
Communications in
Commun. Math. Phys. 81, 455-473 (1981) Mathematical

Physics
© Springer-Verlag 1981

Percolation for Low Energy Clusters and Discrete
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Abstract. We consider classical lattice systems in two or more dimensions
with general state space and with short-range interactions. It is shown that
percolation is a general feature of these systems: If the temperature is suffi-
ciently low, then almost surely with respect to some equilibrium state there
is an infinite cluster of spins trying to form a ground state. For systems having
several stable sets of symmetry-related ground states we show that at low
temperatures spontaneous symmetry breaking occurs because in a two-
dimensional subsystem there is a unique infinite cluster of this type.

1. Introduction

Percolation theory has recently been successfully used in analyzing the properties
of the two-dimensional Ising model [1, 12]. Percolation is also implicitly involved
in the well-known Peierls argument for the existence of phase transitions. Here
we introduce the notion of "low energy clusters". This concept enables us to show
that percolation at low temperatures is a general phenomenon for spin systems
in two or more dimensions. Under certain circumstances this kind of percolation
automatically implies the existence of several distinct equilibrium states; this
gives an intuitively appealing picture of the mechanism which leads to a sponta-
neous breaking of discrete symmetries. (This picture fails to explain certain pheno-
mena in three dimensions such as the breaking of continuous symmetries and the
existence of nontranslation invariant Gibbs states in the Ising model.)

Passing on to precise definitions, let d^2,L = Zd (the integer lattice), and
consider a system of spins on Ltaking values in a probability space (£, S, λ). The
spins interact via a nearest-neighbour potential which is a measurable symmetric
function

φ:E x E->M,
satisfying

mΞΞinf φ( , ) > - oo. (1.1)
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So the formal Hamiltonian reads

H{σ)= Σ Φi^j)l (1.2)
{ί, j)

here σ = (^i)ieL^EL, and the sum extends over all pairs of adjacent sites in L. For
each β ^ 0 we let (5 (β) denote the set of all Gibbs measures (equilibrium states)
on (E, i)L with respect to βφ and the reference measure λ (the precise definition
is given below).

Fix ε > 0. For each σ e EL we construct a graph gε(σ) with vertex set L by drawing
an edge between any two adjacent sites for which a{ and σ. have a low interaction
energy in the sense that

<p(σ.,σ.)^m + ε. (1.3)

We are interested in the event

{3 c'J (1.4)

consisting of all σe£ L for which gε(σ) contains an infinite cluster (i.e., an infinite
connected component). Our question is: For which β can one find a Gibbs measure
μe(5(/?) such that

μ(3c e J>0? (1.5)

As an example let us consider the plane rotator model in dimension d=2.
Here E = S1 (the unit circle in the plane), λ is the normalized Haar measure, and

Thus m = — 1, and (1.3) holds iff ai and σ. have nearly the same orientation. So
in this case our question reduces to the study of what could be called "small devia-
tion clusters". It is known [3, 15] in this model that for each β ^ 0 there is only
one measure in ©(/?) which is invariant under translations, and this measure is
also invariant under simultaneous rotation of all spins. In other words: in contrast
to the case d = 3 [9], no symmetry breaking occurs. Therefore one is interested in
the question of whether this system exhibits some weaker form of ordering. S.
Miracle-Sole (private communication) conjectured that infinite "small deviation
clusters" occur. A positive answer to this is implied by the following result, which
will be proved below under mild topological assumptions: If β is sufficiently
large then there is some translation invariant Gibbs measure μe®(/?) such that

μ(3c β j= l . (1.6)

The proof of this result employs ideas similar to those of Shlosman [19] and makes
use of reflection positivity and chessboard estimates [7, 8,9]. We will actually
prove the stronger assertion that any given two-dimensional sublattice of L con-
tains a unique infinite low energy cluster. Moreover, we will consider a slightly
more general setup which includes systems with next-nearest neighbour inter-
actions. Section 2 contains the precise formulation of our results on percolation;
these will be proved in Sect. 4. In Sect. 3 we show that the existence of a unique
infinite low energy cluster provides a simple and appealing approach to the study of
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symmetry breakdown. This approach consists in a distillation of the three ingredi-
ents which make up the well-known Peierls argument: percolation, symmetry,
and stability of the ground states, and will be illustrated by a series of examples
already known to exhibit a phase transition.

