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Abstract. We show that any asymptotically flat initial data for the Einstein
field equations have a development which includes complete spacelike surfaces
boosted relative to the initial surface. Furthermore, the asymptotic fall off is
preserved along these boosted surfaces and there exists a global system of
harmonic coordinates on such a development. We also extend former results
on global solutions of the constraint equations. By virtue of this extension, the
constraint and evolution parts of the problem fit together exactly. Several
theorems are given which concern the behaviour in the large of general classes
of linear and quasilinear differential systems. This paper contains in addition a
systematic exposition of the functional spaces employed.

1. Introduction

Lichnerowicz showed [1] that the Einstein equations form a system in involution
and that the Cauchy problem in general relativity consists of two problems: the
problem of the initial value constraints and the problem of evolution. Choquet-
Bruhat [2] employed the harmonic coordinate condition to reduce the evolution
equations to a hyperbolic system and showed the existence and uniqueness of
local-in-time solutions. An improvement of this result was later obtained in [3]
based on the work of Leray [4] and Dionne [5] on hyperbolic systems. Global
uniqueness, namely existence of a unique maximal development of the initial data,
was shown by Choquet-Bruhat and Geroch in [6]. The evolution equations were
studied from the point of view of a first order symmetric hyperbolic system by
Fischer and Marsden [7]. The sharpest differentiability results for the evolution
equations are due to Hughes, Kato and Marsden [8]. The problem of the initial
value constraints, formulated in a particularly satisfactory way in the work of
York [9] and O'Murchadha and York [10], was studied on a compact manifold
by Choquet-Bruhat [11], and on a manifold which is euclidean at infinity by
Cantor [12, 13] and Chaljub-Simon and Choquet-Bruhat [14].

The existence of local-in-time solutions to the Einstein equations is a result
which is perhaps sufficient for the study of cosmology. It is however insufficient for
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the study of isolated systems. With this in mind, we wish to pose a sequence of
three problems for the vacuum Einstein equations on 1R4 which are extensions of
the local-in-time problem in a successively stronger sense. In each case, the first
part of the problem is to construct on the surface x° = 0, which we call Σ, a
complete riemannian metric g and a 2-co variant symmetric tensorfield fe, such that
the pair (g, k) satisfy the initial value constraints. In each case also, we are asked to
find an open set Ω D Γ and a solution γ to the vacuum Einstein equations on Ω such
that (g, k) are respectively the first and second fundamental forms of Σ relative to
γ and (Ω, y) is a globally hyperbolic spacetime. This is what is meant by a
development of the initial data (Σ, g, k). The sequence of three problems which we
shall pose are characterized by successively stronger demands on the largeness of
Ω. To be precise, let us consider a pair of points p,qeΩ and let us define χ+(p, q) to
be the supremum of the lengths of all future-directed non-spacelike curves from p
to q if qe J+(p) (the causal future of p) and zero otherwise. Thus χ+(p, q) is the
future temporal distance of q from p. Similarly, we may define the past temporal
distance χ~(p,q). If (Ω, γ) is globally hyperbolic, χ+ and χ~ are known [15] to be
continuous maps ΩxΩ-»IR+. Let us also define the function χ+ on Ω, taking
values on the extended positive real line by :

Thus χ+(p) is the future temporal extent of Ω at p, namely the future temporal
distance of the boundary of Ω from p. We may define the function χ~ (past
temporal extent) in a similar way. Let d(x,y) be the distance function on (Σ9g)
defined by its riemannian structure and let d(x) = d(x, 0) where 0 is a fixed point on
Σ which we take as the origin. We denote by BR = {XE Σ\ d(x) rg R} the closed ball of
radius R centered at 0 on (Σ, g).

1. The boost problem: (Ω, γ) should be such that there exists a λ>Q such that
V x e Σ :

χ±(x)>λd(x).

Thus we require the temporal extent of (Ω, y) to grow linearly with the radial
distance. We have given to this problem the name "boost problem" because in this
case (Ω, y) includes complete Cauchy surfaces wich are "boosted" relative to Σ.

2. The radiation problem : (Ω, y) should be such that there exists a (finite) real
number R such that VxeΣ — BR

χ±(χ)=co.

In this case there are complete null geodesies in (Ω, y) through every point of
Σ — BR, a fact which justifies the name "radiation problem." This problem is of
great interest for the study of isolated systems since it should allow one to
investigate the asymptotic behaviour of the solution along the light rays. Finally,
we can pose :

3. The global problem : (Ω, y) should be timelike and null geodesically complete.
From the singularity theorems [15], we know well that this problem can have
solutions only for limited initial data.
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In this paper we shall give a complete solution to the boost problem for freely
specifiable initial data which are asymptotically flat in a very weak sense. In
retrospect this result is not surprising because singularities are expected to form
only in regions of strong gravitational fields. Since the data falls off at infinity, one
should be able to go out far enough to find a region of sufficiently weak data where
the time interval of existence is long. However it is not at all clear, a priori, that this
time interval grows linearly with the radial distance. In fact it will be seen that the
Yang-Mills equations have very different asymptotic behaviour. Our results are
significant for the study of spacelike infinity [16-19].

One of the strengths of the methods used in this paper is that the function
spaces in which solutions to the initial value constraints are constructed are
exactly those used to construct solutions to the evolution equations. This precise
fitting of the elliptic and hyperbolic parts of the problem had been achieved only
for the completely local Cauchy problem, namely local-in-time and local-in-space.

We have tried to give a self-contained exposition.

2. Function Spaces

Let U be any open set in 1R" and let σ be the function :

We shall define the following spaces of functions on U with values in some given
finite dimensional vector space V.

Definition 2.1. Cs

δ(U), seN, <5elR, is the Banach space of functions u on U with
values in V, of class Cs, such that :

Definition 2.2. Hsδ(U), seN, <5eIR, is the class of all functions u on U with values
in V, possessing weak derivatives up to order s, such that σδ + ̂ DaueI?(U) for each
|α|^5. Hs δ(U} is a Hubert space with respect to the inner product:

We shall write the norm:

As with the usual Sobolev spaces HS(U), these weighted Sobolev spaces Hs δ(U)
have the following density property:

Proposition 2.1. // U has the segment property, the set of restrictions to U of
functions in C^(1R") is dense in Hs δ(U) for each seN, <5eIR.

Remark. The segment property (see [20]) says that the domain U does not lie on
both sides of its boundary.

Given 0<ε:gl, let φε be the differentiable transformation of 1R" defined by:
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(φί is the identity transformation of R"). Consider the operator Tε9 acting on
functions / on 1RΠ with values in V in the following way :

Tε is bijective, it is a linear operator, and satisfies Tε(fίf2) = Tε(fl)Tε(f2). Thus Tε is
an automorphism of the ring of functions on R" with values in R In [21] the
following lemma is demonstrated :

Lemma 2.1. For each 0<ε^l, Tε is an isomorphism:
a) c;(t/)-+q>.(i7))

and
b) H^U)-^HίΛ(S+nl2m_nl2(

The imbedding and multiplication theorems which follow were proven in [21]
by using this lemma. We need to introduce :

Definition 2.3. An open subset £/cR" has the extended cone property if φε(U) has
the cone property for each

Remark. A domain U is said to have the cone property (see [20]) if there exists a
finite cone C such that each point xe U is the vertex of a finite cone Cx contained in
U and congruent to C (Cx is obtained from C by rigid motion). A domain satisfies
the stronger requirement of Definition 2.3 if in addition it has a linear growth at
infinity. This in particular excludes slabs contained between two parallel
hyperplanes.

