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Abstract. We analyze the argument that a critical point of the action is sta-
tionary under a global scale transformation. We establish a general criterion
which allows one to prove rigorously the validity or nonvalidity of the argu-
ment in the various relevant classes of Euler-Lagrange equations. Further-
more, we give a priori estimates on solutions at infinity.

1. Introduction

In the physical literature on finite energy solutions (respectively Gibbs-, free
energy-, action- etc.) of nonlinear partial differential equations one finds frequently
the argument that non-stationarity of the action under global dilations entails the
nonexistence of finite action solutions for a wide class of model Lagrangians and
for the interesting space dimensions. In other cases global stationarity serves as a
means to establish a priori constraints on the solutions. The former point was for
the first time emphasized by Derrick [1]. Very readable accounts of the whole
subject are [2], [3]. The latter point was exploited in [4] to show the existence of
solutions for a wide class of scalar models.

That the so-called "Derrick argument" might perhaps not be fully satisfactory
was, as far as we know, for the first time emphasized in [5] for the nonlinear
σ-model. In this paper we want to discuss, among other things, the limits respec-
tively validity of this argument in full generality. We then apply the results to several
classes of model Lagrangians, including the ones discussed in [4] and some of the
models of classical nonabelian gauge theory, e.g. the Prasad-Sommerfield(PS)
monopole solution etc.

^he critical point in the usual argument is the following. The Euler-Lagrange

1 The notion critical point for a stationary point of the action was a suggestion of Prof. A. Jaffe
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(E-L) equations are derived from a local variational principle, that is, S : =
is to be stationary under variations of the fields which occur in <£9 the variations
vanishing outside an arbitrary but bounded domain of [Rfc. Global dilations, on the
other hand, do not vanish at infinity and it is not clear whether variations under the
integral are allowed.

We will solve this problem on a general level, deriving exact formulas and cri-
teria which will appear quite useful in another context, namely they allow us to
establish several independent constraint equations which the solutions have to
satisfy. As a result nontrivial finite energy solutions have a very narrow range of
allowed decay rates at infinity. Furthermore we will discuss Lagrangians with
solutions of the "hedgehog" type. We will show that in this case local stationarity
does not imply global stationarity.

2. The Connection Between Local and Global Dilations

The following analysis appears independent of the precise form of the model
Lagrangian 3? or Hamiltonian density Jf. In particular the actual scale dimensions
of the fields under discussion are not relevant for most of the arguments. Local
stationarity means stationarity under completely arbitrary variations in every
finite domain of space. Hence dilations with arbitrary scale dimensions have to
be admitted. In order to limit the amount of complicated notation, we find it more
advantageous to carry through the discussion with the help of a concrete model,
and then prove the immediate generalizations for the more complicated models.

As a simple example we take the nonlinear σ-model in k dimensions (see e.g.
[6], [5]) with Lagrangian

:= Σ Σ(^ W)2 (!)
i = U = ι

The action is S(n): = ^(n)(x)dkx, and one is interested in finite action solutions
of the related E-L equations. These critical points are stationary under variations
with compact support. The usual arguments however use a global dilation (with
noncompact support) from the outset. To compare local and global variations we
approximate the global dilation by a sequence of local ones which are confined to
spheres KR c Rk with radius R, centred at the origin. For the local dilations one
exploits the E-L equations, the surviving terms have to be estimated in the limit
jR->oo.

Hence our first task is to define a sequence of "dilations" confined to spheres
KR. The localized dilation dR(-9λ)9λeR9 is defined by a bijective map: Rk -> IRfc as
follows :

ί λ x for \x\^R
3R(\x\9 λ) x for R ̂  \x\ ̂  λ R + ε (2)
xfoτ\x\^λ-R + ε

where ε > 0 is fixed during the course of manipulations, dR(, λ) maps the interval
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[R, λR + ε] bijectively on [λR, λR + ε], x denotes the unit vector in x-direction.
The map is assumed to be sufficiently smooth in (x, λ) so that the differentiability
properties hold to the order we need them. Furthermore dR(x, 1) = x. It is well
known how to achieve these properties by gluing together the different pieces of the
map. Smoothness means in particular:

"j {Ό 1\ 2 . C > Λ ^ 2 E > _ ι _ o 2 A 2 Z? _i_ o C\\UτΛJ\, A) = A Γv, UR(AJt\ τ~ o, A) — AJK. -|- o. \J)

In other words, dR( , λ) is a true dilation for |x| ^ R and the identity for x| ̂  λR + ε.
The action S is stationary under global dilations if:

d

dλ λ=l

Remarks, (i) At the moment we assume the scale dimension of n to be zero.
(ii) For the sake of notational clarity we distinguish ^(n(λx)) from ^(n)(λx).