We conclude this introduction by giving examples which show that infinite
low energy clusters need not occur when both ε and β are small.
(1.7) Example. The two-dimensional Ising model.
Here d = 2, E= {— 1,1},λ is normalized counting measure, and φ is given by

φ(x, y)= - xy.

Thus m = — 1, and for ε < 2 we have

ψ{x, y) ύ m + ε iff x = y.

Therefore each infinite cluster of gε( ) is either a ( + ) cluster or a (— ) cluster (in
the obvious sense). Thus the results of [4,1,12] show that when β <L βc = \ s inh" 1 1
then

for the (unique) measure μe ©(/?), while on the other hand

when β > βc.

Further examples are provided by the following proposition which applies
to continuous models such as, for instance, the plane rotator model.

(1.8) Proposition. Suppose φ is bounded and satisfies

λ2(φ( ,') = m) = 0. (1.9)

Then there is a function /?(•) ̂  0 such that

β{ε)]oo as siO (1.10)

and

s u p μ{3cεj = 0 when 0^β< j8(ε). (1.11)
μe©(/3)

This will be proved at the end of Sect. 4.

2. Percolation for Low Energy Clusters

The study of low energy clusters as described above is a bond percolation problem.
However, it will be convenient to consider a more general site percolation problem
on the dual lattice which allows us to also study systems with next-nearest neigh-
bour interactions. The dual of L is

L* = L + & . . . , £ ) .

Each aeL* is identified with the elementary cube consisting of the 2d sites of L
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with distance yfdjl from α, i.e.

We let v = (§,..., j) denote the elementary cube at the origin of L*.
Next let (£, <f, A) be a probability space. We will assume that £ is a Polish space

and $ its Borel σ-algebra. Without loss of generality we will further assume that λ
charges every nonempty open subset of E. The configuration space is

(Ω, &) = (E, S)L.

For each i c L w e consider the sub-σ -algebra

of #\ If σ = (σt)ieLeΩ then σΛ = {σ.)ieΛ is the restriction of σ to A; if σ, τeΩ then
τyiσL\yi *s ^ e configuration on L which coincides with τ o n / l and with σ on L\Λ
The translation group (θ.)ieL acting on Ω is defined by

(θiσ)j = σ._i (UjeL,σeΩ).

We consider formal Hamiltonians of the form

H(σ)= ^Φ(α,σ); (2.1)
aeL*

here Φ: L* x Ω -• IR is assumed to have the following properties:

(2.2) There is a function Φw :£" -> R with

φ(ϋ, σ) = Φv(σv) for all σeΩ.

(2.3) Translation in variance. For all aeL*,ίeL,σeΩ

φ(α? σ) = φ(μ + i, 0, σ).

(2.4) Reflection invariance. For all sG£y and 1 g fc ^ d

here rfc is the reflection of v with respect to the hyperplane

(2.5) Φυ is continuous.

(2.6) m = inϊΦv> - oo.

Clearly the Hamiltonian (1.2) can be written in the form (2.1): it is sufficient to put

Φ » = 2 1 " d Σ Ψ^sj). (2.7)

Therefore the present framework includes that of the introduction.
For β >̂ 0 we let © (/?) denote the set of all Gibbs measures (Dobrushin, Lanford

and Ruelle or DLR states) for βΦ and λ; these are all probability measures μ on
(Ω, <F) such that for all finite nonempty subsets A of L and all ^ e ^

|σ) = JλL(dτ) exp [ - βHA(τ\σ)-\/ZA(σ); (2.8)
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here

HΛ(τ\σ)= Σ * ( « > V L \ J (2.9)
aeL*:anΛψ0

and

0 < Zβ

Λ(σ) = \λL{dτ) exp [ - βHΛ{τ\σ)λ < °° (2.10)

due to (2.6). We are particularly interested in Gibbs measures which are limits of
finite volume Gibbs distributions with periodic boundary conditions: Let n ̂  1
and

Λ = Λn = {i = (i19... Jd)eL\ -n<ik^n for 1 ̂  kS d}.