Theorem 2.1 (imbedding). // U has the extended cone property, the following
inclusion holds and is continuous :

HSίδ(U)cCs

δ,(U)

if s'<s-n/2, δ'<δ + n/2.

Theorem 2.2 (multiplication). // U has the extended cone property, then pointwise
multiplication

is a continuous bilinear map :

if s l 5s2^s, s<s1+s2 — n/2,

Corollary. // U has the extended cone property, then Hs δ(U) is a Banach algebra if
s > n/2, δ> — n/2.

Remark. Theorems 2.1 and 2.2 are the strongest such results that can be obtained.
For example, the functions which are the powers of σ contradict any weakening of
the conditions on δ.

In addition to the imbedding and multiplication theorems, we shall need a
composition theorem. We first show :



The Boost Problem in General Relativity 275

Lemma 2.2. // 17 has the extended cone property and f is a diffeomorphism U-^U'
such that det(D/)^c>0 and f-iάeHs+^δ_1(U} with s>n/2, δ>-n/2, then
composition u^>u°f is an isomorphism:

for every <5'e1R.

Proof. Let us denote
= f(x),xeU.

By the imbedding theorem there is a β>0 such that / — ideC^^l/). It follows
that there exist positive constants cί and c2 such that:

(x}. (2.1)

Considering the fact that

dy = det(Df)dx,

we conclude that there exist positive constants c\ and c'2 such that for every

c\ j \σ(x)δ 'uof(x)\2dx^ J \σ(yfu(y)\2dy^c'2 J \σ(xf u*f(x)\2dx
U U' U

which shows the lemma. Π

Remark. lϊU = R", the assumption det(d/) ̂  c> 0 is redundant, since Df(x)^I (the
identity matrix) for |x|-»oo and detφ/)φO.

Lemma 2.3. // U has the extended cone property and f is a diffeomorphism U->U'
such that det(D/)Ξ>c>0 and f-idEHs+ίδ_ί(U) with s>n/2, δ>-n/2, then

'

Proof. Applying Lemma 2.2 with δ' = δ — l to u = f~1— id we obtain

δ_1(U'\ since:

We have :

where

The facts that D(f — id) belongs to Hs δ(U\ which is a Banach algebra by the
corollary to the multiplication theorem, together with det(D/) ̂  c> 0 imply that
heHsδ(U). Application of Lemma 2.2 with δ' = δ to u = h°f~1 gives
D(f~l-id)eH0 tδ(U'\ For 2^/c^s+l we use the formula:

DV"1-id) = Λo/- 1,
where
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The multiplication theorem implies that :

Therefore, Lemma 2.2 with δ' = δ + k— 1 applied to u = gk°f~
1 yields:

t

Consequently, we have / ~ 1 — id e H s + 1 ? δ _ l ( U'). Π
We shall now employ the above two lemmas to prove :

Theorem 2.3 (composition). // U has the extended cone property and f is a
dίffeomorphίsm U-+U' such that det(D/)^c>0 and f — iάeHs+lίδ_1(U) with
s>n/2, δ> — ft/2, then composition u-^u°f is an isomorphism:

for every s'^s+1, (5'elR.

Proof. For s' = 0 the theorem reduces to Lemma 2.2. We first show by induction
that u->w° / is a continuous map:

for every s'gs+ 1, (5'eR Indeed, let this statement be true for s' — I and every (5'eR
and let ueHs, δ,(U'). Then DueHs,_1 δ> + 1(U') and by the inductive hypothesis

We have :

Since D(f — iά)eHs δ(U) and by Theorem 2.2 pointwise multiplication is a
continuous bilinear map :

we conclude that D(u°f)eHs,_ι δ' + ι(U) and:

Hβ,tδl(UΊ .

On the other hand the inductive hypothesis gives also uofeHs>_ί^δ>(U) and:

It follows that u*fεHs,tδ,(U) and:

I I uof\\Hs/ δr(U)^const \ \ u \ \ H β , t Λ l ( U Ί ,

which completes the inductive step.
Since by Lemma 2.3 f'1— ideHs+1 ίδ_l(U'\ the continuity of the inverse of

u\-*u°f follows as above, in view of the fact that by (2.1) and the condition det(Z)/)
ΞgoO also V enjoys the extended cone property.

Let now Ds+1 δ_1(]Rn) denote the set of all differentiate transformations / of
IR" such that /-i'deHs+1>d_1(lRn). In view of Theorem 2.3 we have:
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Corollary. // s>n/2 and δ> —n/2, then Ds+1 δ_ί(ΊR!1) is a topological group with
respect to composition.

Denoting x^x1, ... jX 1 1" 1) and σ(5c) = (l + |3c|2)1/2, let Ωθ be the domain defined
by:

where 0 < θ < 1. This domain will play an important role in the sections concerning
the evolution problem. It enjoys the extended cone property. For such a domain,
replacing σ by σ in Definitions 2.1 and 2.2 gives equivalent norms.

We define on Ωθ the function

σ(x)

This function induces a foliation of Ωβ :

Ωβ= (J £,./« = ] -ME, (2-4)
τe/e

where Στ are the level surfaces of τ. The following map is a diffeomorphism :

- , .

Let G be the operator which sends functions u defined on Ωθ with values in
some given finite dimensional vector space V into functions Gu defined on
Iθ x 1R"~ 1 with values in V by :

= u°ιp~ί

Taking into account the fact that the euclidean measure dτdx on T^xIR"" 1 i
related to the euclidean measure dx on Ωθ by :

one can show that there exist positive constants c1 and c2 such that for every
uεHSίδ(Ωθ)

cΛu\\2

Hsό(Ωθ^ J Σ \5* + * + MDk

τD'Gu\2dτdx
I θ x R » - ι k+\β\^s

^2\\u\\2

Hs:δ(Ωθ). (2.5)

Let us define the following restriction norm to the hypersurfaces Στ :

/ s \ 1 / 2

MB. ,(ι,.ββ)= Σ ll^oWliJlH.. k i i + k(R-i, (2-6)
u=o /

The following restriction lemma was proven in [22] by employing the isomor-
phism (2.5) :

Lemma 2.4 (restriction). For each τe/θ, the following inclusion holds and is
continuous :

for every seN,
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3. The Constraint Equations

Initial data for the vacuum Einstein equations consist of giving a riemannian metric g
and a 2-covariant symmetric tensorfield k on the hypersurface x° = 0 which we call
Σ. These are going to be respectively the first and second fundamental forms of Σ
in the spacetime (Ω,y) to be constructed. It follows from the Einstein equations
that a necessary condition for the existence of such a spacetime is that the initial
data satisfy the constraints (equivalent to G^/^0):

δg(k-(tΐgk)g) = 0

R(g)-\k\2

g+(ίΐgk)2 = Q,

where #(0) and δg are respectively the scalar curvature and divergence operator of
the metric g. We shall assume for simplicity that Σ is a maximal spacelike
hypersurface of (Ώ, y). Then the constraints reduce to :

Kgk = δgk = 0 (3.1)

K(0)-|fc|,2 = 0 (3.2)

In York's formulation of the initial value problem [9, 10], one gives on Σ a
riemannian metric g and a 2-covariant symmetric tensorfield fe subject to the
conditions

tτgk = δsk = 0. (3.3)

Then if one can find a positive function φ satisfying the Lichnerowicz equation :

il%Γ7=o, (3.4)
the riemannian metric g = φ4g, together with k = φ~2k satisfy (3.1) and (3.2). We
shall therefore study the space of solutions to (3.3) and the existence of positive
solutions to (3.4).

