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Abstract. We establish here a new, general result of integral geometry,
concerning closed rigid curves of arbitrary shapes in E3 and their linking
numbers I. It generalizes by a different method, the interesting integral
property of I2 found recently by Pohl and extended by des Cloizeaux and Ball,
for two curves. We consider n closed curves linked successively to each other
and forming a ring. The cyclic product of their linking numbers is integrated
over the group of rigid motions of the curves. This integral is shown to fac-
torize over a special algebra of characteristic functions. Each curve possesses
two such intrinsic functions. The same algebra is shown to describe a larger
class of integral geometry properties: a new theorem is established for a family
of displacement integrals involving linking numbers, contact angles, and
mutual inductances of the set of n curves.

1. Introduction

Topology of knotting and linking of closed curves in three-dimensional space
involves very interesting mathematical problems. Two configurations of a set of
closed curves are said to be topologically equivalent if one can transform
continuously one into the other without forming any double point, (or opening
one curve). The main problem is therefore to differentiate the irreducible
configuration classes. This subject is also important in polymer theory. Polymer
chains forming rings can indeed be considered ideally as closed solid curves. They
are free to change their shape but not to open. Thus a given set of polymer rings
may not develop new linkings by a simple continuous change of configuration.
The statistical mechanics of a set of rings is then defined in a phase space restricted
by topological constraints. Any progress in mathematical description of the
linking of closed curves could be very useful.

Several topological invariants have been proposed for distinguishing whether
or not two curves are linked together. In general these invariants do not yield a
complete topological description. Two configurations with different values of
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I = - 2

Fig. la-d. Algebraic linking numbers I of closed curves

invariant are necessarily irreducible one to another, but the converse is not
necessarily true. In this article we shall consider a very simple invariant due to
Gauss [1].

The Gauss linking number I12 of two closed curves yvy2 is defined by the
double curvilinear integral1 [1]

f ί ) (l l)

where rί and r2 denote the positions of two generic points on yt and y2

respectively.
This invariant is integer-valued and measures loosely the number of times one

such curve winds around the other. More precisely it counts the algebraic number
of times one such curve, closed and oriented, crosses the oriented surface, the
boundary of which is formed by the other oriented curve (Fig. 1). The sign of
integral (1.1) depends on the orientations of these curves. Moreover the quantity
J 1 2 is symmetric under exchange of 1 and 2

hi = hi (1.2)

Of course, there are topologically linked configurations with 7 = 0 (Fig. Id).
It is worth noting that the Gauss invariant is in fact intimately related to

potential theory [2]: the Newtonian potential which satisfies
l ri~" r2l L

A- = — 4π<5(r1 — r2) appears in (1.1). The importance of potential
l ri~ r2l J

theory in this study of integral geometry will appear clearly later on.
Concerning Gauss' linking number /, a quite interesting integral property of

the square of / has been very recently found by Pohl [3]. He considered the

1 Throughout this article, we use the notation (a, b, c) = (a Λ b) c
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integral of I2 on the group of relative translations and rotations of the two rigid
curves γt and y2 (i.e. the "kinematic" integral over the group of Euclidean motions)

^ = f d 3 β ^ / ? 2 , (1.3)

ρ and Θ denote respectively the relative position and orientation olyλ and y2. He
has shown that J> can be written

00

J = 2π \άrs4γ(f)stf2(f). (1.4)
o

r is a variable with the dimension of a length, and jtfl9 s&2 are two characteristic
functions associated with curves yγ and y2 respectively.

The result (1.4) was proved by Pohl for two plane and convex curves, Des
Cloizeaux and Ball [4] recently obtained PohΓs formula (1.4), plus a second term.
The latter involves a second characteristic function ^ , which exists for twisted
curves.

The aim of this article is to give a new general theorem on the random linking
of a set of n curves, of which PohΓs result is a particular case. We consider n closed
curves, arranged as successive links of a ring. We take the product of the successive
linking numbers of these n curves, and calculate its integral over the group of rigid
motions of the curves in E3. We obtain the "factorization" of the integral in terms
of characteristic functions jaf, & by using special algebraic rules. Our method is
essentially tensorial and uses potential theory. Associated functions J/ , & are here
easily obtained from Gauss' theorem.

Further generalizations of PohΓs result are given. Beside the linking numbers,
we consider the contacts of the closed curves. They are defined by a certain
localized distribution which forces the curves to touch each other. We introduce
also the Neumann potentials of the curves [5]. They represent the magnetic
interaction energy due to the mutual inductions of the curves [5]. We show that
any cyclic product of Gauss invariants, contacts, and mutual inductances can be
integrated over random rigid motions of the curves. A general theorem gives this
family of kinematic integrals for a set of n arbitrary curves. These integrals can be
factorized entirely in terms of the same characteristic functions si and ^ , by using
special algebraic rules. The real reason for the existence of such results can be
understood from the formalism we use here. It will appear in particular that these
studies are related to topology, and more essentially to potential theory.

In Sect. 2, a general tensorial description of the linking of n mobile curves is
introduced. The characteristic functions J/, 3$ are defined in Sect. 3. In Sect. 4,
PohΓs formula of [3, 4] for two curves is obtained from our method. Section 5
gives the general factorization theorem for n closed curves. Section 6 extends it to
mutual inductions and contacts. In Sect. 7, the set of explicit formulae for mutual
induction, contacts, and linking of two curves is given.