We view A as a torus by considering UjeΛ as nearest neighbours iff ik =jk±l
mod In and ίk, =jk> for k! φ k for some 1 ̂  k ̂  d. Accordingly we identify each
aeΛ* = A -f (f,..., f) with the elementary cube

If σsEΛ and αe/1* then Φ(α, σ) is defined in the natural way. The Gibbs distri-
bution in A for βΦ with periodic boundary condition is given by

yVΛ{dσ) = exp [ - βHA(σ)-]λΛ(dσ)/Z'Λ (2.11)

here

ff»= I*te°-X ( 2 1 2 )
αeτl*

and the normalizing constant Zβ

Λ is finite due to (2.6). We let ©0(/?) denote the set of
all probability measures on (Ω, 3F) which are weak limit points of the sequence
γβ

Λn,n^ oo. It follows easily from (2.5) that ®0(β) c®(β). We assume ©0(j8) φ 0
for all β ^ 0; of course this will always be true when E is compact.

Now we introduce low energy site percolation on L*. Fix an ε > 0. For each
(jeΩwe form a subgraph Gε(σ) of L* consisting of the vertex set

Fε(σ) = {aeh* : Φ(α, σ) g m + ε} (2.13)

and with edges connecting any pair {a, b) of adjacent- sites in Vε(σ); here a and b
are said to be adjacent if Euclidean distance between them is 1 or, equivalently,
if the corresponding elementary cubes have a common (d — l)-dimensional face.

We consider the event

Q}, (2.14)

which is the set of all σeΩ for which the graph Gε(σ) contains an infinite cluster,
i.e., an infinite connected component. Clearly, if φ is a nearest-neighbour potential
and Φ is defined by (2.7) then

{ 3 C ε J c = { 3 c Γ l ε } (2.15)

(the second event was defined in (1.4)). (2.15) shows that low energy site percolation
implies low energy bond percolation. We also consider the events

{3 IC'J, respectively {aeOj (2.16)
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that Gε( ) contains a unique infinite cluster, respectively that αeL* belongs to an
infinite cluster of Gε( ) Moreover, when P is an infinite connected subset of L*
then we consider the events

{3C°JP)}, {3 iσjP)}, {aeσjP)} (2.17)

which refer to the restriction of Gε( ) to P.
Now we state our main result.

(2.18) Theorem. Let P be any two-dimensional plane in L* parallel to two of the
axes. Fix any ε > 0 and aeP. Then

lim inf μ(aeC^(P))=l (2.19)
β-^oo μe®0(β)

and

lim inf μ(3iσjP))=l. (2.20)

In particular, for all sufficiently large β there is at least one translation invariant
Gibbs measure μe(&(β) such that

(2.21) Remark. We will actually prove a result which gives more information than
(2.20): With probability tending to 1 there exists an infinite low energy cluster
C^iP) in P which surrounds every finite subset Δ of P (i.e., A belongs to the interior
of a circuit in CEJP)\ In particular, iϊd = 2 and Φ is of the form (2.7) with a nearest
neighbour potential φ, then with probability tending to 1 there is a unique infinite
cluster of gε( ). (The standard notions of percolation theory such as chain, circuit etc.
can be found, for instance, in [4].)

Now let us consider the function

c(ε,jϊ)= supμ(3C ε J. (2.22)
μe®(β)

c(v) is an increasing function of ε and only takes the values 0 and 1 indeed, if
μ(3CεJ>0 for some μe©(j8) then μ{.\3CJe(5{β) since {3CεJ is measurable
with respect to the tail field

^ » = n *ΆΛ
A finite <=. L

Thus we obtain

(2.23) Corollary. There is a function εc: [0, oo [-> [0, oo] such that for all β Ξ> 0

c(ε, β) = 0 when ε < εjβ),

c(ε, β) = 1 when ε > εc(j3),

and

εc(β)->0 as β-+oo.

The function εc(β) can be thought of as a quantity which describes how the Gibbs
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measures approach the ground states when the temperature is lowered. If E is
finite then εjβ) = 0 for sufficiently large β, whilst εc(β) > 0 for all β when the
conditions of Proposition (1.8) hold. Clearly one would expect that εc(β) is decreas-
ing or (slightly stronger) that c(ε, β) is an increasing function of β. In the plane
rotator model this monotonicity is also suggested by the Ginibre inequalities
[3] we then could define a threshold temperature βc(ε) which (for this continuous
model) should depend continuously on ε, and this would imply that every β is
critical for the formation of certain infinite clusters, namely for those of GM/J)( ).