We shall use theorems on linear elliptic systems on IR" which were proven in
[21] in the more general context of euclidean at infinity manifolds. These results
are extensions of results obtained by Cantor [23]. Let L be a linear differential
operator of order m on IR" :

m

Lu= Σ ak D"u,
k=0

where u and Lu are IR" valued functions on IR". We introduce the following
hypotheses :

Hypothesis I ( ellipticity ) . At each xelR" and for every vector £ΦO we have:

det(αm(*K")>0,

where am(x) - ξm is the matrix :

Remark. The ellipticity condition implies that Nm is even.
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Hypothesis II (regularity). There exist nonnegative integers sk and real numbers

δk>® = k = m> sucn tnat:

sfc > - + fc — m+l,δk>m — k— -:0^k^m

and
1) akeHSkίδ

2) am-Am

where

is a homogeneous elliptic (hypothesis I) operator of order m with constant
coefficients.

Remark. By virtue of hypotheses I and II there exists a positive real number λ,
called the ellipticity constant, such that for every xelR" and every vector ξ :

The following theorems were proven in [21] :

Theorem 3.1. The homogeneous elliptic operator with constant coefficients on 1RM:

Lx=Am Dm

of order m<n, is an isomorphism :

^s,δ~^^-s-m,δ + m

if s ̂  m and — n/2 <δ< —m + n/2.

Remark. Theorem 3.1 in the special case of the Laplace operator of the euclidean
metric is due to McOwen [24].

Let us denote by E the set of linear differential operators of order m on 1R"
which satisfy hypotheses I and II. We define a metric (hence a topology) on E by
setting :

We set :

s'= min (s.JH-m.
O ^ f c i m ^ kί

Theorem 3.2. Let Lbea linear differential operator on 1R" of order m<n, such that L
belongs to a continuous (in the sense of d) curve {Lf|fe/^[0, 1]}, L^=L, of
injective operators in E. Then if L0 is an isomorphism :

with m^s-^s' and —n/2<δ<—m i- n/2, the same is true for L.

In applying the above theorems we shall make use of the following
proposition :
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Proposition 3.1. If L is a differential operator on 1R", or order m<n, satisfying
hypotheses I and II, then every ueker(L) which belongs to Hs δ with m^s^s' and
δ> — n/2, belongs also to Hsδ, for any δ' < —m + n/2.

Proof. By hypothesis II, akeHSk δ k :0^fc^w— 1 and am — AmeHSm δ^ with δk>m
— k — n/2 for each Orgk^m. Therefore:

= min

We shall show that every ueker(L) which belongs to Hs δ, δ> — n/2, belongs also
to HStδ, for any δ'<mm{δ + ε, —m + n/2}. From this result the proposition follows
by induction. Let us define :

f=(Lao-L)u=- Σ ak Dku-(am-AJ Dmu.
k = 0

By applying the multiplication theorem we find: feHs_m δ,+m for any δ'<δ + ε.
On the other hand, since weker(L) we have:

which by Theorem 3.1 implies UEHS)δ, if δ' < -m + n/2 also. Π

Remark. The condition on δ in Theorems 3.1 and 3.2 is exactly the one that would
be expected from standard results for Poisson's equation Δφ = ρ in 3 dimensions.
The lower bound on δ, — 3/2 <<5, by the imbedding theorem implies that φ-»0 at
infinity. The upper bound, δ < — 1/2, on the other hand, says that in general φ does
not fall off at infinity faster than 1/r.

We shall apply the above theorems to the problem of the initial value
constraints. First we need to show how to obtain solutions to (3.3), namely how to
obtain 2-covariant symmetric tensorfields on (R",§) which are transverse and
traceless. This is done in the York decomposition theorem which follows
(Theorem 3.4). A previous version of this theorem is given in [12]. However the
proof given there fails (except if the restriction is imposed that g is everywhere
close to e) because it relies on Lemma 5.5.2 of [23] which is false. Our proof of the
theorem employs the proposition that if g is asymptotically euclidean it admits no
nontrivial conformal killing vectorfields tending to zero at infinity. This pro-
position follows from :

Theorem 3.3. Let u be a 1R.N valued function on IR", of class Cm + l satisfying the
following condition: The derivatives ofu of order m + 1 can be expressed as a linear
combination, with C° coefficients, of the derivatives of order ^ m :

k
fc=0

Dm + 1u- bk Dku. (3.5)

IfbkeClwith:

δk

and uεC™ β>0, then u = 0 on
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Proof. Let BR denote the open ball of radius R in R". We have the following
calculus inequality : there exists a constant c independent of R such that for every

1(Rn), j3>0:

1^llc^w + 1(^_β-R). (3.6)

On the other hand, if u satisfies conditon (3.5) we have:

\\Dm+ίu\\c°f + m+^-BR}ίμ(R)Mc^-BR}, (3-7)

where :

M*)= Σ IIMca+ 1-k(R.-Bβ)
fc = 0

Denoting :

m

*= Σ ii&Jcs
fc=0

and:

ε= min {δk — m— 1 + fc} ,
O ^ f c ^ m κ

we have ε > 0 and :

μ(R)^R~εB. (3.8)

Inequalities (3.6), (3.7) and (3.8) give:

which, if:

R>(cB)1/ε,

implies u = 0 on R" — BR.
Consider now an IR" valued function u on 1R", of class Cm+ x, such that

Let B(x0,r) be the open ball of radius rg 1 in R", centered at x0. Taylor's theorem
gives :

Mcΐ(B{Xa,^c'r\\D"'^u\\co(B(Xo^. (3.9)

On the other hand, if u satisfies condition (3.5) we have:

llum + 1«llcg«B(xo,,,)^B'll"llo,(B (x0, r,), (3.10)
where :

'= Σ I
k = 0

Inequalities (3.9) and (3.10) give:
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which, if :

implies u = 0 on B(x0, r).
Let us denote :

By the proceeding argument this set is open, Since Dku:Q ̂ k^m is continuous, U
is closed as well. Furthermore U is non-empty since we have shown that u = 0 on
W-BR. Thus U = W and w = 0 on IRn. Π

As a corollary of the above theorem we have:

Proposition 3.2. Let g be a riemannian metric on IR" such that g — eEC^β>Q.IfXis
a conformal killing vectorfield of g of class C3 such that XeC^, thenX = 0 on IR".

Proof. IfX is a conformal killing vectorfield of g, one can express the 3rd covariant
derivatives ofX with respect to g in the form:

where R0 and R1 are linear expressions in Riem(g) and FgRiem(g) respectively.
Hence Theorem 3.3 applies, taking m — 2.

Remark. An analogous proposition for killing vectorfields and n = 3 but more
general riemannian manifolds has been proven by Choquet and Choquet-Bruhat
in [25].