2. Linking of n Mobile Closed Curves

Consider n arbitrary closed curves yp labelled by an index j,j= 1,..., n. Each curve
is oriented. On each curve yj are defined two generic points Ap Ar Their position
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A'j+1

( t j - 1 )

) ( Y j ) ( Y j + i )

Fig. 2. Generic points along curves y} and γj+1 and their association

vectors in three-dimensional space are denoted by rAj9τA>j + ι. The Gauss algebraic
linking number of the curves jj and yj+ί is defined by the integral:

We have choosen for convenience to associate together the generic points Aj and
A'j +! for the calculation of the invariant J^ + 1 (Fig. 2). r^ ^ + 1 is the modulus of the
vector defined, by convention, as

The gradient is taken with respect to rAj. The linking number (2.1) depends
implicitly on the relative position of the curves y^ and yj+ί, and on their
orientations in space. The relative displacement of the pair of curves {ypyj+1) is
measured by a vector ρ̂ , joining the origins of y^ and y^v There are n such vectors
Qpj=U ...,«, related by:

β i + ...+Q» = 0. (2.3)

Each curve y^ is considered here as a rigid body, that is as a solid in three-
dimensional space. The set of Euler angles, which defines its orientation, is noted
Θj. Its total measure is equal to

8π 2 . (2.4)

According to these definitions, the linking number (2.1) is in fact a function of Q;-
d

Let us introduce the cyclic product of the successive linking numbers:

7 = 1

where, by convention:

n+lΞEl . (2.7)

The only configurations of the curves which give a non-vanishing value for the
product (2.6), are necessarily closed chains. These chains are made of the curves yj9
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Fig. 3. a Ring configuration of n closed curves, b A configuration giving a non-zero contribution, c An

open configuration giving a vanishing contribution

linked up together in the order j= 1 to n (Fig. 3)2. For two curves, the product (2.6)
can be written

h2l2i=(l12)
2, (2-8)

according to the symmetry property (1.2). For the ordered set of curves yj? we
consider the kinematic integral J> over all independent relative positions ρ̂
(/= 1,..., n— 1) and upon the set of orientations Θj (j = 1,..., ή):

Qn) Π IJJ+ fa&J'&J+1)•

(2.9)

For two curves y1,y2 this integral reduces itself to the single integral [see (2.8)]:

\Θ2l\2(&,(9γ,Θ2), (2.10)

which is the quantity considered by Pohl [3]. Let us now transform the integral
(2.9). It is convenient to introduce the differential tensor

(2.11)

2 Of course, two non-successive curves j and i with \i —j\ φ 1, can also be linked, but this linking does

not appear in the product (2.6)
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The symbol (x) represents the tensorial product of three-dimensional vectors. In
particular

Both infinitesimal vectors are tangent to the curve y.. The denominator represents
the distance between two points belonging respectively to y and yj+v Let us
consider the curl of the differential tensor dΓ. This operator curl acts on left space
indices and on vector r A :

c u r L dΓhA.A. )=- -r-\VA -t Γ Λ dxA ) ®dvA,. (2.13)
Aj ~J\AJAJ + 1> 4 π y A>\rΛj-τA,j + ί\

 Ajj A j

It is convenient at this point to use the following formula of vectorial calculus:

Π (V,, Λ P Λ'J+ J = tr{[(Vn Λ ΛJ®A'J ... [(V2 Λ a2)®a'2

7 = 1

(2.14)

where the Vy, â  , â  's (/= 1,..., ή) represent arbitrary vectors in E3. One must note
the inversion of the order of the indices j in the product of tensors (2.14). The
linking numbers (2.1) have the same structure as the factors of the left hand side in
(2.14), while a tensorial factor in the right hand side in (2.14) corresponds exactly to
the curl (2.13). We can therefore directly write:

„ . _ _ _ , (2.15)

In the right hand side of (2.15), the trace acts on a product of tensors. It is to be
noted that in this last formula the successive curves ypyj+1... have been
disentangled with respect to the differential vectors drA,drA, [see (2.11)]. It
remains to disentangle them with respect to the internal relative vectors r^. — vA>. + ί.

This can be done by performing the integration over the relative translation
vectors Qj joining curves y^ and yj+1. Under such a relative translation, *AjA>j + ι is
transformed:

*A.A' + X=*A-*A' <-**A-*A'-+ΛQ-' ( 2 1 6 )

Therefore the product (2.15) containing these transformed vectors is

Π W β ^ < V i ) = # $"•# ^ { Π C c u r l ^ d Γ / r ^ ^ + βj)]}. (2.17)
j=ί ϊn Yn Tl Tl {j = n J

We then perform a change of variable Qj-**p by setting, for j — 1,..., n:

9j = rj + τA. + ι-τA.r (2.18)

For j = n; j+1 =n+1 = 1. The r̂  's are n new vectors. This change of variable is
local because it involves the r^,.'s, and it is meant to operate inside the curvilinear
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integrals. The Jacobian of the transformation is equal to 1. By summing up each
side of Eq. (2.18), we immediately get

Σ β,= Σ r,, (2.19)
J = l J=ί

and thus:

d3ρt... d3ρnδ(Qi + + Qn) = d3r x... dh^x, + ... + rΛ). (2.20)

The effect of this local transformation is to disentangle the successive curves
yPyj+1 for all j = ί9 ...9n. Indeed, Eqs. (2.16) and (2.18) result in

Γ ^ " Γ ^ + ι + βj = Γ ^ - Γ ^ + Γi = Γ j - Γ ^ i ' ( 2 2 1 )

where by convention:

^ = ̂ - « V (122)

We note that the last expression in (2.21) is a linear combination of vectors,
belonging to curve y. only, with an external variable vector rr

The tensor dT appearing in (2.17) is therefore equal to

dTpAjAi +ι + Qj) = dϊjitj - TΛ.JΛJ) . (2.23)

This tensor can be now associated with curve y} only. Furthermore it depends on

the external vector r ;. One has trivially - — = -— and thus

cmlAjdΓj(rA.A,.+ί+Qj) = cuήr.dΓJ(rj-rA,A). (2.24)

Combining Eqs. (2.9), (2.17), (2.20), and (2.24), we can write the integral J in the
form:

rnδ{r1+ . . . + r n )

L (2.25)
A'j

after some permutations of integrations and derivations.