3. Breaking of Discrete Symmetries

We continue to consider the setup of the preceding section. To simplify the pre-
sentation we assume d = 2. (In the case d > 2 we can consider a two-dimensional
subsystem.) Now we turn to an investigation of the symmetries of Φ. We let 9
denote the class of all measurable transformations

t:EΌ-+Ev

which satisfy

Φv(ts) = Φv{s) for all seEv (3.1)

and belong to the following list of particular transformations:
(i) the reflections r1,r2oϊυ (see (2.4))
(ii) the rotation of v
(iii) the transformations of the form ts = (ifs.)iet; (seEv) where the ί. :E-+E are

measurable mappings which preserve λ.
Each of these particular transformations has a natural extension to a transfor-
mation T of Ω. This is obvious for the reflections and the rotation; if t is of type
(iii) then T is given by

where t. = t. if j = ί mod 2 and (i.).ev = t.
(Notice that, because of (2.4), both reflections of a type (iii) transformation in ^
also belong to 9*.) In this way each symmetry te9 corresponds to a transformation
T of Ω which preserves all measures μe(δo(β).

Now we ask for conditions under which the existence of a unique infinite low
energy cluster implies the existence of Gibbs measures in ©(/J) for which some of
these symmetries are broken. Let A <= Ev. For each σ e Ω w e construct a graph
GA(σ) as follows: The vertices of GA(σ) are all sites αeL* for which

A
rxA
r2A

r.r2A

if
11

a = v
a = vΛ
a = vλ
a = υλ

h(l,
h(0,

h(l,

0)

1)
1)

mod
mod
mod
mod

2
2
2

2,
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and the edges of GA(σ) are all pairs of adjacent vertices. We let

{3CAJ9 respectively {3ICAJ (3.2)

denote the events that GA{ ) contains an infinite cluster respectively a unique
infinite cluster.

Now let ε > 0 and suppose the set {Φv ^ m + ε} c: Ev splits into N ^ 2 disjoint
measurable sets Ax,... AN. (In particular then there are N separated sets of ground
states.) We say the splitting is stable if the following condition is satisfied:

(3.3) Elements seAn and s'eAn, can coincide on an edge of v (i.e., s. = s and
s == sj for two adjacent sites ijei;) only if n = ri.

Of course, this condition implies that each cluster of Gε(σ) is a cluster of GAn(σ) for
one and only one n.

Consequently

= \JCn, (3.4)

where

We say the splitting is symmetric if

(3.6) for all l^n,n' ^N there is some te<f with An a t~ιAn,.

This implies that if μ is preserved by the symmetries in 9* then

indeed, ifl^n,ri^N and T.Ω^Ω corresponds to the t in (3.6) then

and thus

In particular, if μe(δo(β) is such that

μ(3\σj>0

then μ(Cπ) > 0 for all n, and the conditional probabilities μn = μ( |Cn) are well-
defined and pairwise orthogonal. We would like to have μne(5(β); this would
follow immediately if we had not insisted on the uniqueness of C^n in the definition
(3.5) because then the Cn would belong to the tail field ^^. However, Cn is invariant
under the translations θ.,i = 0 mod2, and therefore (see, for instance, [10])
μ—almost surely equal to a set in $F'^. Hence μne ©(/}), and we have proved

(3.7) Theorem. Suppose there is anε>0 such that
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splits into N^2 disjoint sets Aγ,..., AN satisfying (3.3)and(3.6). Ifβ is so large that

for some μe(δo(β) then there are N distinct Gibbs measures μγ,..., μNe&(β) which
are preserved by the transformations θ.,i = 0 mod 2, and are supported respectively
by the disjoint sets C 1 , . . . , C N . In particular, the set ex (5(jβ) of extreme Gibbs
measures consists of at least N elements. Finally, as β -+ oo we have

μn(σeΩ:σΌeAn)-+l

for alll^n^N.
This last statement is a consequence of (2.19) and (2.20):

μn(σ:σveAn) ^ μn(υeC^) = μ(veCAJ,3iσjμ(Cn)

( ^ ) / ( ^ ) l as/?-xx)

whenμe©0(β).
Theorem (3.7) is easily applied to prove the existence of distinct Gibbs measures in
various kinds of models. To illustrate this we pick out some well-known examples
where symmetry breaking occurs.