Let us denote by Lg the conformal killing operator of g, namely the 1st order
linear differential operator which maps vectorfields X into 2-co variant symmetric
tensorfields :

Lg(X) = Lxg+^(δgX)g. (3.11)

Consider the 2nd order linear differential operator δg°Lg which maps vectorfields
into vectorfields. We shall show:

Lemma 3.1. Let n>2, s> n/2 -f 3, — n/2 <δ< — 2 + n/2. If g is a riemannian metric
on W such that g — eeHs>δ, then the operator δg°Lg is an isomorphism:

Proof. The operator δg°Lg satisfies hypotheses I and II. We shall first show that it
is injective. Let X<ΞkGr(δg°Lg) and XeH2 δ with δ> —n/2. By Proposition 3.1, X
belongs also to H2 _1. Integrating the equation

over IR" with the canonical measure dμg of the riemannian metric g we obtain :

This result is obtained by approximating X with vectorfields Xn e C^ (Proposition
2.1) and holds because XeH2 _ l t It follows that Lg(X) = Q, hence X is a conformal
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killing vectorfield of g. If now XeHs δ with s>n/2 + 3, δ> — n/2, the imbedding
theorem implies thatXe C| with β >0. Therefore Proposition 3.2 applies andX — 0
on IR".

Thus δg°Lg is injective on fίs><5 for any riemannian metric g satisfying the
hypotheses of the lemma. Let now :

and consider the family of operators: {δgt°Lgt\te!}. This family is a continuous
curve of injective operators in E and

is an isomorphism: Hsδ^Hs_2δ+2 by Theorem 3.1. Consequently, the hy-
potheses of Theorem 3.2 are satisfied for the operator δg°Lg and the lemma
follows. Π

We are now in position to prove :

Theorem 3.4 (York decomposition). Let n > 25 5 > n/2 + 3, — n/2 < δ < — 2 + n/2 and
let g be a riemannian metric on IR" such that g — eeHsδ. Then the space of
2-covariant tensorfields on (IR", #) of class Hs_1 δ+1 decomposes into:

where :

Proof. We first decompose :

Hs-ltδ+ι=iτg(Hs-lfδ+l)g®Gs_ltδ+l, (3.12)

where :

Decomposition (3.12) follows from the fact that g — e belongs to a Banach algebra
(multiplication theorem) and we have det# ̂  c> 0 (since by the imbedding theorem
g — βe CQβ for some β >0). It remains to be shown that G s_ 1 δ+1 decomposes into :

ltδ+1. (3.13)

For all vector fields XeHs δ it holds: tΐg(Lg(X)) = Q. Hence we have:

On the other hand we have also :

By Lemma 3.1 the composition δg°Lg is an isomorphism: HSίδ-*Hs_2^δ + 2.
Therefore, the decomposition (3.13) follows. Π

The above theorem shows how to construct solutions to (3.3). Given a
riemannian metric g on IR", n > 2, satisfying the hypotheses of the theorem, and
given any 2-covariant symmetric tensorfield h on IR" belonging to the class
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Hs_ltδ+ί, then we can find a vεctor field XeHs>δ such that

k = h-^(tτgh)g-Lg&)

is a 2-covariant symmetric tensorfield of class Hs_ίtδ+ί satisfying:

tτgk = δgk = Q.

We now turn our attention to the nonlinear equation (3.4). We shall need :

Theorem 3.5. Let g be a riemannian metric anff a nonnegatiυe function on 1R", n > 2,
such that g — eeHs,ίδ, and feHs,_2fδ, + 2 with: s ;>n/2+l, δf>—n/2. Then the
operator Δg — f (acting on scalar functions on R"J is an isomorphism:

for each 2^8^, -n/2<δ<-2 + n/2.

Proof. The operator Ag — f satisfies hypotheses I and II. We shall first show that is
injective. Let uekQr(Ag — f) and ueH2 δ with δ>—n/2. By Proposition 3.1, u
belongs also to #2, -i Integrating the equation

u(Δg-f)u = 0

over Rn with the canonical measure dμg of the riemannian metric g we obtain :

f {\Du\2

g+fu2}dμg = 0
R»

(a result justified by taking a sequence {un}cC^ such that un-^ueH2 _ t ). Thus
u = Q on IR". We conclude that the operator Δg — f is injective on HSίδ for any
riemannian metric g and nonnegative function / satisfying the hypotheses of the
theorem. Setting:

the family {At = Δgt — ft\teI} is a continuous curve of injective operators in E and

is an isomorphism: Hs δ-+Hs_2 δ + 2 by Theorem 3.1. Thus, the hypotheses of
Theorem 3.2 are satisfied for the operator Δg — f = Aί and the theorem
follows. Π

In the following we shall employ the above theorem to show that the
Lichnerowicz equation (3.4) has one and only one positive solution φ tending to 1
at infinity, i ί g is asymptotically euclidean, R(g)^0 and fc tends to 0 at infinity. We
do this in two steps, following the approach of Cantor [13].

Lemma 3.2. Let g be a riemannian metric on IR", n>2, such that g — eeHs>δ with
s > n/2 + 2, — n/2 <δ< —2 + n/2 and R(g) ^ 0. Then there exists a unique riemannian
metric g', conformally equivalent to g, such that gf — eeHs δ and R(gf) = 0.

Proof. Setting :

(3.14)
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we find :

gχ. (3.15)

Therefore the problem reduces to showing that the differential equation

has a unique positive solution χ, such that χ—lεHsδ. Setting χ = χ— 1, we have:

The differential operator on the left satisfies the hypotheses of Theorem 3.5 (with
s' = sf, δ = δ') and the right hand side belongs to Hs_2 δ + 2. Consequently there
exists a unique χeHs δ satisfying (3.17). Since χ=l+χeC 2 (imbedding theorem)
and jR(g)^0, equation (3.16) satisfies the strong maximum principle ([26]) : χ does
not attain on IR" a nonpositive minimum or a nonnegative maximum unless χ = 0
everywhere. However χ-»l for |x|-»oo (imbedding theorem). We conclude:

0<c^/^l. D

Following the argument of Cantor in [13] and employing in place of his
Theorem 1.5 the extension given by Theorem 3.5 we can show:

Lemma 3.3. Let g be a riemannίan metric and M a nonnegative function on IR3 such
that g — eGHs δ and MεHs_2^δ + 2 with s^4, — 3/2<δ< — 1/2. Then the semilinear
elliptic differential equation

Agιp + M\p~Ί =0

has one and only one positive solution ψ such that ip— leHs δ. Furthermore, φ^ 1.

Combining the above two lemmas we obtain the following theorem on
existence and uniqueness of positive solutions to the Lichnerowicz equation :

Theorem 3.6. Let s ̂  4, — 3/2 < δ < — 1/2 and let g be a riemannian metric and k a
2-covariant symmetric tensorfield on IR3 such that g — eeHs δ, keHs_lίδ+1 and R(g)
^0. Then the Lichnerowicz equation (3.4) has one and only one positive solution φ
such that φ — leHs δ.

Proof. By Lemma 3.2 there exists a unique riemannian metric g', conformally
equivalent to g :

such that g' — eeHs δ and R(g'} = 0. Setting then:

k' = χ-2K,

there exists according to Lemma 3.3 a unique positive solution ψ to the equation :
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such that ψ — leHs>δ. Thus, taking into account the fact that:

we conclude that φ = χψ is the unique positive solution of:

such that φ — ί

We conclude that the riemannian metric g = φ4g together with k — φ~2k are
such that (g — e,k)eHSfδ xH s _ 1 > < 5 + 1 and satisfy the nonlinear constraint (3.2).