The latter one is the original &, taken at the point λx in the former, differentiation
is meant with respect to x.

For the σ-model <£ ^ 0, so that finite action and integrability of 3? is equi-
valent. In more complicated models where not all integrands are positive we need
a slightly stronger property.

It seems quite hopeless to give an a priori argument that it is allowed to perform
the differentiation with respect to λ under the integral in (4). To compute (4) is
quite simple, but only when dλι is directly applied to 3? the E-L equations come
into play (henceforth dλ denotes exclusively differentiation at λ = 1). In other
words, the whole argument rests on this assumption of the allowed interchange-
ability of the two operations. It seems a more advantageous strategy to approxi-
mate the global dilation by the above defined local ones and control the limit
R -> co, thereby interchanging differentiation and integration only where it is
strictly allowed. We shall see that boundary terms will survive which have to be
discussed separately in the different classes of models. We have:

dλι §^(n(λx))dkx= δAJj2f(n(dκ(x, λ)))dkx

+ dλJ{j2?(n(/lx)) - &(n(dR(x, λ)))}dkx (5)

With n(x) fulfilling the E-L equations the first term on the right side vanishes (note
that differentiation of the integrand with respect to λ is now allowed since the varia-
tions extend only over a finite domain for λ -> 1), that is, we have only to deal with
the second term in the sequel.

We divide the domain of integration into the three domains:

(i) |x| ^ R (ii) R < |x| ^ λR + ε (ii) |x| > λR + ε.

For |x| = :r ^R the global and local dilation are identical, hence we are left

with:

(6)
r > λR + ε
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For r > λR -f ε we have with dR(x. λ) = x:

dλι(λ2'k J 3>(n(x))dkx- J <S?(n(x))Λc). (7)
r>λ(λR + ε) r>λR + ε

With dS'(r) the canonical measure on the sphere Sk_l(r) of radius r, this yields:

(2-/c) J
r> R + ε

(8)

We have to show that for R sufficiently large the various terms can be made ar-
bitrarily small. The first term in (8) goes to zero for R -> oo because of the summa-
bility of ϊ£ (n). For the remaining terms one needs a property of the calibre:

R \dS(R)<e (n) -> 0 for R -> oo.

A slightly weaker property is however already sufficient, namely the existence
of a sequence {R.} with

(R. + ε)$dS(Rί + ε)&(n) -> 0 for Rt -> oo. (9)

This is eventually of some use if there are solutions with a complicated oscillatory
behaviour at infinity. (It is easy to construct positive functions with oscillating
behavior at infinity which are nevertheless integrable).

Lemma. With JS?(n) Ξg 0 and JjS?(n)dkx < oo there always exists a sequence {R.}
with the property (9).

Proof. There is at least one accumulation point of the directed system
R- JdS(R)JS?(n), R -> oo, (note Sg *> 0!), the value oo included. Hence lim inferior,
the smallest of these accumulation points, does exist. We choose a sequence which
converges toward lim. inf. (indexed by {R. + ε}). Assuming

lim. inf. R$dS(R)&(n) = a > 0

there is a Ra s.t. R $dS(R) J5f (n) ̂  - for R > Ra, otherwise there would exist a smaller

accumulation point. This however entails:

S(n) = J dr JdS(r)JS?(n) ̂  j dr-.rf dS(r)Ji?(n) (10)
0 Λα

 Γ

hence a contradiction. In other words,
lim. inf. R\dS(R)&(n) = 0, hence lim (R. 4- ε) jdS(R t + e)JSf(n) - 0. q.e.d.

#1

With the help of the lemma, choosing the special sequence {R.}, the remaining
two terms can be made arbitrarily small for R. -̂  oo. It remains to discuss the first
term in (6).

Remark. For the sake of greater generality, we discuss at this stage the general case
of an 5f depending on an arbitrary number of fields combined in an n-vector φ
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and their derivations, leaving their special transformation properties open at the
moment.