It is now convenient to introduce the characteristic tensor Γ(r), associated with
a given curve 7, which has generic points A, A':

dG

f Ά-Λ)- (2-26)

Owing to (2.11) Γ reads explicitly3

\*-(**-* A

3 The integrand of (2.27) is defined almost everywhere in r, and its divergence on a domain of measure
zero are regularized by rotation. Thus Γ is defined everywhere in r
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This tensor is obtained by integration over orientations Θ of the curve y and
depends only on one external vector r.

Owing to this definition, the integral J (2.23) takes then the simple form:

S{yl9 ...,yfi) = Jd 3r 1 ...rf3rπ<5(r1+ ... + r n ) t r { π [cur le r , . ) ] } . (2.28)
Kj-n J

The presence of a convolution integral and of a tensorial trace originates in the
ring structure of the n "linked" curves.

3. The Characteristic Tensor Γ

The aim of this section is to calculate the tensor curl Γ which appears in (2.28). We
shall consider for a given curve y, the characteristic tensor Γ and show that Γ, and
thus its curl, can be written as the sum of two terms. The latter involve two
characteristic functions of curve y and are related to different geometrical
properties of y.

Consider Γ given by (2.27). The divergence of this tensor, acting on the left
indices and on r, reads:

φlk^UA, (3.1)
Using Vr — V ,̂ we see that the right hand side involves the circulation of a gradient
along closed curve γ, which therefore vanishes:

§ V d °

Thus4

divΓ(r) = 0. (3.2)

We then have the following lemma:

Lemma. Any tensor Γ(r) of rank two, depending on only one vector r, and divergence-
free, can be written

Γ(r) - curl curl [φ(r)l] + curl [y?(r)l], (3.3)

where φ and ψ are functions of modulus r = |r| 1 is the unit tensor.

The curl acts as before on the left indices. The derivatives act evidently on r and
the subscript r has been dropped. This lemma is proved in Appendix A.
Incidentally, we note that one operator curl acting on a tensor, changes its
symmetry properties with respect to the indices. Two curl operators leave them
invariant. Thus, because φl and ψl are symmetric, the first term of the right hand
side of (3.3) gives the symmetric part of Γ, whereas the second term gives the
antisymmetric part. We shall relate below the functions φ,ψ to the invariant

4 The right divergence also vanishes
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elements of the tensor Γ. Our interest lies mainly in the expression of curl Γ, which
reads

curlΓ = curl curl curl(φl) + curl curl(φl). (3.4)

Using the identity

curl curl = Vdiv-F 2 , (3.5)
we get

curlΓ = (Vdiv-P72) curl(φl) + curl curl(φl)

= -curl(F2φl) + curlcurl(ψl), (3.6)

where we have used divcurl = 0. The first term of the right hand side of (3.6) gives
the antisymmetric part of curl Γ, the second one being symmetric. We note now
that for any function f(r):

div(/Ί) = V/. (3.7)

This, together with (3.5), gives the useful identity

curl curl (/I) = (V® V - 1 V2)f. (3.8)

On the other hand, one has trivially

curl(/l) = V/Λl. (3.9)

Taking the trace of these identities, we get

trcurlcurl(/lH[F 2 -(tr l)F 2 ]/

= -2V2f (3.10)

and

trcurl(/l) = 0. (3.11a)

As the tensor curl (/I) is antisymmetric this result was expected and we have also,
for the same reason:

tr curl curl curl (/I)-0. (3.11b)

Applying (3.10) and (3.1 la, b) to the expressions (3.3) and (3.4) of Γ and curl Γ, we
immediately get

trΓ(r)=-2F2φ(r) (3.12)

trcurlΓ(r)= -2V2ψ{ή. (3.13)

Thus φ, ψ are given by two Laplace equations, of which the sources are traces of Γ
and its curl. Let us summarize these results by giving the useful form of curl Γ [use
(3.6), (3.8), (3.9), and (3.12)]:

curlΓ=4V(trΓ)Λ l + (V(x)V-lF2)φ, (3.14)

where ψ is given by Eq. (3.13).
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( α ) (b)

Fig. 4a and b. Source spheres: a The extremity of rA,A describes the whole sphere of radius r A,A when
curve y rotates. The Newtonian field is created at r and vanishes inside the sphere, b The
complementary situation: the extremity of r describes a sphere of radius r and the Newtonian field is

For determining curl Γ, we now calculate the vector VtrΓ and the invariant
trcurlΓ, which is the source oϊψ. For that purpose we come back to the definition
(2.27) of Γ and get immediately

'8π 2

1 1
T 41 — V -

4π r-r

F ί v — ? -
Uπ Ίr-r.

r,dτΛ9dτΛΛ9

(3.15)

(3.16)

where A, A' are two generic points on curve y.
In the first quantity (3.15) the differential term dxA-dxA, is invariant under the

rotations of the curve γ and we can write

1

'••'δπ2 |r —l

The following vectorial function therefore appears:

^,d& 1

(3.17)

r J 8π2 | r - r A ,
(3.18)

AΆ\

1

r - r
is the Newtonian potential created at r by a source located at

AΆ\

(Fig. 4a). When curve y rotates in space, vector τA,A, which is attached to y, takes
any orientation in space. With respect to a fixed origin 0 the extremity of vector
XAΆ describes a sphere of radius rA,A. Therefore (3.18) is a Newtonian field created
by a spherical distribution of masses. Applying Gauss' theorem [2], we can write
directly

dΘ 1

' 8 π 2 l r - i
-θ(r-rΛ,A)V[-\. (3.19)