4. Harmonic Coordinates

The vacuum Einstein equations Rμv = 0 are a degenerate differential system. This is
of course due to their geometric nature: if (Ω,y) is a solution and / is a
diffeomorphism : Ω-»Ω'5 then (ί2'5 f^y) is also a solution. One viable method of
reducing the Einstein equations to a hyperbolic system is by means of the
harmonic coordinate condition :

Π7x
μ = Q. (4.1)

An algebraic computation shows that:

Rμv - Rμv + i(/α£>αΓ
v + faDΛΓ

μ) , (4.2)

where :

Γμ = fβΓϊβ=-Πyx
μ (4.3)

and:

R,v = i {fβDaDβγi» _ B^(γ^ DQy«β}} . (4.4)

Here we have defined :

**, (4.5)

P being a rational function of yα^, with numerator a homogeneous polynomial of
degree 8 in yaβ and denominator (detyα/*)2. If the condition (4.1) is satisfied, Rμv

reduces to R£v and the vacuum Einstein equations are equivalent to :

fβDaDβy
μv = Bμv(y*β, Dρy«β] . (4.6)

The differential system (4.6) is a weakly coupled quasilinear hyperbolic system of
the second order. This system is called the reduced Einstein equations.

In this section we shall demonstrate the existence of global systems of harmonic
coordinates on spacetimes which are globally hyperbolic and satisfy the largeness
requirement of the boost problem. We shall also show, following Y. Choquet-
Bruhat [2] , the preservation of the harmonic coordinate condition by solutions of the
reduced Einstein equations whose Cauchy data satisfy the constraints. We shall use
the theorems derived in [22], on weakly coupled linear hyperbolic systems of the
second order in such spacetimes of n dimensions.
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Let Ωθ be the open subset of R" defined by (2.2). The spacetime (Ω0, η), where
η = άiag(— 1, +1, ...2,+ l) is the Minkowski metric on R", is globally hyperbolic
and satisfies the largeness requirement of the boost problem. For each xeΣ:

1/2

In fact, χ±(x) is the length of the timelike geodesic orthogonal to the boundary Σ0

of Ωθ and d(x) = \x\. The function τ defined by (2.3) is a time function on (Ωθ,η).
Each Στ is a complete Cauchy surface of this spacetime and we have Σ0 = Σ. Using
the foliation {Στ\τelθ} we shall define a class of Lorentz metrics y on Ωθ such that
(Ω0, 7) is also a globally hyperbolic spacetime satisfying the largeness requirement
of the boost problem. Let nμ denote the gradient of τ normalized with respect to η.
We have :

nμ=-ffDβτ

where N is the lapse function of the foliation relative to η :

N"2=-ημvDμτDvτ,N>Q.

Definition 4.1. A C° 2-co variant symmetric tensorfield yμv defined on Ωθ is a
regularly hyperbolic metric if there exist positive real numbers a, b and C such that
i n Ω θ :

(1) ~yμvnμnv^a
(2) for all covectors ζμ such that yμvζμnv = 0, we have :

(3) lyl^

In the above definition, requirement (1) implies that the vectorfield yμvnv is
timelike. Requirement (2) implies that the metric induced on the tangent space to
Στ at each point, is positive definite for every τe/θ. Finally, requirement (3) ensures
that these two statements are true in a uniform sense. Let us set :

(4 7)

We shall call h the coefficient of regular hyperbolicity of 7.
The usefulness of Definition (4.1) can be seen in:

Proposition 4.1. If y is a regularly hyperbolic metric on Ωθ, then (Ωθ,y) is a globally
hyperbolic spacetime satisfying the largeness requirement of the boost problem.

This proposition was proven in [22]. The proof involves finding a lower bound
to the length of the integral curve of the unit normal vectorfield nμ, relative to yμv,
to the foliation {ZJτe/J, through each point in Σ. We have also:

Proposition 4.2. The set of regularly hyperbolic metrics on Ωθ is open in the Banach
space C®(ΩΘ) of continuous and bounded 2-contravariant symmetric tensorfields on
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The Minkowski metric η is obviously regularly hyperbolic on Ωθ. The numbers
α, b, and C for η may be chosen to be :

By Proposition 4.2 there exists a positive real number ε such that if y is a C°
2-contra variant symmetric tensorfield on Ωθ and |y — J/)^ε, then y is a regularly
hyperbolic metric on Ωθ.

Let now L be a linear differential operator of the second order in Ωθ :

2

Lu= Σ ak'Dku>
k=0

where u and Lu are 1RΠ valued functions on βθ. We introduce the following
hypotheses :

Hypothesis I (weak coupling and hyperbolicity).
We have:

that is, in components,

where y is a regularly hyperbolic metric on Ωθ.

Hypothesis II (regularity). There exist nonnegative integers sk and real numbers <5fc,
0<fc<2such that:

and

(1) %
(2) γ-,

We shall write:
i

m= Σ KHff. f c,, f c<ί

and (see Lemma 2.4 (restriction)):

i
„_ y 110 II

Let us also denote:

s' = min {sk} + l . (4.10)

Hypothesis II implies that L is a continuous map:

for

gsgs', <5eIR.
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We shall give below an extended version of the theorems on weakly coupled
linear hyperbolic systems of the second order which were proven in [22]. The
proof of these theorems is based on the use of energy estimates with weights. These
estimates are derived using the foliation {Στ\τelθ}. It is important in this
derivation the fact that the ratio N/σ, of the lapse function of this foliation
relative to y :

to the weight function σ, is, by virtue of Definition 4.1, bounded above and below
by positive constants. The following is an outline of the proof of the theorems.
Given a linear differential operator L, of second order, satisfying hypotheses I and
II, and given a function ueHs+ltδ(Ωθ), 1 ̂ s^s\ δelR, one first derives a weighted
energy estimate of the form :

where :

β = Lu

and cl is a continuous monotonically increasing function of (θ, /ι, Θ1/2m). One then
uses the restriction to the hypersurface Σ of the system Lu = β and its differential
consequences to bound:

+ IMIfί s _ 1 δ+i(Σ)+\\β\\Ha-26 + ι ( Σ , Ω β ) } > (4'12)

where:

φ = u\Σ, ψ = D0u{Σ

d c1 is a continuous monotonically increasing function of (h,μ). Combining
equalities (4.11) and (4.12) one obtains:

and
in

The uniqueness theorem follows directly from this inequality. To prove the
existence theorem one takes a sequence of operators {Ln} satisfying hypothesis I,
such that (ak)n:k = Q, 1 and yn — η are restrictions to Ωθ of functions in C^(1R") and:

One also takes a sequence of inhomogeneous terms {/?„} such that βn is the
restriction to Ωβ of a function in CJJΌR") and :

as well as a sequence of data (φn,ψn) in C™(Σ) such that:
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Since for each n (Ωθ, yn) is a globally hyperbolic spacetime, it results from the Leray
theory [4] that there exists a unique solution uneCco(Ωθ) to:

taking on Σ the Cauchy data (φn, \pn) :

From the support properties of the solution it follows in particular that
uneHs+1 δ(Ωθ) and therefore inequality (4.13) applies. The proof then relies on the
weak compactness of the closed balls of the Hubert space Hs δ(Ωθ}. Details are
found in [22].