For dλι j £?(Φι Sφ)dkx the calculation is completely equivalent to the
R<r<λR + ε

discussion of the second term of (6). The remaining integral we treat as follows:

δλι j <&(φ(dR(x,λ)\dφ(dR(x,λ)))dkx= j
R<r<λR + ε R<r<λR + t

+W^} 'dλιdvΦi}dkx + R$ds(R + £)^(Φ>dΦ) (11)

The second term converges toward zero for Ri -> oo. In the first integral dλ , dv

commute. A partial integration yields immediately (remember the boundary
condition (3) for λ = 1 at r = R, r = R + ε):

(Note that do = - dS(R).— for the inner sphere r = R !)
R

The first integral vanishes because of the E-L equations, yielding the final result :
fiy? γ

. dφ)dkx = lim JdW_— δ^,. (13)

Remembering dR(x, λ) = λ x for |x| = R, we can make the structure of this
expression more explicit arriving at :

with dr denoting the radial derivative.
Before putting the result into final shape we convince ourselves that the

generalizations to the more complicated models are straightforward. Up to now
we have used as special properties of the σ-model only 5£ ^ 0 and the appearance
of the prefactor λ2~k in front of the integrals (scale dimension zero). Both pro-
perties are not essential for the discussion. Instead of & ̂  0 it is enough to assume
integrability of the terms Jίf . in & which have the same transformation properties
under dilations. Furthermore we can assume arbitrary scale dimensions for the
various fields occurring in $£ .

So let us define :

φλfi(x): = λΛiφμx) with α.6 M (15)

The bijective map dR(x, λ) defined in (2) has to be supplemented by an additional
prefactor /.(Λ) (A, r) in front of the fields, which is smooth, taking the values:

j> l forrgR
, r): = < interpolating in between (16)

1 for r > λR + ε
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In most of the terms this changes the results only by a trivial constant prefactor
arising from differentiation of products of various /.'s at λ = 1. This is the case for
the domains of integration (i) and (iii). For the domain (ii) R < r ̂  λR + ε we have :

J <?^x)dkx - ί<n/iwμ, r)- <MdR(x, y))dkx (17)
r^λR + ε /

with P.(λ) a monomial in the various /lαι's. (We dropped in <£ the variable dφ). But
the additional term (dλίPt(λ)) J &.(φ(χ))dkx converges to zero for R -+ oo.

R<r^R + ε

As to the second second term we get :

(18)

(notethat/.(l,r)s=l).
In the limit Rt -> oo this yields:

AC?

But r = R we can again take the derivative with respect to λ for r < R and after-
wards r -> R because of the smoothness property of//Λ) yielding:

limf dSίR^^- ί̂δ^ x, + α;4>;). (20)

So we arrive at the main theorem of this section :

Theorem. Let φ(x) be a solution of the E-L equations to the Lagrange density
£?(φ, dφ) with φ the n-tupel of fields with arbitrary scale dimensions (xrlt is assumed
that the action is finite in the sense that for all terms of $£, having the same trans-
formation properties under dilations and being combined in an ££ '., we have
$\&t\dkx < oo. Then we have

In other words, a solution of the E-L equations is stationary under global dila-
tions if and only if the above expression vanishes for R. -> oo.

The usefulness of this result will become apparent in the next section, parti-
cularly when it is combined with other results (e.g. [4] ). For many model Lagran-
gians one can explicitly show the vanishing of the above term for R — > oo for a
wide classes of scale factor {α.}. Hence we usually get several independent con-
straint equations a finite energy solution has to fulfill. Furthermore the assumed
finiteness of the various parts Jj^Λc of $&dkx9 consisting of the terms with ana-
logous transformation properties is a sensible tool to test the behavior at infinity
of the finite energy solutions.
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3. Applications

(0 σ-Model
It is shown that the usual Derrick argument is applicable to the σ-model, that is,
the above expression (21) vanishes for R -» oo for a finite energy solution. With
scale dimension α = 0 we have :

drnt ) = HmR $dS(R)(drni)
2

£ lim R $dS(R)(dvφ:)2 = Urn RjdS(R)JS?(3vH.)
R R

= 0. (22)

The last equality follows from the argument given in (10).
That is, the E-L equations imply stationarity under global dilations. The

Derrick argument then shows the nonexistence of finite energy solutions for k > 2
with the help of:

kx)ί 0 f o r / c > 2 .

