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Abstract. Given a connected Lie group G with an Abelian invariant Lie
subgroup and a continuous unitary representation of G on the Hilbert space
A, we investigate a relationship between the first cohomology group H(G, #)
and classes of sectors, determined by coherent states with a projectively
G-covariant Weyl system. This result is applied to calculate HY(G, #), if the
group G has in addition a compact subgroup with certain properties.

1. Introduction

In a discussion of the coherent states of the free electromagnetic field Roepstorff
[1] stressed the use of cohomological methods. In Proposition 2 of [ 1], necessary
and sufficient conditions were derived such that the automorphisms of the space-
time translation group RR* in the Gel'fand-Naimark-Segal (GNS) representation
(#,, W,8,), corresponding to a given coherent state, are implemented by a
strongly continuous unitary projective representation U of the translation group
R* on #,. Such a Weyl system may be called a projectively covariant Weyl system.
In proving these necessary and sufficient statements, 1-cocycles on the translation
group with values in the 1-photon Hilbert space 4, carrying a continuous unitary
representation V of the translation group, seemed extremely useful.

For the Poincaré group, Basarab-Horwath et al. [2] recently have shown the
existence of an injective mapping from classes of sectors, defined by coherent states
admitting a GNS representation with the above mentioned properties for the
Poincaré group P!, into the first cohomology group H'(P',,#). With an
extension of these notions to a connected, n-dimensional Lie group G, we will give
a condition for this injective mapping to be bijective. For a group G with a
structure, which resembles that of the Poincaré group, the first cohomology group
HY(G, #) can be calculated.

2. Sectors and Cohomology

Let & be a complex Hilbert space, L a dense complex-linear subspace of # and
L* the algebraic dual of L. The pair (L,0) is a symplectic real-linear space with
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o(f,9)=1Im(f,g),, Vf, ge L. For an account of the definitions omitted below the
reader is referred to [1, 2]. We define the Fock state E, on L by E,(f)
=exp(—3]|f]%) and a coherent state E. on L by E(f)=E(f)exp(iImF(f)) (fe L,
FeL*). As the corresponding GNS representations we take (45, Wy, 2,) and
(Ao, Wi, ) with Wi(f) = Wo(f) exp(i Im F(f))Vfe L; A, is the Fock space over #,
Wo(f)=exp(i(a(f) +a(f)*)) feL, a(f) is the usual annihilation operator on %, the
bar means operator closure, 2, is the vacuum vector in J¢,. The Weyl systems are
defined with respect to the symplectic form ¢ on L.

Let G be a topological group and s— V(s) (se G) a strongly continuous unitary
representation of G on # such that V(s)LCL VseG. Given FeL* and seG, the
map We(f)— Wi(V(s) f) defines an automorphism of the Weyl system (., Wy). Let
L7, be the set of all FeL* such that there exists a strongly continuous unitary
projective representation U, of the group G on %, which implements the
Weyl automorphisms Vse G (i.e. Wi(V(s)f)=Up(s)Wp(f/)Ug(s)~ ! VfeL, Vse€G). In
the complex-linear space L* the operator V(s) induces an operator V(s)*,
defined by (V(s)* F)(f)=F(V(s)f) YVFe L™ and Vfe L. A 1-cocycle on G with values
in 5 with respect to the strongly continuous unitary representation V of G on #
is a continuous mapping &:G—# such that &(s)+ V(s)* &(t)=¢E(ts) Ve, se G. The
complex-linear space of such 1-cocycles is denoted by Z}(G, #). A 1-coboundary
on G with values in J# is a mapping &:G—# of the form &(s)= V(s)*.f—rf with
Ee#. The 1-coboundaries determine a complex -linear subspace B'(G, #) of

ZY(G, #). The 1-cohomology group HY G, #)=Z'(G, %)/B (G, #) is a complex-
linear space; an element of H'(G, #) will be denoted by & (¢e Z(G, #)).