Theorem 4.1 (existence and estimate for the linear system). Let L be a differential
operator of second order in Ωθ satisfying hypotheses I and II. Let (inhomogeneous

term) β<=Hs_ίίδ + 2(Ωθ) and (Cauchy data) φεHStδ + ±(Σ), ψeHs__lίδ+i(Σ) where
2^s^s', (5eR Then there exists at least one solution ueHSίδ(Ωθ) to:

taking on Σ the Cauchy data (φ, ψ) :

u]Σ =

and satisfying the estimate :

where c1 and c2 are continuous monotonically increasing functions of (θ,h,Θ1/2m)
and (h,μ) respectively.

Theorem 4.2. (uniqueness for the linear system). Let L be a differential operator in
Ωθ satisfying hypotheses I and II. Then there is at most one solution ueH2 δ(Ωθ),

where β is a given function on Ωθ and φ, ip are given functions on Σ.

We shall now use the above theorems to prove the following theorem on
harmonic coordinates :

Theorem 4.3 (harmonic coordinates). Let s>n/2+l, δ>— n/2 and let y be a
regularly hyperbolic metric on Ωθosuch that y — ηeHs+ί δ(ΩQ^. Then there exists a
θe]0, Θ0] and a unique coordinate transformation ξ:Ωθ-+Ω', by x-^x' = ξ(x), such

that xf is a harmonic coordinate system on (&',/), y' = ζ*y is Gaussian on Γ, ξ is the

identity on Σ and ξ-ideHs+lfδ_ί(Ωθ). If \\y-η\\Hs + 1,δ(Ωθo)
 ίs sufficiently small, θ

can be chosen equal to 00.

Proof. The requirement that xf be harmonic relative to y' forms an n-tuplet of
scalar equations :
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Consequently, it is equivalent to :

Dy£
μ = 0. (4.14)

Let us set :
ξμ = xμ + fμ.

Equations (4.14) then become:

Ώyf^^D^-ΓDJf^Γ^ (4.15)

where :
Γ«=-π yχ

μ = yα/^.

The operator Πy in (4.15) is a linear differential operator of second order in Ωθo. By
the assumptions of the theorem, this operator satisfies hypotheses I and II. Since
we require ξ to be the identity on Σ, we have :

f\Σ = 0 (4.16)

Then the metric / is Gaussian on Σ, that is :

/ O O _ _ -j , / O i _ Ay\ι — -1' y\ι — u

if and only if:

where :

v0ί

7i _ _ JL\L
-

__ _ _
( * .oo\ι/2 ' - ..oo~

(4\:*

By the restriction lemma (Lemma 2.4) and the multiplication theorem we have:
leHStδ + ±(Σ). Finally, the inhomogeneous term Γμ in (4.15) belongs to HStδ+1(Ωθo).
It follows that we may apply Theorems 4.1 and 4.2 to the problem posed by (4.15),
(4.16) and (4.17). We thus obtain a unique solution f<ΞHs+1 5_ 1(Ωθo). Furthermore
(using again the restriction lemma), this solution satisfies a bound of the form .:

where :

and B depends continuously and in a monotonically increasing fashion on r. The
imbedding theorem then implies that D2feC^(Ωθ} and:

||D2/||co(Ωθo)^r^, (4.19)

where B' depends continuously and in a monotonically increasing fashion on r. Let
us denote :

Taking into account the fact that d/dτ = σd/dx°, we have for every τe/0 o:
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and therefore

|J(τ)-J(0)|^|τ|rF, (4.20)

in view of inequality (4.19). J(0) is the following n xn-matrix valued function on
IR"'1.

-c
We have :

using Definition 4.1. There exists a positive real number ε such that |J(τ) — J(0)| g ε
on IR"~ 1 implies that det J(τ) is also bounded below by a positive constant. Hence
choosing $>0, 0^Θ0, such that:

θrB'<ε, (4.21)

we have by virtue of inequality (4.20) :

in Ωθ. It then follows from the global implicit function theorem (see [27]) that the
restriction of ξ to Ωθ (which we continue to denote by ξ) is a diffeomorphism of Ωθ

into its image Ω' = ξ(Ωθ). Furthermore, it is evident from (4.21) that if r is
sufficiently small we may choose Θ = Θ0. Π

Applying the multiplication theorem, Lemma 2.3 and the composition theo-
rem to the formula for the pushout γ' = ξ^y:

we conclude that: γ' — ηeHs δ(Ω). The fact that ξ — ideC^^Ωo) for some β>0
(imbedding theorem) implies that there exists a θ' > 0 such that Ωθ, C Ωf.

Let us now return to the reduced Einstein equations (4.6). Cauchy data for
these equations consists of giving :

y\Σ=Φ> Doy\Σ=y (4 22)
From given initial data (g, k) we construct Cauchy data (φ,ψ) satisfying ΓfΣ = Q.
There is arbitrariness in this construction which corresponds to the freedom in
choosing a harmonic coordinate system. A canonical prescription, in the frame-
work of Theorem 4.3, is to require that the coordinate system is also Gaussian on
Σ, that is :

(4.23a)

φol = Q. (4.23b)

With this choice we have :

(4.23c)
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The condition Γfa = 0 then defines :

ψ°°=-4tτgk9 (4.24a)

ψQί=-Agx\ (4.24b)

and we have also :

ipij = 2g™gJnkmn. (4.24c)

In the language of ADM [28] we are free to choose the lapse N and the shift ζl on
Σ. We make the choice JV^^l, ζ\Σ = Q. The condition 7^ = 0 then defines:

If (g — β, k)eHs δ+±(Σ) xHs_1 δ + ̂ (Σ), then by the multiplication theorem we have
(</>- η,ψ)^H^δ + l(Σ)xHs_1'tδ + l(Σ) provided that s^2, δ> -2.

Let us now be given a regularly hyperbolic metric γ in Ωθ which is a solution of
the reduced Einstein equations R£v = 0, such that y — ηeHs> δ(Ωθ) with s ̂  4, δ > — 2.
Let the Cauchy data of γ satisfy Γfa = 0 as well as the initial value constraints
G °̂ = 0. It then follows directly from expression (4.2) that we have also D0ΓfΣ = Q.
Furthermore since by the multiplication theorem the Einstein tensor Gμv of y
belongs to Hs_2 δ+2(^β\ we maY use tne Bianchi identities G^ = 0 to derive from
expression (4.2), as in Choquet-Bruhat [2], the following differential condition on

(4.25)

where :
Bμ

β

x = Qμ

βyλDΰy
κλ (4.26)

and Q is a rational function of yκλ, with numerator a homogeneous polynomial of
degree 4 in yκλ and denominator detyKA. By the multiplication theorem, B belongs
to Hs_1 δ+1(Ωθ). Thus equations (4.25) form a homogeneous differential system
satisfying hypotheses I and II. Hence we may apply Theorem 4.2 to conclude
Γμ = 0 on Ωθ, which yields the following lemma:

Lemma 4.1. Let s^4, £> — 2 and let y be a regularly hyperbolic metric in Ωθ such
that y — ηeHs δ(Ωθ). If y satisfies the reduced Einstein equations in Ωθ and its Cauchy
data (φ, ip) satisfy the initial value constraints as well as Γ^Σ = 0, then y satisfies the
harmonicity condition Γμ = 0 everywhere in Ωθ. Thus y is a solution of the full
Einstein equations in Ωθ.