The (^-distribution accounts for the vanishing of a Newtonian field inside its source
sphere. Thus we obtain for vector (3.15) the simple expression:

rA-drA,θ(r-rΛ,A). (3.20)
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Let us now consider the expression (3.16). Permuting the curvilinear integrals and
the integral over orientations, we first calculate the infinitesimal quantity

The determinant is a scalar number depending on the orientation of two
independent solid bodies, which are curve γ and vector r. Thus (3.21) is also equal
to its own average over orientations of unit vector f = r/r, given by:

( 3 2 1 a )

where Vr = V .̂ Now r is the source point of the Newtonian field and describes the
whole sphere of radius r. Gauss' theorem yields directly

We finally obtain a simple expression of trace (3.21):

trcurlΓ(r)= - - L $ $ ( γ * dxA,drλθ{rA,A-r). (3.23)

It will be convenient, in order to relate to results of [3, 4], to rewrite Eqs. (3.20) and
(3.23) in the form:

(3.24)

trcurlΓ(r)=-«(r).

1, J* are two characteristic functions associated with a given curve:

1
^ J J " " A ~-A-~K. AA;> \J.ZJ)

= -^§§^A — ,drA,drA,)θ(rAA,-ή. (3.26)iA,uιA,

s$ is, up to a normalization factor, the function introduced by Pohl [3] for plane
curves. The presence of a second characteristic function, besides J / , was obtained
in [4], but a different function £$ was introduced.

Our aim was to calculate the tensor curl Γ which appears in Eq. (2.28) and is
the fundamental object of our linking study. Using its expressions (3.14) and (3.24)
we get in terms of J / , &:

curlΓ(r)= -(r Λ l)-yja/(r) + (V(x)V-lP2)t/;(r), (3.27)
2 r
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where ψ satisfies the Laplace equation

V2ψ(r) = - — 3Hj), (3.28)

obtained from (3.13) and (3.24).

4. The Kinematic Linking Integral for Two Curves

We shall evaluate in this section the integral «/ for two curves yί9y2. Their
characteristic tensors are respectively Γx and Γ2 and the associated characteristic
functions are s/v^Sί and jrf29<%2. We shall prove the generalization of PohΓs
theorem [1], given in [2] :

The integral of the squared number I2 of two curves, over their random rigid
motions can be factorized in a single integral

1
^—2-\d3QdΘl2 = t/(y l5 y2)
OTΓ

= 2π J ̂ ^[^(^^(r) + ̂ 1(r)^2(r)] .
o

To prove this formula, we have to calculate, owing to (2.28):

In trace tr, symmetric and antisymmetric parts of curl Γt and curl Γ2 decouple
completely. According to Eq. (3.27), we thus find :

-(r Λ l)(r Λ l f l ^ ^ r K W

2 ΐ F 2 ) ψ 2 ( r ) - ] } . (4.1)

Using

(r Λ l)(r Λ l) = r Λ (r Λ l) = r ® r - r 2 l ,

we get

tr[-(rΛl)(rΛl)] = 2r2.

On the other hand, the second term in the right hand side of Eq. (4.1) can be
written by expanding the product of tensors and using different notations

r)V)] + V2

Ψl(r)V2ψ2(r)}.

Integrating by parts the first term gives twice the product of Laplacians

~@1(r)@2(r),
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A

Fig. 5. Points A' and A" contributing to function stf{r)

where we have made use in the end of Laplace's equation (3.28). Gathering the
preceding formulae and performing in (4.2) a trivial angular integration, we get
finally the announced result:

S(γl9 y2) = 2π] άr\_sέ\{r)M'2(r) + ̂ ( r ) ^ 2 ( r ) ] . (4.2)
o

Let us recall the form of associated functions of a given curve y:

1

4πr y y

rA dτA,θ(r-rAA,), (4.3a)

Λ<r)-~izΠ(^A~, drA,drA)θ(rAA,-r). (4.3b)
4 7 1 v y \ rAAr I

$ contains the determinant of three vectors, which are coplanar if the curve itself is
plane. Thus, for a plane curve, {% vanishes identically. Then (4.2) reduces to the
result (1.4) established by Pohl [3], by quite a different method, for two plane and
convex curves. For twisted curves, a result similar to (4.2) has been obtained by des
Cloizeaux and Ball [4]. As they used a different method, they found in fact a
different function J1. The form of srf and $ is not unique for expressing the integral
e/ for two curves. We show in Appendix B the equivalence between (4.2) and the
result of [4]. Let us illustrate Theorem (4.2) by recalling some properties of
characteristic functions s/, ffl.

Consider function si (4.3a). It can be transformed easily (see [4] for details), by
integrating by parts, into:

§§(dtA-fAA,)(dτA,-fAA,)δ(r-rAA,). (4.4)

In this formula, points, A, A' on the curve are distant of r. Integrating the
distribution gives the original form of PohFs result [3] :

j t f(r)=-!-Jds |cos0| . (4.5)

s is the curvilinear abscissa of point A along the curve. The angle θ is formed by the
tangent vector at A and the vector AA' (A' being at a distance r of A) (Fig. 5). The
closed curve y has been implicitly assumed to have a tangent at each point. It can
thus be rectified. For r = 0:

)~, (4.6)
In



54 B. Duplantier

where L is the length of the curve. A factor 2 is present, because, for a smooth
curve having a tangent at each point, there are two points A\ say A + ,A_,
infinitesimally close to point A, lying on either side of it.

Consider now the second characteristic function J*, given by (4.3b). It involves
a determinant, the sign of which depends on space orientation. Thus, if y' is the
image of a curve y by symmetry (with respect to a point or a plane), its
characteristic function $y, is equal to

Λr=-aγ. (4.7)

Any curve symmetric with respect to a point or a plane possesses a vanishing &
function. Such is the case of plane curves.