(3.8) Discrete Models with Attraction [5, 16, 17]

Let £ be a finite set, λ the normalized counting measure, and φ a nearest neighbour
potential of the form

φ{x, y)< if
[>m xφy

and such that

φ(πx, πy) = φ{x9 y)

for all π in a transitive group of permutations of E. (For instance, let E be the
group of JVth complex roots of unity and φ{x, y)= — x-y; the case N = 2 is the
Ising model.) Clearly (3.7) applies and gives |ex ©(/?) \^\E\ when β is large.

(3.9) Continuous Extensions of the Above Models
For instance, let E = S1, λ be Haar measure, and

φ9 y) =-χ-y + δ(\xN - 1|2 + | / - 112)

for some δ > 0 and N ^ 2. For sufficiently small ε we have φ{x, y) g m + ε iff x and y
are close to the same N^1 root of unity. Rotational symmetry gives |ex ®(β)| ^ N
provided β is large.

(3.10) Anisotropic Classical Heisenberg Models [8,14]
Here E = SN~1 (the unit sphere in RN) or E = BN (the unit ball in UN), λ any pro-
bability measure which is symmetric with respect to the hyperplane
{x = (x t , . . . , xN)eRN :xj, = 0 } (for instance, the normalized surface or Lebesgue
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measure), and φ is a nearest neighbour potential of the form

JV

φ(χ,y) = - * i ) Ί - α Σ χ

kyk

with 0 ^ α < 1. If ε is sufficiently small then φ(x, y) ^ m + ε iff xx and yx are both
either close to 1 or — 1. Using the symmetry xί <-• — xχ we obtain |ex ®()8)| ^ 2
when β is sufficiently large.

(3.11) Unbounded Spin Systems [8]
In this example, E is the real line and λ a mean zero normal distribution φ is a
nearest neighbour potential of the form

φ(x, y) = (x- y)2 + tφc) + u(y)

where w is a double- welled symmetric function such as u(x) = c t x
4 — c2x

2,cι,c2 >0.
φ(x, y) is close to its minimum iff x and y fall in the same well of w. Thus (3.7) shows
that for large β|ex (5(j8)| Ξ> 2 provided (δo(β) ^ 0 . But the latter condition is true
as can be seen by an obvious modification of the ideas in Sect. 1.5 of Sinai's mono-
graph [17].

(3.12) Shlosmaήs Model [19]

Here E = S1, λ is normalized Haar measure, and Φv: Ev -> U is given by

[ c j — > c . c _ 4 _ Γ \ C C Z

/s 5 \

where J > 0 and | | denotes Euclidean distance. Φv (
 4 3 I is minimal iff s t = s3,

\51 S2/

s2 = 54 and s2 = (0, ± l)-sί. Thus the ground states fall into two separated classes,
depending on the sign in the last equality. The transformation

belongs to ίf and transforms each class into the other. Therefore |ex ©(/?) | ^ 2
when β is large.

(3.13) The Gertsik-Dobrushin Model [11,13]
Let E = { - 1,1} and suppose Φv: E" -> U is of the form

φ,(s) = - J ι Σ Σ Σι

Φυ is invariant under reflections and rotations of υ in the case h = 0 the spin
reversal s -• — s also belongs to 5^. Putting J 2 = 0 we obtain the Ising model; in
particular, the case J2 = 0, J x < 0 corresponds to the Ising antiferromagnet.
If j χ = 0 then the model is equivalent to the product of two independent Ising
models. For Jγ φ 0 the ground states of Φυ are shown in the following phase
diagram.
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, >0 Ji<0

Fig. 1

(The diagram in [13] is erroneous.) The stability condition (3.3) fails in the regions
where the ground states consist of an odd number of + 's and — 's and on the broken
lines. The symmetry condition (3.6) fails on the separating lines except for the
wavy line.

Theorem (3.7) thus applies to the shaded regions and the wavy line and proves
the existence of at least two or four distinct Gibbs measures when β is sufficiently
large. A further model showing a similar phase diagram is the spin version of an
eight-vertex model [13]; here

Σ ^j-Jz Σ - J 3 Π v* „ ( » ) = -
ijev

|

The interested reader will find several regions with two or four symmetric ground
states satisfying (3.3).