(H) Gίnzburg- Landau Type Lagrangians
A slightly more complicated class of model Lagrangians consists of models having
the time-independent action (vector potential A = 0 at the moment):

(23)

with φ an n-tupel of real fields, U a polynomial. For simplicity we take U as :

U(φ)=-a\φ\2+b\φ\\ α,b^0. (24)

Remark, (ί) For U positive everywhere we can again exploit the Derrick argument.
(if). Note that this implies that if one normalizes U so that the minima are

at U = 0 there are no solutions of finite energy for fc > 1, while the shifted U of (24)
allows them.

It was shown in ( [4] ) for a wide class of (7's and scalar φ that under mild
restrictions there are always nontrivial finite energy solutions vanishing at infinity
(U normalized to £7(0) = 0), and that the solution of minimal action is spherically
symmetric and monotone decreasing.

For scale dimension α = 0 we have the usual constraint:

(2-k)T-kV=0 (25)

: = $U(φ)dkx.

We want to derive a further constraint by applying our general result to the case
α = 1. To infer global stationarity from the E-L equations we have to show the
vanishing of

a>. φ. = \iml-$dS(R)dr(φ)2. (26)
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(This is the contribution in (21) coming from α — 1, the other term in (21) vanishes
for R -+ oo since the expression converges to zero for α = 0.)

As already stated we can assume the solution of minimal action to be a function
of r only, vanishing at infinity. Assuming an asymptotic behavior at infinity
φ(r) ^r~7, we have by qualitative reasoning: dr(φ)2 ^r" (2y+1) at infinity. On the

k — 2
other hand, assuming Γto be finite we have roughly: drφ ^ r~

(γ+ υ with γ > — - — ,

that is dr(φ}2 S r~ ( k~ 1}~ε, which is enough to entail lim $dS(R)dr(φ)2 = 0.
R

Hence we should be allowed to apply our general result which yields for the
special case α = 1, U(φ) = — aφ2 + bφ4:

+λ(4-k) V2 (27)

with 7t - j>2Λc, V2 = $φ4dkx. '

Remark. Note that we have to make the assumption Vl , V2 < oo (this was the
input to infer the theorem of the last section for α = 1) for a finite action solution.
For α = 0 we have to assume only J U(φ)dkx < GO.

Hence assuming Vl < oo for a moment which immediately implies V2 < oo,
since we already know that the solution with J U(φ)dkx < oo does exist, we have
now two constraint equations, namely:

(i) (2 - k)T-k( - aVΐ + bV2) = 0; α - 0 (28)

(ii) (4 - k)T- (2 - k)aVι + (4 - k)bV2 = 0; α - 1

yielding the dimension-independent constraint:

(iϊi) 2T -2aV1+ 4bV2 = 0. (29)

For k = 3 we get, combining (i) and (iii) :

T+ aVl +bV2 = Q hence T=Vl = V2=Q. (30)

(For k = 4 we get Vί = 0, that is φ = 0.)
On the other hand the existence of a finite energy solution was shown in ( [4] ).

Hence our conclusion is that V^ , V2 are not finite separately, even for a solution
vanishing at infinity. With the help of §φ4dkx = oo a rough estimate yields :

φ -» 0 for r -» oo weaker than r — 1/4/c .

Combined with the above estimate in the paragraph after (26) we have, assuming
φ(r) ^r~y for r -> oo :

I f c _ l < y < i f c .

Conclusion

A finite energy solution φ for the Lagrangian (23) vanishing at infinity, approaches
zero for r->oo stronger than r-((1/2) f c~1) and weaker than r~

(1/4)k G.g.k = 3^>

i<7<!)
As an example of an abelian gauge theory we can take e.g. the Ginzburg-

Landau hamiltonian with a nonvanishing vector potential A(x) and a complex
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scalar field φ. The action reads (we think mainly of an energy hence the different
sign convention):

S = $£\(dμ + ίqAμ)φ\2 + (-a\φ\2 + b\φ\*) + ±\B\2}dkx. (31)

With the normalization as in (31) the well-known vortex solution of type II super-
conductors (in a wider context also discussed in ( [7] ), [8] ) approaches a minimum

fa Y / 2

of the potential U(φ\ namely | φ \ -> I — j for r -> oo (k = 2) . This would become a

finite energy solution only after a shift of U ( U(φ) -> b ( | φ \2 — -- 1 j . In any case,

