where Sf is defined for σe ® s, just like G^ for σe SG.

ί = l

(B.8)

Finally to any permutation σ e S f we associate the permutation ψ(σ) = σ'e<5S(σ)

naturally induced by σ: σ'(i') = σ(i)<t>σ(0 is the /'th line belonging to S(σ). That is

'(i') = σ(ϊ)oσ(i)eS(σ);\{i"<i\σ(i")eS{σ)}\ = i' (B.9)

Then we have:

Lemma B.I. The left-hand side o/(B.5) is bounded by

3" (G) Σ Σ_ Ms{σ>) (B.10)

SJ^-treeofG
c

S(σ) = S σ(i)φS(σ)



94 C. de Calan and V. Rivasseau

Proof. We have iV ĉr) ̂  1 since σe&ζ. Moreover if σ'(i') = σ(ϊ)eS and kj{σ')>i\
we have

and

N(G?nFj/&) ̂  Sup {1,

Thus

and

<7'(i') = σ{ΐ)eS=>3Ni{σ) ^ M ( ^ ) . (B. 11)

Therefore

Π lW^^X,^)). (B.12)

Since S(σ) is a spanning tree of G, ^(S(σ)) = n{G) — 1, which achieves the proof of
Lemma B.I.

Lemma B.2.

Π
S(σ) = S σ(i)φS(σ)
ψ(σ) = σ'

Proof. By induction, let us assume that we have chosen σ(l),...,σ(i— 1). We must
then choose a line σ(z) such that S(σ) = S and φ(σ) = σ'. We get a factor 2 by
deciding whether σ(ί) belongs to S or not.

i) If σ(i)eS, σ(i) is determined by σ'.
ii) If <τ(i)̂ S, σ(ί) belongs^ to one F/J^ and adds a loop to G^^FJ^. In this

case there is at most N^^σ)/! possible choices for σ(i), and we have
Ni(σ) = Ni_ί(σ) — 2, hence iV f_1(σ)^4 (since there is no vacuum graph) and
NJiσ^Ni-iiσ)/!. Therefore the number of possible choices is bounded by Nf(σ).

At the last step, σ(/(G)) is completely determined, which achieves the proof of
Lemma B.2.

Now we want to evaluate Σ Ms(σ'). Before doing it we construct a one-to-
σ'eSs

one correspondence ξs between the lines of a given connected tree S, and the lines
of the chain-like tree D, with n(D) = n(S) (Fig. 13): drawing S on a plane, we "turn
around it", starting from an arbitrary extremal line, and we number the lines in the
order we meet them the first time. The lines of D are numbered in the same way,
and ξs associates the lines with the same number. Then we have:

Lemma B.3. For any (connected or disconnected) subgraph R of S

Ns(R)+ί^c(ξs(R)), (B.14)

where c(ξs(R)) is the number of connected components of ζs(R).
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Fig. 13
10

Proof. Lemma B.3 is trivial for n(S) = 2 and 3. Inductively, we assume it for n(S) ̂  n,
and we consider a given S with n(S) = n + ί [thus /(5) = «]. Then the line numbered
as n in the preceding numbering is certainly an extremal line of S. Let R be a given
subgraph of S.

a) nφR. Applying the induction hypothesis to R as a subgraph of S' = S— {n}
proves (B.14).

b) neR and n— leR. Applying the induction hypothesis to R' = R—{n} and

S' = S-{n} gives (B.14) since N£R) = Ns.(R')l c(ξs(R)) = c(ξs,(R%
c) neR,n—lφR and n—ί connects with R. Applying the induction hypothesis

to Rf = R-{n} and S' = S-{n9n-l} gives (B.14) since

NS(R)^NS,(R')+1 and c(ξs(R)) = c(ξs(R')) + 1.

d) neR,n—ίφR and n—1 does not connect with R. Then ? — 1 is extremal in S
and EnR = 0, if E is the set of lines of S which connect with n— 1. Moreover Eφl.