To conclude let us note that Theorem (3.7) is similar to the results of Pirogov
and Sinai [16, 17] inasmuch as it also gives some information on the typical
configurations with respect to the Gibbs measures μx,..., μN it has the advantage
of not being restricted to the case of finite E. But if E is finite then the method of
Pirogov/Sinai is more powerful: it works for interactions with arbitrary finite
range and does not need a symmetry condition. For example, in the model (3.13)
above their method gives the following result: Each point of the solid lines in Fig. 1
has close to it a point for which there are at least three distinct Gibbs measures at
low temperatures. However, there is a further possibility to treat such phase tran-
sitions without symmetry breaking; this device was described in Sect. 1.6 of part II
of [7]. It is not too difficult to see that this method, when it applies, may replace
the symmetry argument in the proof of Theorem (3.7). (Recall that (3.6) was only
needed in order to deduce from μ{3\ CεJ > 0 that μ(Cn) > 0 for all 1 ^ n <, But
the same conclusion holds when μ(z;eC^j31C^) is close to 1 and μ(σveAn) is close
to 1/JV for all 1 ^ n ^ N.) We leave to the reader the precise formulation of the
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theorem obtained in this way, as well as its proof and application to some examples
of phase transition without symmetry breaking.

4. Proofs

We start with the proof of Theorem (2.18) by considering the Gibbs distribution
yΛ in A = An with periodic boundary condition. The key estimate is formulated in
the following

(4.1) Lemma. Suppose for each aeΛ* we are given a measurable function fa :EV -»
[0, co[which is invariant under reflections of v. Then for all β ^ 0 we have

•f ί \

beΛ*

Proof It is well-known [7, 8] that yΛ is reflection positive with respect to the
reflections in the pairs of hyperplanes

Rk = {χeUd :xk = 0 or rc}, 1 ^ k <> d.

(To check this it suffices to observe that if the spins on A n Rk are fixed then the
spin configurations in the two parts of A\Rk are conditionally independent and, up
to reflection, identically distributed.) Therefore the chessboard estimates [7, 8]
apply, and the Lemma follows immediately. •
Next we fix an ε > 0.

(4.2) Lemma. There is a function r: [0, oo[ -> [0,1] with the property

r(β) -> 0 as β -> oo

such that for all β ^ 0 and μe(!ΰo(β) and all finite subsets D ofL* the inequality

holds.

Proof The set

is open; hence if μ = lim yΛn> for some subsequence (ri) then
n' -*• o o

Therefore we look for an upper bound oiyA(A) when A is large enough that D c /I*.
The indicator function of A can be written as

π/oυ.
aeD

where / :EV -> {0,1} is defined by

1 if Φ^s) > m + ε
f i s ) = •

J w ^0 otherwise.



Percolation and Symmetry Breaking 467

Putting

j / if aeD
Ja \ 1 otherwise

we obtain from (4.1) that

here

i/MIΓ Ίi

= MWσ)Π/(O
L aeΛ* J

rΛ(β)

Let us write

By definition

i£ = μΛ(dσ) exp [ - /?tf»] Π / ( O ^ exp [ - β\Λ\(m + β)].
αeΛ*

To find a lower bound for Zβ

Λ we let ε' = ε/2.
The open set

contains a nonempty subset of the form

ίev

where the £. are open subsets of E since λ is assumed to charge each nonempty
open set we have

iev
ΛNow consider the event B consisting of all σeEΛ which satisfy

σ. e E. if j = i mod 2 and i e v.

Then

^ c]Λ]

and

Z^ ^ J^(dσ) exp [ - βHJσ)-] ^ exp [ - j8|yl|(m + ε')

We thus conclude

This completes the proof. •
Now let P be a fixed plane in L* parallel to two axes. The elements of P are

labelled by the sites u = {uί9 w2)eZ2. Let Q be a subset of P which corresponds to a
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quadrant of Z 2 . We define

r(j8)=lΛ Σ

Clearly, r(β) -+ 0 as β -* oo. Thus (2.19) follows from the next

(4.4) Lemma. // β ^ 0 and μe©(β) then

Proof. We can write

here the union extends over all subsets D of Q labelled by finite sequences
(w ( 1 ) , . . . ,M ( ' ) )inZ 2 such that u^ = 0,uf = 0,\u{k) - u{k+1)\^^/2 for l^fc<«f,
and|tί (/c)-t/ (/c + 2 ) | > Λ /2for 1 ̂ fe < / - 1. The number of such sequences of length/
is less than /5*\ Hence (4.4) follows from (4.2). •