When r approaches 0:

&(r)~rlsel{ (r->0), (4.8)

where the real number J s e l f is given by

1 \

(4.9)

This is the formal Gauss linking number of curve y superposed to itself5. Let us
finally note that J / and SS have compact supports. Equations (4.4) and (4.3b) clearly
show indeed that:

(4.10)
t®{r) = υ)

where φ(y) is /s diameter.

5. The Kinematic Linking Integral of an Arbitrary Number of Curves

The aim of this section is to present a new factorization theorem for the kinematic
integral J of the linkings of n curves. We show in particular that this factoriza-
tion involves special algebraic rules.

We want to evaluate the convolution integral «/ (2.28), and, for n greater than
2, the simplest way is to use Fourier transforms. We then define the Fourier
transform curlΓ(p) of tensor curlΓ(r) by:

j (5.1)

Each curve y. possesses such a tensor. Using the Fourier representation

δ(τ1+ ... + r π ) = ^ μ V l H r i + - + r " ) , (5-2)

and the Eq. (5.1), we trivially obtain:

ίίϊ (5.3)

It is not however an invariant counting the number of knots of y
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We can obtain curlΓ from Eqs. (3.27) and (3.28): we need to define the Fourier
transforms

Λ I ) — ^ ( r ) (5.4)

r)] (5.5)
. 2r

where we conventionally call Δ~x the solution ψ of the Laplace equation (3.28).
We have

curlΓ(p) = A(p) + B(p).

By using the identity

cm nv

(5.6)

one finds easily, after some manipulations, the Fourier transforms:

(5.7)

(5.8)

= p/p), where j / [ p ] , ^ [ p ] are scalar Fourier transforms, defined by:

= ~2πj- f rfr^^^(r) (5.9)
dp o pr

ϊ 00

= 2 π - f Jr sinpr^(r). (5.10)
P o

Therefore curlΓ finally reads:

) = i(p Λ

Because jtf(r) and ^(r) have compact supports in "real" space, the associated
functions ^/[p], ^ [ p ] always exist. The explicit expressions of the characteristic
functions J/[p] , ^ [ p ] in momentum space are given in Appendix C.

The integral J (5.3) reads therefore

^ (5.12)

where P(p) is the following product of matrices:

P(pH Π [ίurΪΓ/p)] - Π [i(P Λ l K t > ] +(1 ~ P ® p ) ^ [ p ] ] (5.13)

For evaluating this product, it suffices to calculate four partial products:

Up A l)/(pΛl) = l-p(χ)p,

ί{p A 1)(1 — p®p) = ίp A 1,
(5.14)

(1 —p®p)Up A 1) = φ Λ 1,
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Thus the algebra of operators ip A 1 and l—p®p is trivially isomorphic with a set
of two objects ε, 1:

ip A l->ε,
(5.15)

l

obeying the algebraic rules:

ε

2 = l, l. f i = ε l = e , 12 = 1. (5.16)

The image of tensor P, given by this isomorphism is:

^ [ p ] = Π ( β ^ / [ p ] + ^ [ p ] ) . (5.17)

According to rules (5.16), 0> can always be written as a linear combination of 1 and
ε ! ^[p]=aΓ[p] + ε^[p]. (5.18)

Tensor P then takes the form:

P(p) = ( l - p ® p ) % ] + i(p Λ 1 ) % ] . (5.19)

Calculating the traces

tr(l-p®p) = 2, tr(pΛl) = 0, (5.20)

we obtain:

(5.21)

Then integral (5.12) can be partially performed on angular variables, and this
finally leads us to the following factorization theorem:

Theorem. The integral J> of the cyclic product of the linking numbers of a set of n
curves yp over random rigid motions of the latter, can be factorized into the single
integral:

( X ] 2 (5.22a),7j
π o

where function $£\_p~\ is the even part of the algebraic product:

= Π (ss/jίp] + βjtp]) (ε2 = 1)

(5.22b)

Many properties of integral J> appear immediately in this result.
For two curves yλ and y2, the even and odd parts $£ and <& read respectively:

(5.22c)

One recognizes in 9£, the expression, in momentum space, of the usual Eq. (4.2) for
two curves.

One must also note that the product 2P (5.22b) is abelian.
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α
Fig. 6. A contact point between curves yvy2

Corollary. The kinematic integral J of cyclic Unkings of an ordered set of n curves,
arranged in a ring, is in fact independent of the order of the curves.

If curves y. are plane, all characteristic functions 39 ̂  vanish. Then

J = l

Therefore we find that real part 3C vanishes for n odd, and so does integral </.
Indeed one notes that a symmetry of two curves jj+ί with respect to a plane,
changes their algebraic linking number into

Thus, for n curves, the symmetry gives a factor ( — 1)". Plane curves can always be
superposed to their symmetric images by motions in space. In this case, a direct
configuration and its image will both contribute to integral J>, and will cancel each
other if n is odd.

By definition, integral </ is convergent. This can be checked on integral (5.22a),
by using the asymptotic behaviours of stf\$\ 3%\_p~\ for p->0 and p->oo, which are
given in Appendix C.

6. Contact Functions and Mutual Inductances of a Random Set of Curves

The <& term of expansion (5.22b) should be interpreted. The algebra of the
characteristic functions J / and 3d can be associated, apart from linkings, to other
geometrical properties of curves, in particular contacts and mutual inductions.