5. The Reduced Einstein Equations

In this section we shall demonstrate the existence and uniqueness of regularly
hyperbolic solutions y to the reduced Einstein equations in a domain Ωθ, taking on
Σ given asymptotically flat Cauchy data. Our method is based on the study of the
boost problem for weakly coupled quasilinear hyperbolic systems of the second
order in [22]. These differential systems have the form:

μ,v = 0,...,n-l: 1 = 1,..., JV,
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where y(u, v) and β(u,υ) are functions of (u, v) defined in an open subset Y of
RN x Rnjv and y is a Lorentz matrix in Y. We assume that y and β are C°° functions
of (w, ϋ) in Y; that (0, 0)e Y and that y(0, 0) - fj . In the study of the boost problem for
the above systems the notion of degree of the function β plays an essential role.
This notion is defined by the following definitions :

Definition 5.1. Let β be a C°° function of (u9 v) in Y We say that β is of type (p, q) if:

d^/dul = 0 on the plane w = 0, for all O^ϊ^p- 1

and

djβ/dvj = 0 on the plane υ = 0, for all O^j^q- 1 .

Thus /? is of type (p, q) if there exists a C°° function β of (w, ι;) in Y such that :

β(u,v) = upvq β(u,v).

Definition 5.2. If jS(w, v) is of type (p, q) with p + g ̂  2, we say that β is of degree ε,
where :

ίε = max < 0,

Definition 5.3. Let /?(M, u) be a finite sum :

M

0 = Σ A .
i= 1

where, for each 1 g f g M, /J . is of type (p , ̂  •) with pf + q . ̂  2. Then we say that β is of
degree ε, where :

ε = max {ε,} ,
l ^ i ^ M l

εf being the degree of β..
From the above definitions it follows that ε is a rational number in the closed

interval [0, 2].
We shall give below an extended version of the theorem, proven in [22], on the

boost problem for quasilinear hyperbolic systems of the form (5.1). The following
is an outline of the method of proof. Given a function u1 defined on some Ωθ and
satisfying :

(a) {(u'(x\Du'(x))\xεΩθ} C Y, we associate with the quasilinear system (5.1) the
linear system obtained by replacing in all terms except the second derivatives u by

y(u'9 Du'} - D2u = β(u', Duf). (5.2)

This is a weakly coupled linear hyperbolic system of the second order in Ωθ. If the
given function u' is such that:

(b) γ(u\Du'} is a regularly hyperbolic metric on Ωθ, then the differential
operator γ(u\Du') D2 satisfies hypothesis I of Sect. 4. lϊueHs δ(Ωθ) with s>n/2+1,
δ>—n/2, the multiplication theorem implies: y(u\Du') — ηeHs_ί>δ(Ωθ\ which
shows that if s>n/2 + 2 also the operator y(u\Du') D2 satisfies hypothesis II of
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Sect. 4 as well (we have αfc = 0 for fc = 0, 1). To apply Theorem 4.1 to the linear
system (5.2) we need to have: β(u',Du')eHs_l9δ + 2(Ωθ). This is the point where the
notion of degree comes in one shows, using the multiplication theorem, that
if β is of degree ε then u'εH^δ(Ωθ) with s>n/2+l, δ>ε — n/2 implies
β(u'9 Du'}eHs_ 1 δ+2(Ωθ). It follows that for s < n/2 + 2, δ > ε — n/2 and Cauchy data :

we may apply Theorems 4.1 and 4.2 to the linear system (5.2) to conclude that
there exists a unique solution wE//Sj(5(Ώθ) to (5.2) taking on Σ the given Cauchy
data. Hence we have a nonlinear map T:u'->u from the subset of Hs δ(Ωθ) defined
by conditions (a) and (b) into Hs δ(Ωθ).

To define an iteration using T, we have to show that also u satisfies conditions
(a) and (b) above. For this purpose it is necessary that the Cauchy data (φ9ψ)
satisfy :

(I) {(φ(x)9ψ(x))\xeΣ}cY
and

(II) Σ is spacelike for y(φ,ψ) = y\Σ9

in the sense of the following definition

Definition 5.4. The hypersurface Σ is spacelike for y\Σ if on Σ :
(1) 7°°<0
(2) for every covector ξμ such that γ°μξμ = Q we have:

Given data (φ9ψ)eHStδ + ̂ (Σ)xHs_ltδ + ̂ (Σ) with s>n/2 + l, δ>-n/29 the imbed-
ding theorem implies that (φ9ψ)eC1(Σ) x C°(Σ) and (0,φ)->(0,0) for |x|-κx).
Hence, since y is a C°° function of (u, υ) in Y and (0, 0)e Y, the above requirements
(I) and (II) imply :

where 70 is a compact subset of Y, and
(IΓ) y(φ, ψ) is a regularly hyperbolic metric on Σ, that is y(φ, ip) satisfies on Σ the

requirements of Definition (4.1). Now let ueHS}δ(Ωθ) with s>n/2 + 2, <5> — n/2,
which implies γ(u9Du) — ηeHs_ί δ(Ωθ). By the imbedding theorem the partial
derivatives of u, Du and y with respect to τ are all continuous and bounded in Ωθ.
Using this fact one can show from (Γ) and (IΓ), in view of the open ness of 7 and
the definition of regular hyperbolicity (Proposition 4.2), that if θ is sufficiently
small u satisfies conditions (a) and (b) :

(a) {(M(x),Dtt(x))|x6fie}cY,
and

(b) y(u9 Du) is a regularly hyperbolic metric in Ωθ. These conditions also hold for
any given θ, 0<0<1, if \\u\\Hs O(ΩΘ} is sufficiently small. We conclude that the
nonlinear map T may be used to define an iteration.

We now consider the closed subset Sr of Hs>δ(Ωθ)9 s>n/2 + 2, δ>ε — n/2,
consisting of those functions u in the closed ball of radius r which take on Σ the
Cauchy data (φ, ψ) and which are such that Dl

0UιΣ for 2 :g i^s — 1 is calculated from
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(φ,ψ) using the quasilinear system (5.1) on the hypersurface Σ. For ueSr we can
bound the quantities :

and

which enter the estimate in Theorem 4.1, in terms of the size of the data:

d= \\Φ\\H..a+±(Σ)+ U V > l l f l β _ 1 | < l + | ( D

and yo. Application of the estimate in Theorem 4.1 shows that if either θ or d is
sufficiently small the map T sends Sr into itself for some r. Thus if we start with any
u0eSr the sequence of iterates {un\neN}, where un+ 1 = T(wn), is contained in Sr. One
then shows, using again the estimate in Theorem 4.1, that T is a contracting map
with respect to the H1 δ norm (in fact with respect to the # s_x δ norm) in Sr. The
proof then relies on the contraction mapping principle and the weak compactness
of the closed ball of radius r in the Hubert space Hs δ(Ωθ). Details are found in [22].