Now we investigate the uniqueness of the infinite low energy cluster in P. There
are several arguments in the literature which prove the uniqueness of infinite
clusters; however, these rely on the FKG (Fortuin, Kastelyn and Ginibre) in-
equalities and a 0 — 1 law for tail events. Here we give a different argument which
is based on translation invariance. We fix some β with f(β) < ~ and a Gibbs
measure μe©0(β). μ is invariant under translations. We consider two neighbouring
quadrants Q1 and Q2 in P and the half-plane π = QλuQ2. For the sake of definite-
ness we assume

Let Ae^ denote the following event: The restriction of Gε( ) to π contains an
infinite cluster C such that (k, 0)eC for infinitely many k ̂  0 and infinitely many
k ^ 0. Put

v= u u w (4 5)

A^ consists of all σ such that for infinitely many n there is an infinite cluster of
G~(a)n{ueZ2:u2 Ξ> n} which meets each of the half-lines {ul^0,u2 = n} and
{M1 < 0, u2 = n} infinitely often.

(4.6) Lemma. μ(Aj ^ 1 - 4r(j8).

Proof. Suppose first

Then

and the assertion is trivially true. Hence we can assume

λΌ{Φυ>m + ε)>0. (4.7)

Poincare's recurrence theorem ([6], Theorem (1.15)) states that

A c= A μ—almost surely.
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Therefore we only need to show

μ(A) ^ 1 - 4r(β). (4.8)

To this end we observe that

A ^ Λ+ nA_ nB
where

+= n u w v A_= u u

and

B= Π

Indeed, ifσG^4+n^4_ then there are infinitely many k ^ 0 and /c ̂  0 such that
Vε{σ) contains two infinite chains in π starting from (/c, 0): one chain going to the
left and one chain going to the right. If in addition σeB then for all k < i we have:
Each infinite chain in F ε(σ)nπ starting form (k,0) and going to the right must
intersect each infinite chain in Ve(σ) n π starting from (/, 0) and going to the left.

Therefore (4.8) will be proved once we can show

μ(A + ) ^ 1 - 2F08), μ(A_) ^ 1 - 2r(β) (4.9)

and

μ ( B ) = l . (4.10)

(4.9) follows from Poincare's recurrence theorem since, by Lemma (4.4),

To verify (4.10) it sufficies to show that for all k < 0 < ί

μ(Bk € n occurs for infinitely many n ^ 1) = 1.

Let F denote the complement of the set in this expression and suppose μ(F) > 0.
Then

v = μ( \F)

is a well-defined probability measure, v is invariant under 0(O 1 } (Since μ and F are)
and belongs to ©(/?) because F is μ—almost surely tail-measurable (see [10] for a
proof). Using again Poincare's recurrence theorem we see that

To get a contradiction we let A denote the union of the elementary cubes ueP
with k ^ u ^ /, u2 = 0. Then Bk £ o e 3* Λ. By definition of ©OS), v is equivalent to λL

on 3FA. Hence
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This contradicts (4.7). Indeed, (4.7) implies that the open set [Φυ > m + ε} contains
an open product set Y\Et of positive A-measure.

ιev

Therefore if we define

Ej = Ei if jΞΞi

then

0 < λΛί Y\E.) S λL(Bk e 0). •
\jeΛ V

Next we let S denote the event consisting of all those σ for which Vε(σ) n P
contains an infinite cluster C(σ) such that every finite subset of P is surrounded by a
circuit in C(σ). Clearly

Scz{3\CεJP)}. (4.11)

The next Lemma proves (2.20).

(4.12) Lemma. μ(S) ̂  1 - \6r{β).

Proof. Let Sί = A^ and define S2,S3,S4 as the events which are obtained from
A^ by a rotation of the plane P. Then

and (4.12) follows from (4.6). •
To complete the proof of Theorem (2.18) we observe that if μe&0(β) and

jα(31Cε

co(P))>0

then

v = / ί( |31Cε

00(F))

is a translation invariant measure in ©(jS); this is seen by the same argument as in
the proof of (4.10).

Finally we turn to the proof of Proposition (1.8). We consider the sublattice

of L*. The elementary cubes aeL* form a partition of L. Let

Ω = {0,lp.