For two curves yx and y2 we define two quantities C and M:

Cί2=§ §drX'dt2 δ(rl2) (6.1)
72

yi 72 ^ π lΓ12l

where r 1 ? r 2 belong to curves yx and y2 respectively, and where rjL2 = r 1 — r2.
Quantity C measures contacts between oriented curves. It can be written

C12 = \ds1\ds2cosα δ(rι(sι) — τ2(s2)), (6.3)

Sj and s2 are curvilinear coordinates along curves yx and y2, and α is the angle
formed by the unit tangent vectors at the contact point of the curves (Fig. 6).
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The second quantity M appears in electromagnetism. It is the mutual
inductance, also called Neumann's potential [5], and represents the interaction
energy between two curves, along which circulate two unit currents.

n

Now consider the product (2.6) \\ Ijj+ v Suppose that a factor Ikk+1; given by
7 = 1

(2.1), is r e p l a c e d b y m u t u a l i n d u c t a n c e Mkk+1 of curves yk,yk+ί,

Λjr 1 Γ Γ dxA dτA.
Mkk+1= -7- y f —r"— 11> (6.4a)

likewise a factor Ia+1 is replaced by the contact function Cu+1 of curves y^ y£ +1:

ca +1 = § § dxA Λv δ{τAA> +). (6.4b)

n

Instead of \\ Ijj+V we thus write a cyclic product:

[.../•• ...M ...C . . . ] . (6.5)

There are n factors 7, M or C. The indices go from couple (1,2) for curves yv y2, to

(n, 1) for curves yn,yv To calculate product f| 7 j 7 + 1 ? written as a trace of a matrix

[see Eqs. (2.14) and (2.15)], we have introduced a set of differential tensors curWΓ
(2.13). Each factor Ijj+ι has generated a term curl^ίiΓj in Eq. (2.15). One can
generalize this transformation for product (6.5). We shall find that a factor Mkk+1

(6.4a) will generate a tensor — dTk given by Eq. (2.12). Likewise a factor Ca+l9

given by (6.4b), will generate a tensor ΔA dT^. The latter is indeed given by the
formula [see (2.12)]:

and this term, placed in a matricial product, will contribute to build Cu+V The
generalization of Eq. (2.15) can be written

.. Cu+1...]

H . ] . (6.7)

As before, the order of curves' indices j , k, £ is reversed in the matricial product. We
now consider the integral of product (6.5) over all relative displacements of curves
y.t j= i 5 . . . 9n. The following symbolic notation is used:

motions

). ( 6 8)

By convention:
ypΎj+i corresponds to linking number Ijj+1 between curves y. and yj+v

yk~yk+1 corresponds to mutual inductance Mkk+1 between curves yk and yk+v

y^y^+i corresponds to contact function Cu+1 between curves ye and
(Fig. 7).
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Fig. 7. The different geometrical quantities considered: Ijj+ί measures the linking number oΐyjiγj+1

Mkk+1 measures the mutual induction between yk,yk+ι Q ( f + 1 corresponds to the contact of curves

The process transforming integral (2.9) into integral (2.28) can be exactly
repeated for the present integral (6.8), by using Eq. (6.7). One obtains the
analogous formula

• tr [... ArΓ,(τ,)... - Tk(vk)... curl^r/r^). . . ] . (6.9)

The rules are thus particularly simple: each linking 7j,7 J + 1 gives rise to a term
curlΓy; each mutual induction yk~yk+ί gives rise to a term — Γfc; each contact
V)V+i g ί γ e s r i s e t o a t e r m ATύ. According to definition (2.27) of Γ, tensor ΔT
reads for a given curve:

dΘ
§ § d ® d δ ( ) (6.10)

By using curl curl = V div — Δ for divergence-free tensor Γ, we also find for AT the
equivalent expression:

(6.11)

Our aim is now to establish a factorization theorem for the convolution integral
(6.9). We define the Fourier transform V of a tensor V by

ίd3reίp"ΓV(r), (6.12)

and the convolution integral (6.9) can then be written

(6.13)
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The Fourier transforms appearing in (6.13) are related. Indeed we use the
expression of the Fourier transform of a curl :

curϊy(p)=-φΛV(p),

and obtain with (6.11):

2Γ(P) = Φ(P Λ l)"Su7lΓ(p), (6.14)

Γ can be calculated as

r(p) (6.15)

Using expression (5.11) of curΪΓ in terms of functions si and & and applying
algebraic rules (5.14), we find

3Γ(p) = ( l - p ® p ) P ^ [ p ] + ί(P A l)pΛ[p]. (6.16)

For calculating the trace appearing in the integrand of (6.12), we use isomorphism
(5.15). It gives according to (6.15) and (6.16)

curϊf (p)

2 p ( ^ [ p ] + ε ^ [ p ] ) (6.17)

P

We note that, as expected, f (p) and 3f(pJ have the same parity with respect to ε. It
is the opposite of the parity of curlΓ(p).

As in Sect. 5, we transform (6.13) by the isomorphism and follow the same
procedure as in Eq. (5.17) to (5.22). We obtain in this way the theorem:

Theorem. The integral

= ί (••.^ + i . M u + 1 . . . Q , + 1 . . . ) (6.18)
motions

of the cyclic product of linking numbers Ijj+ x between curves yj and yj+1,of mutual
inductances Mkk+1 between curves yk9 yk+ x and of contacts functions Cu+ i between
curves ye, ye +15 over all Euclidean motions (translation and rotations) of the n curves
Yj, is equal to the single integral

S=±i]dpp20nJj>]. (6.18a)
π 0

^evenM z s t n e e v e n Part °f t n e cdgebmic product ^ [ p ]

this product being defined by

^ . . , ] (6.1Sc)
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with e2 = l. The product 0* is built according to the rules:

Factor Ijj+ι generates term εs#j[p]
where ^p^j are characteristic functions of curve yy only. (6.18d)

Factor Mkk+1 generates term - (^ f c [p]+ε^ f e [p]) associated with curve yk. (6.18e)
P

Factor Cu+1 generates factor p(^[p] + εJ^[p]) associated with curve γ€. (6.18f)

With this general result, let us now interpret the odd part ^o d d[p]
obtained together with ^ e v e n = #", when we deal with a complete set of n linkings
[see Eq. (5.22b)].