Vl = V2 = oo, but in a trivial way, and we can conclude nothing interesting from
this fact. On the other hand, as above we can ask for solutions of (31) vanishing at
infinity (it is not known to us whether they do exist at all, not to speak of their
topological stability). Choosing (i) aA = 1, α, = 0 (iί) aA = 1, a ώ = 1 we have
(F3: = iί|BVx):

(2 - k)T-k( - aVl + bV2] + (4 - /c)F3 - 0

(4 - k)T - (2 - k)aVl + (4 - k)bV2 + (4 - fc)F3 - 0 (32)

which yields again:

2Γ - 2aVl + 4bV2 = 0 and e.g. for k = 3 :

Γ+αF1 + bF2 + F 3 =0->Γ = Vί = V2 = F 3 =0.

That is, the trivial solution, and if a nontrivial solution exists, F1 = F2 = oo and
we had the same poor decay with the same bounds as in the conclusion above.

The Non-Stationarity of the Bogomolny-Prasad-Sommerfield Solution
In this section we want to discuss the P-S-solution as an example of a wide class of
models where the usual scaling arguments completely fail. As to the motivation
and the physical significance of the various expressions occurring in the following
we refer e.g. to ([2], [3], [9], [8], [10]). Here we are only interested in the connec-
tion between local and global variation in this model. For fields constant in time
3? has the form:

<e=-je=- ~Ga

μvG
aμv - ±@μφ

a@μφa = : -$eγ -$e2 (33)
with μ, v, a = 1, 2, 3 and :

a = dμφa - eεabcW
bμφc.

A spherically symmetric solution was for the first time given by Prasad and
Sommerfield with the help of two functions K(ζ\ H(ζ) ζ : = aer, a defined by
a: = lim \φ\(r).

r -> co

H(ζ) = ζ coth ζ - 1, K(ζ) = ζ(sinh ζ)~ 1

φ°(r) = j H(aer), Wai = - εαί . ' ( 1 - K(aer] ). (35)
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For the P-S solution the energy density is of the simple form:

= V2(φ2). (36)

It is a special property of these equations that the asymptotic behavior, expressed
in the free constant a is not fixed by the solution. In ([10]) this phenomenon was
related to the nonvanishing of certain boundary terms occurring in the generator
of the dilations. We want to show that this is only a special feature of a more
general phenomenon, namely the non-stationarity of solutions under global
dilations while they are true solutions of the E-L equations.

At first we want to exhibit the behavior of ffl (x) under dilations, the fields
endowed with different scale dimensions. (Obviously 3?(x) does not keep its simple
form (36) after a variation !)

(0 A«(x) : - λλa(λx\ φa

λ(x) : = φa(λx) (37)

with ~ denoting the P-S solution. With 3 t f l , 3 t f 2 as in (33) we have the scaling
properties :

2Jff2(λx) (38)

(with the derivatives in 3f .(Ax) acting at λx !). This yields :

pTΛ(x)d3x = λjΛ^ίx^x + λ~l^2(x}fx (39)

with J^t + 2tf2 now having the simple form (36). In other words:

hence dλl^λ(x)d3x = J^(x)d3x - 2j J%(x)d3x = 0.
(Note that for the P-S solution 2J% = &[)

That is, under this type of dilation we have global stationarity. But the solution
is to be stationary locally under any type of dilation. Another choice is :

(ii) A«(x) : = λλa(λx\ φ\(x) : = λ$a(λx) (40)

yielding: ̂  λ(x) = λ4J&(λx) and dλι $Jtfλ(x)d3x = \^(x)d3x + 0.

In other words, under this type of dilation the P-S solution is not stationary. Since
it is a solution of the E-L equations, this phenomenon must have its roots in the
non- vanishing of the boundary term (21).

In case (ii) we have the boundary term :

Only the latter term can contribute since the first and second terms have to vanish
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for R -> oo because they arise already in case (i). The last term yields :

-> ίd3rdv(^vφ< φt) = j^f(r)rf3r (for R -> oo) (42)

with #e (r) the energy of the P-S solution.
In other words, the P-S solution is a nontrivial example where the usual

scaling argument does not apply. A solution of the E-L equations need not be
stationary under global dilations. Furthermore this example shows that it de-
pends crucially on the choice of the scale dimensions whether the scaling argu-
ment is conclusive.

Note: Prof. A. Jaffe kindly informed me that a related argument will appear in Chapter Two of his
book with C. Taubes on vortices and monopoles.
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