Lemma 1. Given Fe L*, then Fe L, if and only if there exists a € ZX(G, #) such that
F(f)=(V(s)*F)(f)=2(&(s), /) Vs€ G, VfeL.

The 1-cocycle & is uniquely determined and L is a complex-linear subspace of
L.

Proof. The proof is analogous to that of Proposition 1 in [1] and Theorem 2c in
[2]. L§ is a complex-linear subspace of L* because Z'(G, #) is a complex-linear
space.

Let #* be the topological dual of #; #* is a complex-linear
subspace of Lg. The elements of Lj;/#* are in one-to-one correspondence with
sectors containing a coherent state E, with Fe Ly. All states in such a sector
trivially induce projectively covariant Weyl systems. It is obvious that these
coherent sectors depend on the given group G and the representation (#, V) of G.
Because for a given Fe Ly, the 1-cocycle £ in Lemma 1 is uniquely determined, one
can consider the antlhnear mapping F —Ec HY(G, #). This mapping induces an
antilinear mapping F—¢& from LS /#* into H'(G, #). Let Inv, L be the set of all
G-invariant complex-linear functionals on L; Inv, L is a complex-linear subspace
of Ly and so InvgL is a complex-linear subspace of Lj/#*. The elements of
(Le /%” *)/Iavy L={ES} are denoted by E$; to an element E§ corresponds a class
of coherent sectors. Again an antilinear mapping EG—>§ 1S 1nduced The element
E§ defines even covariant Weyl systems.
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Theorem 2. The antilinear mapping {ES}—H'(G, ) is injective.

Proof. Let E¢ and ES, be elements of (Lg/#)/Iiivg L and suppose that &, =¢,.
Then &, —&,e BYG, ), i.e. 3Ee A such that &, (s)—&,(s)=(1— V(s)*)¢ VseG. The
linear functional B, defined by B(f)=F,(f)—F,(f)— (6 f)e VfeL,is G-invariant.
This implies F,=F,+B. Because F,€E¢ and F,+BeE¢ it follows that ES,
— Egz

The next theorem relies on results of [3]; we collect a few definitions and single

out some statements, whose proofs can be found loco citato.
Let G be a connected n-dimensional Lie group; choose he #(IR) such that its

Fourier transform A(p)= | €'h(t)dt has the following properties: h(0)=1,
VpeR\{0} 0= h(p)<1 and A"(0)%0. Let {X,,...,X,} be a basis for the Lie algebra
of G and define the strong operator integral K(X,)=1-— j ViexptX )h(t)dt

(k=1,...,n). These properties imply that the operator K= ) K(X,)
k=1

a bounded positive operator on # with spectral projections E(4) (4 a Borel
set in IR). The operator k:=K!(1—E(0)) 5 is a bounded injective positive
operator on (1— E(0))##. On the domain, respectively the range of the operator
k'/2 the following norms are introduced:

VfeD(k'?)=(1—~EQO)# |f],:=[k"*flly, respectively VfeD(k™'?)
Ifll—:=k™"2f|,. We denote the corresponding normed linear spaces by
D ,(G), respectively D_(G) and the completion of D (G) in its norm by D, (G).

Lemma 3. Under the above mentioned conditions the following statements hold.

1. Dy:=E@0)# =KerK={fe#|V(s)f = [ VseG}.

2. As topological linear spaces, the spaces D ,(G) and D _(G) do not depend on the
choice of the function h and of the basis {X |, ...,X,} in the Lie algebra.

3. k is an isometry from D ,(G) into D_(G); its bounded extension to D, (G), also
denoted by k, is an isometry from D __(G) onto D_(G).

4. The mapping f, g—(f,9), is a bounded bilinear functional on D _(G) x D _(G),
and can be extended to a non-degenerate bounded bilinear functional (-,-) on
D (G) x D_(G) having the property (f,g)=(kf,g)- Yfe D (G) and Yge D _(G).

5.Vse G V(s)—1 is a bounded operator from H# into D_(G).