Ω is endowed with the usual σ-algebra. For each ε > 0 we define a measurable
mapping

Tε: Ω -+ Ω

as follows: If σeΩ and αeL* then we put {Tεσ)a = 1 if a contains a pair {i, j} of
adjacent sites of L with φ(συ σ̂ .) <; m + ε; otherwise we put (Tεσ)a = 0. For each
ωeΩwQ define a graph G(ω): the vertex set is

fl=l}, (4.13)

and the set of edges consists of all pairs of ^adjacent sites of V(ω). Here a^beL*
are said to be *adjacent if a = b + 2u for some u = (uί9... ,ud) with uke { — 1,0,1}



Percolation and Symmetry Breaking 471

for all 1 ̂  k rg d. It is not difficult to see that if σeΩ and c(σ) is an infinite cluster of
gε(σ) then

C = {aeL* :anc(σ) contains an edge}

is an infinite connected subset of G{Tεσ). In other words:

{^J^T^{3CJ; (4.14)

here {^C^} is used to denote the event that G( ) contains an infinite cluster. For
μe&(β) we let με = Tε(μ) denote its image under Tg. (4.14) gives

μ(3cl)SββCJ. (4.15)

If β = 0 then με is a product measure of the form

It is well-known [18] that there is a percolation threshold pc > 0 such that

V 3 ^ J = 0 w h e n P<Pc (4-16)

Thus our problem reduces to finding conditions on ε and β which would imply

φCJ^vβCJ (4.17)
for some p <pc.

It is easily seen that (4.17) holds whenever με < v : here " -< " is the ordering
between probability measures on Ω which is defined as follows: v < V iff for each
increasing function fonΩ which depends only on finitely many coordinates

\fdvύ\fdv'.

By means of Holley's inequalities [2] we obtain the following Lemma which,
together with (4.15) and (4.16), completes the proof of Proposition (1.8).

(4.18) Lemma. Suppose the hypotheses of Proposition (1.8) are satisfied. Then
there exists a decreasing function β( ) : [0, oo[ -• [0, oo[ such that

β(ε) -• oo as ε —• 0

and

ί1ε<Vp far some p<pc

whenever ε > 0, 0 ̂  β < β(ε) and μ e ©(/}).

Proof. Holley's theorem [2] asserts that if V is any finite set and vγ and v'v are two
probability measures on {0, 1}V satisfying

vv(ω A ζ)Vv{ω v 0 ̂  vv(ω)v'v(ζ) (4.19)

for all ω,ζe{0,l} κ then

for each increasing function / on {0, 1}F. If v'v = (1 - p, pf (the product measure)
and r = p/{\-p) then (4.19) reduces to the requirement

M ω ) ^ r | ω | - | ζ l v κ ( ζ ) (4.20)
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for all ζ ^ ω; here

|ω |= Σ ω «
aeV

Therefore we have to look for conditions on ε and β which would imply (4.20) for
some r <rc = pj{\ — pc) whenever V is a finite subset of L*, μe ©(/?), and vv is the
projection of με onto {0,1}F. We fix two configurations ω, £e{0, \}v with ζ^ω.
Let

V1 = {aeV:ζa<ωa}, V2 = {aeV:ζa = ωa},

and let A denote the union of the elementary cubes ae Vί. Define

Ao = {σeΩ : (Tσ)a = 0 for all ae 7 j

A1 = {σeΩ : (Tσ)a = 1 for all ae F j

and
B = {σeΩ : {Tσ)a = ωa for all aeV2}.

Then

and

Therefore (4.20) holds whenever for each σeΩ

j λL(dτ) exp [ - βHΛ(τ | σ)] ^ r | ω | ~ | ζ | f AL(dτ) exp [ - βHΛ(τ \ σ)] (4.21)

By hypothesis, \φ\^M for some constant M < oo. Thus

\HΛ(τ\σ)\S(\ω\-\ζ\)M

where M = (2d)2dM, and (4.21) holds provided

Let

p(ε) = ^(seE1": φ(s., s) ^ m + ε for two adjacent sites ίjev).

Then

λ V t ) = p(ε) H ~ | ζ | , λ\AQ) = (1 - p(8))H-KI.

Hence (4.20) holds for some r < rc whenever

By hypothesis,

r(ε)|0 as εjO.

Thus we conclude that

β(ε) = (l/2M)log+(rc/r(s))

is a function with the required properties. •
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