Replacement of a linking / by a mutual inductance M in cyclic product (6.18)
changes the parity of product ^ [ p ] (6.18c) and brings in a factor 1/p [rules
(6.18d,e)]. Likewise, substitution of linking / by contact C changes parity and
brings in a factor p [rules (6.18d,ί)].

In particular, let us consider the product of n— 1 linkings and of one mutual
inductance. Accordingly:

motions

(6.19)
π 0

where ^ [ p ] is the odd part of (5.22b). Likewise, n—1 linkings and one contact
give:

motions

= ^ f d p p 3 « T p ] . (6.20)

Lastly, let us briefly discuss the convergence of integral (6.18a).
In general, this integral for an arbitrary number of linkings, contacts, and

mutual inductances can diverge. Contacts can bring short distance (i.e. p-»oo)
divergences. Mutual inductances are long range phenomenas and bring diver-
gences at p = 0. Compensations between contacts and mutual inductances can
occur [cf. rules (6.18e,f)], and the convergence must be checked in each particular
case, with the help of asymptotic behaviours of si, $ given in Appendix C. One
can check for instance that the integrals \C2 for two curves, JC 3 for three curves,
both diverge. However, for a larger number n of curves, the integral J Cn is
convergent n - 4

7. Random Linking, Contact, and Induction of Two Curves

For two curves, let us consider linking number /, mutual inductance M, and
contact function C. We shall give in this section the expression in direct space of
the kinematic integrals of products IM, IC, MC, and M 2 . These integrals can be
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factorized, like PohFs kinematic integral of I2. New characteristic functions
appear.

We could start from the Fourier representation, given by general theorem
(6.18) of the last section. For calculations in direct space, it is better to return to the
general tensorial expression (6.9). One uses then expressions of tensors Γ, curlΓ,
ΛΓ, obtained from results of Sect. 3. We refer to Appendix D for calculations, and
give here only the successive generalizations of PohΓs theorem we find.

Theorem. For two curves, all kinematic integrals involving /, M, C can be factorized
as follows

\M1 = 2π] drlj*+(r)a2(r) + < ( r ) ^ ( r ) ] , (7.1)

o

where the characteristic function jtf+ is defined by

oo I

\ (7.2)

JCM = j / 2 = 2π ί dr{_^^r)^2{r) + ai{r)όi2(r)] . (7.4)
o

On the other hand :

§C2 diverges.

Finally

\M2 = 2π ] drls*ΐ(r)^2

+(r) + ®+

1{r)3$+

2{r)-], (7.5)
0

where the function ^ + is the particular primitive of £%:

] (7.6)

Identity (7.4) can be checked immediately with the help of rules of
Theorem (6.18) in Fourier space.

This completes the set of theorems generalizing PohΓs formula.

8. Conclusion

In this article, we have introduced a compact tensorial formalism. It enabled us to
describe random linking of closed rigid curves and their transformation properties
under translation and rotations of these curves. We showed that each curve can be
characterized by a single mathematical object, its tensor curlΓ. The geometrical
expression of this tensor was obtained by direct application of Gauss' theorem of
potential theory. This elucidated the special form of the result. For two curves,
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PohΓs formula, extended by des Cloizeaux and Ball, was thus directly
demonstrated.

For n curves, arranged in a ring, the cyclic product of their linking numbers I is
the natural generalization of the squared quantity I2 for two curves. We calculated
the kinematic integral of this linking product over the group of motions of these n
curves. We obtained its factorization, in Fourier space, in terms of characteristic
functions. This factorization exists in commutative algebra of two elements l,ε
with ε2 = l. The characteristic functions are coefficients of l,ε.

A second natural generalization was found. We showed that the preceding
algebra enables us to calculate a whole family of integrals over the group of
motions of rigid curves. For that purpose we defined the contacts and mutual
inductances of curves, which are intimately related to Gauss linking numbers.

A general factorization theorem in terms of characteristic functions was given.
It allows us to calculate the kinematic integral of any cyclic product, the factors of
which are linking numbers, contact functions or mutual inductances.

These new mathematical results belong to topology and, in a stronger way, to
potential theory. By their relation to topology they could be useful for a theory of
polymer rings, yet to come. They could also be useful mathematical theorems for
electromagnetism.

Appendix A

Proof of Lemma (3.3). We shall prove that any tensor Γ(r), depending on only one
vector r, and having a vanishing divergence, necessarily reads

Γ(r) = curl curlφ(r)ί + curlφ(r)l, (A.I)

φ and ψ are functions of r = |r| and 1 is the unity matrix. Curl acts on left indices.
We first note that a tensor Γ, function of a single vector r, must be of the

general form

Γ(r) = r®r/(r) + lg(r) + (ΓΛ ΐ)h(r), (A.2)

where /, g, h are arbitrary functions of modulus r. It is easy to check the equivalent
general form:

Γ(τ) = V®Vφ1(r) + lΔφ2(r) + Vψ(r) Λ 1. (A.3)

φί and φ2 are related to / and g by second order differential equations, ψ is related

to h by - — w = h. We remark that
r dr

Vψ(r) Λ 1 = curl(φ(r)l). (A.4)

Then the left divergence of the tensor (A.3) is the vector

divΓ(r) = V2(VΨί{r)) + V lΔφ2(r)

r)]=0, (A.5)
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which must vanish, according to our assumptions. Thus, we have Δ(φ1

where C is a constant. Eliminating φ2 in (A.3), we get for Γ:

(A.6)

Cl can be written Cl = (V®V-lJ)(-C/4r 2 ) . Thus, defining φ==φi-C/4r2, we
get:

Γ = ( V ® V - l d ) φ + curlφl. (A.7)

Using

) ̂  (Vdiv - Δ)(φ\) = curl curl(φί),

we obtain (A.7) in form (A.I). Q.E.D.