Either all the lines in E connect with R. Since there exists one line jeE with

we can contract this line and renumber the tree S' = S/{j} by the same procedure.
Applying the induction hypothesis to £' and R' = Ru{/}/{/} gives (B.14) since
NS(R) = NS,(R') and

Or else there exists a line k in E which does not connect with JR. Then fc + 1
connects with k (trivially if k is not extremal, because k connects with n—l if /c is
extremal), hence k + lφR. Applying the induction hypothesis to S' = S/{k} and
R' = Rv{k}/{k} gives (B.14) since again NS(R) = NS,(R') and c(ξs(R)) = c(ξs,(R')).

Lemma B.4. Let D be the chain-like tree with n vertices. Then if we put

we have

*= Σ ff
σeδ B i = 1

Λ<4"

(B.15)

(B.16)
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Proof. Let Gv...,Gq be q disjoint graphs (each of them being connected or

disconnected), with *fl5 ...Jq internal lines. Let G be their union, with ^ = Σ *0
j=i

internal lines. For any σe <ZG, let ψj{σ) be the permutation naturally induced on the
lines of G; by (B.9). Then, given σ1eξ>Gί, ...,σqe<5Gq, we have

Σ Π 1MG?)= ft Π l/c[(G^] (B.Π)
σe®G i = l j = l i = l

This can be proved by induction on / : it is true for / = 1 and we have

Σ Π I M G D — Σ Σ ΐί

If we assume (B.I7) for G - {σ(S)} = []Gk

Σ Π 1MG?)= - £ - Σ c(G,) ft Π
eδ i 1 C\V) j ι k 1 ί 1

— σ / ^ )], we get

which proves (B.17) for G since c(G)= Σ c(G7 ). Now since c(D^_1) = c(D) = l, we
j= i

have

" "ff
Ϊ = 1

Σ Σ ffl/cO)?), (B.18)

where D^z) is the chain {1, . . ., i-l} and D2(i) the chain {z + 1, . . . ,n- l } . By (B.17),
with the convention Δ1 — 1, (B.I8) may be written

ί = l

Therefore, by the proof of Lemma A.I, Δn = en and Lemma B.4 is proved.

Lemma B.5.

Σ Ms{σ)^4n(G). (B.20)
σe&s

Proof. Given an J^-tree S defined by the family {Sj}, jeJ, we take the cor-

respondence ξs. between the lines of each Sj and the lines of the related chain Dj

with £(Dj) = £{Sj). Then we renumber the lines of D;.= {1, ...y(Dj)} as

{1 + ίj, . .^/(D^ + ί̂ }, where i ; = Σ A^/) BY connecting the chains D 1 ? . . . , D 5 + l J

we build the chain D with ^(D) = ̂ (S) = n(G)—1 and we get a one-to-one
correspondence τ s between the lines of S and the lines of D.
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For σ e § s , we have from (B.6) kfσ) ^ ioj ^ym a x(0 Therefore

jeJ

and

uu
kj(σ) ^ i

For kj{σ)>i we have from Lemma B.3

1 + NSj(SjnS?) ^ clτ(SjnSfi] . (B.22)

Using (B.21) and (B.22) in the definition (B.7), we have
(B.23)

Since τ s is a one-to-one correspondence between the lines of S and the lines of D,
(B.23) and Lemma B.4 achieve the proof of (B.20).

Finally Lemmas B.I, B.2, and B.5 achieve the proof of formula (B.5) and
Lemma III.6

Appendix C

In this appendix we prove Theorem II. Let us remark first:

Lemma C.I.