If A is a bounded operator from ## into D_(G), then the adjoint A* may be
defined as a bounded operator from D (G) into 5 ; if in addition the operator A*,
restricted to D (G), is a bounded operator from D (G) into D (G), then At =A%,
where the bar means operator closure in the Hilbert space D, (G).

Motivated by the structure of the Poincaré group, we assume in addition that
there exists an invariant Abelian connected Lie subgroup H of G; for the
representation ¥ of G we demand that the representation V' H on # does not
contain the identity as subrepresentation. The statements of the lemma can be
improved [3]:
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6. {0} =D,(H)>Dy(G) and # =D (H)=D_(H)* for the underlying sets of the
complex-linear spaces #, D (H) and D_(H). For all se G V(s) (suitably restricted)
is a bounded operator from D_(H) into D_(H) and from D _(H) into D (H) and
1—V(s) is a bounded operator from # into D_(H).

7. Vée ZNG, #) Ine D, (H) such that &(s)=(1—V(s))"n VseG. n is uniquely
defined if and only if the representation s—V(s) does not contain the identity as
subrepresentation.

With the foregoing Lemma we can now formulate a sufficient condition for the
injection in Theorem 2 to be a bijection. If H*(G, #)={0}, this injection is
automatically a bijection and Theorem 4 is superfluous.

Theorem 4. Let G be a connected, n-dimensional Lie group, (#,V) a strongly
continuous unitary representation of G, H an invariant Abelian connected Lie
subgroup of G such that VI H on # does not contain the identity as subrepresentation
and L a dense complex-linear subset of #, invariant under G.

If LCD _(H), then the injective mapping in Theorem 2 is surjective.

Proof. For (e ZYG, #) there exists by Lemma 3.7 an ne D, (H) such that &(s)
=(1—V(s))"n VseG. Define F(f)=2(n,f) Vfe L. Then FeL* and F(f)—(V(s)*F)
(f)=2(&(s), f), Vfe L. Hence Fe Ly, by Lemma 1.

3. Calculation of a Cohomology Group

The coherent states seem to be suitable to establish the cohomology group of a Lie
group G, whose structure is analogous to that of the Poincaré group.

Theorem 5. Let G, H,(#,V) be as in Theorem 4. Let R be a compact subgroup of G
such that V'R on D, (H) does not contain the identity as a subrepresentation.
Then HY(G, #)={0}.

(As to the possibility of defining the operators V(s) Vse G see Lemma 3.6.)

Proof. The complex-linear subset L=D_(H) is dense in # and is invariant under
the group G (Lemma 3.6). Theorem 4 proves the existence of a bijection from {E$}
onto HY(G, #). The subgroup R of G gives a linear mapping E§—ER from {E§}
into {ER} ; this mapping is well defined because R C G. We prove that this mapping
is faithful. Let E¢, and Ef, be two elements of {E§} such that Ef = Ef . Choosing
for F(i=1,2) the representatives F(f)=2(n,f) (i=1,2) with n,e D, (H), this
implies the existence of an R-invariant complex-linear functional b on L and of an
ne# such that F,(f)—F(/)=b(f)+2n f), VfeL. Hence (7, —n,—n,
(1—W(s)f)=0 VfeL, VseR and so one gets n,—n,=n, ie. Ef =E§ . Theorem 2
gives an appropriate injective antilinear mapping from {EX} into H(R,#).
We now have an injective linear mapping from H(G, 5#) into H(R, #). Because
R is a compact group, one has HY(R, #)= {0} and therefore H(G, #)={0}.

This theorem can be applied to calculate the cohomology group HY(G, #),
where G is the Poincaré group P',, # the carrier space of the representation
[0,11®[0, —1] of G, H the subgroup of space-time translations and R the
subgroup of rotations. The condition on the representation of R is fulfilled
(Lemma 2.1 in [4]). Using Theorem 5 one gets H'(G, #)={0}. This implies that
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the interesting sectors are those sectors containing a coherent state E, (s€ X) with
F, a G-invariant complex-linear functional on L and F, —F, an unbounded
complex-linear functional on L Vo, 0,€2 with 6, %0,.
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