Theorem 5.1. (existence and uniqueness for the quasilinear system). Let y(u,v) and
β(u9 v) be C°° functions of (u, v) in an open set FclR^ x IRnN containing (0, 0). Let y be
a Lorentz matrix in Y, y(Q,Q) = η, and let β be of degree ε. Let also
(φ9ψ)eHSίd+±(Σ)xHs_ίtδ + i(Σ\ where:

and let

and Σ be spacelike for y(φ, ψ). Then :
(1) There exists a θ>0 and a unique solution ueHs δ(Ωθ] to:

taking on Σ the Cauchy data (φ, ψ) :

Furthermore, y(u, Du) is a regularly hyperbolic metric on Ωθ and hence (ΩΘ9 y(u, Du)} is
a globally hyperbolic spacetίme satisfying the largeness requirement of the boost
problem.

(2) For every Θ<1 there exists a d0>0 such that if d<d0, where:

then the above conclusion holds.

According to the above theorem the degree ε of the function β defines the
minimal falloff of the Cauchy data at infinity required for the boost problem to
have a solution. The quasilinear system behaves like a linear system at spacelike
infinity when and only when the degree of β is the least possible, namely ε — 0.
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To apply Theorem 5.1 to the reduced Einstein equations we set:

y

Then expression (4.5) shows that:

We have n = 4 and N=10 (dimension of the space of 2-contra variant symmetric
tensors at a point in IR4). The set Y is given by :

where A is the set of 4-dimensional Lorentz matrices translated by η. A is an open
subset of R10 containing 0. Both y and β are C00 (in fact analytic) functions of (M, ι;)
in 7, y is a Lorentz matrix in Y and y(0, 0) = η. By Definition 5.1 and 5.2 β is of type
(0, 2), degree 0.

In Theorem 5.1 if γ(u, v) is independent of v and Y is of the form V x IR"N where
V is an open subset of RN, then it is clear from the proof of the theorem that the
condition 5 > n/2 + 2 can be weakened to s > n/2 + 1. This in fact is the case for the
reduced Einstein equations. Hence we obtain :

Lemma 5.1. Let φ(x) be a Lorentz matrix for each xeΣ and let Σ be spacelίke for φ.
Let also (φ-η,ψ)eHStδ+i.(Σ)xHs_ltδ + %(Σ)9 where sί>4, δ>-2. Then:

(1) There exists a θ > 0 and a unique solution y to the reduced Einstein equations
in Ωθ, y — ηeHs>δ(Ωθ\ taking on Σ the Cauchy data (φ,ψ):

(2) For every Θ<1 there exists a d0 > 0 such that if d< dQ9 where :

then the above conclusion holds.

The behaviour of the reduced Einstein equations at spacetime infinity is the
same as that of a linear system due to the fact that the degree of β is 0. This is not
the case for other non-linear hyperbolic systems of interest in physics. For
example, the equation

has β of type (3,0), degree 1. In the case of the reduced Yang-Mills equations,
namely the Yang-Mills equations in a Lorentz gauge, β(u, v) is of the form uv + u3

which by Definition 5.3 is also of degree 1. The behaviour of these equations at
spacelike infinity is radically different from that of a linear system. In fact Theorem
5.1 does not allow one to conclude that there are solutions to the boost problem
for the reduced Yang-Mills equations if the Cauchy data have non-vanishing
Yang-Mills charge.

6. The Boost Problem for the Einstein Equations

In this paragraph we collect the results of paragraphs 4 and 5 into the following
theorems (see introduction) :
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Theorem 6.1 (Existence). Let g be a riemannian metric and k a 2-covariant
symmetric tensorfield on Σ. If the pair (g, k) satisfies the initial value constraints and

if

where s ̂  4, δ > — 2, then :
(1) There exists a Θ>0 and a solution y to the Einstein equations in Ωθ,

y — ηeHsδ(Ωθ), such that (g,k) are respectively the first and second fundamental
forms of Σ relative to y. In addition, y is a regularly hyperbolic metric on Ωθ and
therefore (Ωθ9y) is a globally hyperbolic spacetime satisfying the largeness require-
ment of the boost problem.

(2) For every Θ<1 there exists a d0>0 such that if d<d0, where

the above conclusion holds.

Proof. Under the hypotheses of the theorem the Cauchy data (φ, ψ) for the reduced
Einstein equations constructed from the initial data (g, k) via (4.23), (4.24) satisfies
the hypotheses of Lemma 5.1 as well as 7^ = 0. Thus we have a unique regularly
hyperbolic solution γ to the reduced Einstein equations in Ωθ such that
y — ηeHsδ(Ωθ). By Lemma 4.1 this solution also satisfies the full Einstein
equations. Π

Theorem 6.2 (Uniqueness). Let y ί 9 y2 be two regularly hyperbolic solutions to the
Einstein equations in Ωθ such that the first and second fundamental forms of Σ
relative toy1 andy2 coincide. Let also y1 —η, y 2 — ηeHs + 1>δ(Ωθ) where s ̂ 4, δ> —2.
Then there exists an open subset Ω' C Ωθ, Ω

! 3 Σ, and a diffeomorphίsm /:Ω'-»Ω" C Ωθ,
f\Σ = id, f — ideHs+ltδ_ί(Ω'), such that: y2=/ ϊ ! !y1

 on &"• Furthermore, (Ω'.y^ (and
therefore also (Ω"9y2)) is a globally hyperbolic spacetime satisfying the largeness
requirement of the boost problem.

Proof. Under the hypotheses of the theorem there exist, according to Theorem 4.3,

diffeomorphisms ξ^.Ω^-^Ω^ ξ2:Ωθ2-+Ω'29 ξί}Σ = ξ2\Σ

 = id> ^ι-ideίί

s+ι,^ι(ΩβΛ
ζ2 — idεHs+ι,δ-ί(Ωθ2\

 such that 71=^1^1, y'2 = ζ2*Ύ2 satisfy the harmonic
condition on Ω'1? Ω'2 respectively and are both Gaussian on Σ. We can find some
Ωθ,cΩ\nΩ'2. Then y^—η, y'2 — ηeHSfδ(Ωθ,) and y\, y'2 are both solutions to the
reduced Einstein equations in Ωθ, having the same Cauchy data. It follows from
Lemma 5.1 that y\=y'2 on Ωθ,. Consequently, if we set Ω' = ξ^1(Ωθf), Ω" = ξ2

1(Ωθ,)
and f = ζ2

λ °ζι the conclusion follows. Π

Theorem 6.2 says that two asymptotically flat developments of the same initial
data which both satisfy the largeness requirement of the boost problem are
extensions of a common asymptotically flat development of this data which also
satisfies the largeness requirement of the boost problem. In view of the fact that
global uniqueness is already known [6] for the Einstein equations, this theorem
contains nothing new. It is included here for completeness of presentation.
Theorem 6.1 is much more interesting; it shows that the maximal development of
asymptotically flat initial data on Σ includes complete spacelike hypersurfaces
boosted relative to Σ.
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Finally, we wish to remark that the result of the boost problem can be
strengthened somewhat by using the following argument. Given any initial data
(g, k) as in Theorem 6.1, and given any d0 >0, we can find an R such that the size
d(Σ — BR) of the restriction of (g, k) to the complement of the closed ball of radius

is less than d0. Applying conclusion (2) of Theorem 6.1 one can then show that any
asymptotically flat initial data set (Σ, g, k) has a development (Ω, y) satisfying the
following :

For every λ there exists an R such that VxeΣ — BR:

Thus A— > oo for R-> oo and the structure at spacelike infinity is complete. The same
argument applies to Theorem 5.1.
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