Proof. For any forest #" of quadrupeds of G, and any Fe#" , we have

F'e δ ^ (F)

and VFeJ^, n{F'l^)^2. A simple induction gives

l . (C2)

From the definition (11.16) of/2(G), (C.2) proves (C.I).
Now let y(N,n,f) be the number of graphs G with N(G) = N, n(G) = n and

/2(G) = / To any such graph we associate a given arbitrary forest ^(G) of
quadrupeds of G, such that GφίF(G) and /(^(G)) is maximal with this restriction,
that is

) = f' = f-U if ΛΓ(G)^4,

JV(G)>4,

and in any case, by (C.2)

f£f' + ί£n. (C.3)

We call λ(G) the number of elements in a maximal nest of J^(G), i.e. in a maximal
subset of #"(G) totally ordered by inclusion. Then we separate J^(G) into layers iff,
1 ^ Ϊ ̂  ^(G), which realize a partition of J^(G)

W ) ( F ) = G}

1} for l ^ i ^ A ( G ) l '
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We also define

(C.5)

fci(G)= £ hlG). (C.6)
i' = l

Therefore

hi(G)>0 for l ^ λ ( G ) , (C.7)

Next we order arbitrarily the disjoint subgraphs in each layer, and we label them
in the following way

if/ = {FJ(G)|/ = fci_1 + l,..,ίc (}. (C9)

with the conventions

fco=0, fto = 0, and G = Fr + 1 (CIO)

/ λ(G) \

(There are of course f| [ftf(G)!] possible different labelings. We define
\ i=ί I

(C.ll)

for l^j^f' + l. With all these definitions we get

y(N,n,f) = Σ Σ
λ {fc,-|i= 1 λ}

λ

Π l/*f!

i,/,/l,{L},{n,},{s,}), (C.13)

where γ(N, n,f, λ, {fej, {πj}, {Sj}) is the number of graphs G with N(G) = N,
n{G) = n, ...,Sj(G) — Sj. If this number does not vanish, the following relations must
be satisfied:

jύf' + l, 2£nj£n, (C.14)

fΣnj = n + f, (C.15)

ki-ι + ί j=l

( f l \
Now the number of sequences {fcj satisfying (C.8) is equal to , and

\Λ— I /
/' / f _ 1

By similar standard combinatoric arguments, the number of sets {rij} (respectively
{Sj}) satisfying (C.14), (C.15) [respectively (C.16)] is bounded by T (respectively
2 2 / ) . Therefore the proof of Theorem II is achieved by the following lemma:
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Lemma C.2. VA, {fcj, {rij}, {Sj} satisfying the preceding relations, we have

Π T-] ) W ">f> λ> fril {njl {sj} ύ K\ ^ nN/2C(N), (C. 18)

K 8 beingr α positive constant.

Proof. The number of graphs with N external legs and n internal vertices is
bounded by (4n + N-1)1! [1]; therefore it is bounded by Kn

9(nl)2nmC(N) for any
N9 and by Kn

9(nl)2 for N = 4, K9 being a positive constant.
Hence it is possible to bound the left hand side of (C.I8) by

λ

π
(C. 19)

where r^n^ — Sy Indeed we estimate the left-hand side of (C.I8) by building
successively

The binomial coefficients

and

choose respectively the ordinary vertices and the reduction vertices which belong
to F / F ; the terms KH

9'(n3\)2 or K9''
 + ί(nΓ + ί\)2nN

f!
2

+ίC(N) b o ^ n d the number of
graphs made with these vertices. The factors (4!)Sj take into account the possible
identifications between the 4 external legs of Fj9 and the 4 lines attached to the
reduction vertex corresponding to Fj in B^{G)(F^j^.

But, using (C.I5) and (C.I6), (C.I9) is reduced to

Kί+''[4\y'nN

f!lxC{N)n\'fl n / . M .
j i \sj/

(C.20)

Therefore by (C.14), (C.15), and (C.3), since fa) ^2" J , (C.20) is bounded by

[4(4!)K2YnN/2C(N)nl f[
f' + l

By (C.14) and (C.15) again, Y\ tijl is a product of n + f integers smaller than n9

7 = 1

among which at least / ' + 1 are 1 and f' + l are 2. Therefore by Stirling's formula,
and (C.3)

7 = 1

(C.22)

which achieves the proof of (C.I8) and Theorem II.
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