Appendix B

An Equivalent g% Function for two Curves. We consider for two curves the
contribution of ̂  functions to the kinematic integral:

00

0

where & reads:

/~7iV \ ' C C / * A A'

ΛA

AA' I

, dτA,drA, θ(rΛA,-ή. (B.2)

For computing integral «/(B) for two curves, another possible function Si' is [4] :

*"W ^|f(r^^,^)θ(r~r^,), (B.3)

such that

^(«(yi. >;2)=2π ϊ dr'aiWtW. (B.4)
0

This can be checked by performing, inside integral (B.I), the local change of
variable r-*r' such that

rrf = rAίA'irAiA'2.

It corresponds to an inversion with respect to the sphere of radius (rAlA>jA A>)112*

Appendix C

Characteristic Functions j?/[p], S6\jp\% These functions are defined by

(r), (C.I)

2π °°
= — J d r s i n p r « ( r ) . (C.2)
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j/(r), έ%(r) are given by:

^>dxA,θ{r-rAA), (C.3)

rΛΛ'-r). (C.4)
π π - ' \ rAA' j

Define

dp o r

Differentiating inside the integral:

Integrating by parts:

sinPr a, . T l ύrιPrAA

P

The first term vanishes. Thus, one gets
_ 1
~2

θ{r-rAA)\ - - -
o P

which is similar to another function stf\jρ\ used in [4].
Define, for calculating

b[p] = J dr ήn{pr)rθ{rAA, - r).
o

It reads

d
J drcosprθ(rAA,-r).

Integrating by parts

(C.5)

Thus

which is similar to another function 3b used in [4].
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Asymptotic Limits

For p-»0. We use definitions (C.I) and (C.2). Expanding the sin function, one gets

= ^ o P (P-+0) with ^ 0 = ~ J d r r 2 ^ ( r )
-> o

(C.7)
00

= 2π j dr^(r) = ̂ 0 < oo.
o

J / 0 and Ĵ o are finite constants.

For p->oo. By a change of variable:

Λ ί ϊ , 1 sinx , , ,
- 2 π - Jώc ^(x/p),

αp o P x

and therefore, for p->oo, using j dx^^- = - :
o x 2

jtf [p] = π 2
 J / ( 0 ) -i- (p-> oo). (C.8)

P

For function 3$, one uses the explicit expression (C.6). There clearly exists a
majorant ^ ^ such that

\@lp]\<—τ- (p-*oo). ( c 9)
P

One can then verify the convergence of integral (5.22a). The integrand p2$\_p~\,
defined by (5.22b) is regular for p = 0, because of (C.7). For p->oo, (C.8) and (C.9)
give p2p~2n as a majorant of | p 2 ^ [ p ] | . Thus integral«/ of n linkings is absolutely
convergent.

Appendix D

Linking, Contact, and Inductance of two Curves. We shall calculate for two curves
the kinematic integrals of products MI, CI, and M 2 . The integral of C 2 is not
defined. According to (6.9), these integrals read:

\MI= -J^rtrCcurlΓjί-ΓjΓiίΓ)], (D.I)

= ίd3rtr[curlΓ2(-r)2lΓ1(r)], (D.2)

-r^^r)]. (D.3)

Section 3 gives the successive tensors

(D.4)

(D.5)

(D.6)
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Let us recall the relations between auxiliary functions φ{r\ ψ(r) and functions
sf(r\08(r). φ and st are related by Eqs. (3.12) and (3.24):

jtf(r). (D.7)

The solution, which must vanish at infinity, is then given by:

(r), (D.8)

'~^(r'); (D.9)

2r

where we set by definition:

on the other hand, ψ and & are related by Eq. (3.28)

ψ appears in tensor Γ (D.4), through gradient term Vψ only.
ψ is thus defined up to a constant. Searching for a solution vanishing at

infinity, as £@ does, we solve (D.10) by using the Laplacian for spherical

coordinates A — 2

 r> valid everywhere, except at the origin. One finds easily

where ^ + + is the second primitive:

00 00

Jf+ + (r) = J dr'0β + (r'), &+(r)= J dr'0&{r'). (D. 12)

The subtraction of the principal part at r = 0 in (D.ll) insures that Δψ does not
contain any distribution at r = 0. We shall need two last auxiliary formulae,
already used in the text:

and

jd 3rtr[(V/ Λ iχVgf Λ 1)] = -2^d3rVf-7g . (D.14)

Equation (D.I) can then be rewritten, with the help of (D.4) and (D.5)

jM/= -2$d3rlAψ2Δφ1 - W{Δφ2)- VψJ ,

where one must take (V/)( — r) = — V/(r). Then, by integrating by parts, one gets
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which gives [see (D.8) and D.10)] the announced result:

In the same way, one obtains

Using Eqs. (D.7) and (D. 10):

JW)f
o I dr[ r

Integrating by parts gives (7.3). We finally calculate (D.3):

The second part of this integral can be calculated by using (D.10) and (D.ll):

-2$d 3r(ΔΨ l)ψ 2 = 2π] άr\β\+ ( r ) -
o

and, by integrating by parts [use (D.I2)] :

= 2π[^ 2

+ (r)[^ 1

+ +(r)-& + +(0)]]£ + 2π J
o

The first term vanishes, and one gets for (D.16) and (D.8), the announced result:

| M 2 = 2π J dr\_sό + (r)sΰ2\r) + Λ+(r)#J (r)] .
o
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Note added in proof. The generalization of the results to the linking numbers of manifolds in E"
(B. Duplantier, Saclay preprint DPh-T/81-61) will be given in a forthcoming paper.




