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Abstract. In an appropriate mathematical framework we supply a simple proof
that the quotienting of the space of connections by the group of gauge
transformations (in Yang-Mills theory) is a C00 principal fibration. The
underlying quotient space, the gauge orbit space, is seen explicitly to be a C00

manifold modelled on a Hubert space.

0. Introduction

In [1], Singer announced interesting results on the quotienting of the space of C00

connections of a principal G-bundle [on compact orientable Riemannian space
without boundary by the group of gauge transformations under appropriate
restrictions (essentially free group action)]. In particular [1], the quotienting is a
principal fibration, and the underlying quotient space (gauge orbit space) is C00

manifold. In [2] Narasimhan and Ramadas prove independently that the
quotienting in question is a principal fibration (for Sobolev spaces of connections).
In [1, 2] it is proved that when G = SU(Nl and the initial base space Sd (d = 3,4),
the corresponding fibration is nontrivial. The gauge orbit space is not contractible.
Thus continuous global gauge fixing (section) is not possible.

These global results are of relevance to quantum gauge field theory where the
dynamical variables are supplied by the gauge orbit space.

The present paper is motivated by the need, on the part of gauge field theorists,
to understand better the geometry of the gauge orbit space, for reasons adduced
below. We return to the quotienting of the space of irreducible connections by the
group of gauge transformations (restricted to free group action) within the
mathematical framework of [2], i.e. we work with Sobolev spaces of sections of
various bundles. We prove that the gauge orbit space is a C00 manifold modelled
on a Hubert space. In order to prove this directly, and to exhibit the C°° structure,
we give an alternative proof (to that of [2]), that we have a principal fibration, in
fact a C00 fibration. Our strategy is to use the existence of local sections to give
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manifold structure to the orbit space and exploit the inverse function theorem to
prove C00 local triviality. The proof automatically supplies C00 manifold structure
to the gauge orbit space.

It is well known that the physical degrees of freedom in Yang-Mills theory are
the space of connections modulo the group of gauge transformations, i.e. by the
gauge orbit manifold. This is true in Euclidean field theory and particularly
transparent in the canonical formalism where the gauge orbit manifold appears as
the true configuration space for a non-singular dynamical system [11]. The gauge
orbit manifold has a natural (weak) Riemannian structure [1, 3]. It has recently
been shown [3] that the associated (formal) volume element evaluated in local
coordinates gives rise to the Faddeev-Popov determinant (associated with
Feynman-De Witt-Faddeev-Popov quantization). An important step in global
quantization would be to give a meaning to this volume element. For these and
related questions a deeper understanding of the gauge orbit manifold appears
indispensable.

Contents
In Sect. I, we define the group of gauge transformations 458
In Sect. II, we show that the group of gauge transformations (a Sobolev space of sections of the gauge

bundle to be defined) may be given the structure of an infinite dimensional Lie group . . .461
In Sect. Ill, we prove that the Lie group of gauge transformations has differentiable (C00) action on the

Sobolev space of connections (for special cases, the action is free) 464
In Sect. IV, for cases where group action is free, we give manifold structure to the quotient space via

local sections 466
In Sect. V, we prove that we have a C00 principal fibration and the gauge orbit manifold has C™

structure 468

Remark. For Sobolev spaces of sections of fibre bundles, see Palais [4]. For manifolds of maps, see
Palais [4] and Eells [5]. Section II is expository. In Sect. II-IV we set up the background for the main
theorem of Sect. V.
See [10] for an introduction to geometry of gauge fields.

Note added. Since this article was submitted for publication, a Feynman-Kac integral with re-
gularisation for continuum Yang-Mills theory has been rigorously constructed in [12] working directly
in the gauge orbit space of this paper.

I. Preliminaries

A. Yang-Mills potentials will be identified with connections in a principal C00

G-bundle P(M, G). The structure group G is taken to be a compact, connected
semi-simple matrix Lie group. The base space M is taken to be a compact finite-
dimensional oriented C00 Riemannian manifold without boundary.

We have two situations in mind:
(i) M is model of 4-dimensional Euclidean space-time

(ii) M is model of 3-dimensional Euclidean space.
The latter case corresponds to gauge field theory viewed as a (canonical)

dynamical system [11]. Compactness is tantamount to a strong form of boundary
conditions on fields, necessary for topological field configurations and bounded-
ness of the action integral. It is a "volume cutoff.
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B. Gauge Transformations. A C00 gauge transformation is a C00 equivariant

automorphism of P{M, G) which induces an identity transformation on M. It is

necessarily fibre preserving.

Let/:P-P,tt->/(u)

f(ua) = f(u)a9 aeG (1.1)

be a gauge transformation.
Since each gauge transformation / is a fibre preserving automorphism, it may

be realised as:

(1.2)

where g:P->G

aeG. (1.3)

If A is C00 connection 1-form in P, then f*A is the C00 gauge transformed
connection.

C00 gauge transformations form a group, also a transformation group on the
space of connections of P.

We make contact with the usual definition of gauge transformations. Let
{°Ua, φa}: C00 bundle atlas. {4̂ α} system of neighbourhoods covering M, and

( / V π " 1 ^ ) - ^ xG (1.4)

diffeomorphisms (π:P^>P/G = M; canonical projection). Let

σα:^α->P, π σα = id|^α (1.5)

be a system of local sections.

If x e ^ α n ^ , we have:

* "V* , ( 1 6 )

smooth transition functions satisfying the co-cycle condition.

From (1.2),

f(σa{x)) = σα(x) gα(x), (1.7)

where ga(x) = g{σa(x)).

Thus under a gauge transformation:

fj (γλ-^fj ίχ).n (x) Π 8)

Let A(a) = σ*A, connection form on %a. Then we have gauge transformation:

(1.6, l.η^^ad^. g. (1.10)

pointwise for
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Thus the gauge transformation group Ή may be identified with the set of
families {gj, Qa' ̂ a^G satisfying (1.9), with pointwise group operations, or
equivalent with C°° sections of some bundle (see later). (1.9) may also be written:

A^Ato g^Ato + g-H^yg,. (1.11)

dΛM = a + lAl'\ ] . (1.12)

where dA{μ) is exterior covariant derivative in some bundle (see (1.23)).

C. Global Transcription. Following [6], we introduce the associated gauge bundle
(bundle of groups)

EG = PxGG (1.13)

with G having adjoint action on G (second factor).
We shall identify the group of gauge transformations ^ with the space of all C00

sections (with pointwise group operation)

where 2£ is the center of ^.
We introduce the adjoint bundle (as in [6])

(1.14)

We define the normal subgroup ^° :

90 = {ge9,g(x0) = e}9 (1.15)

where x 0 is some definite point of M, chosen once for all. Note that

0/0° = G. (1.16)

We also define the subgroup:

# (1.17)

(1.18)

. (1.19)

and

J?o = {ξeJ?\ξ(xo) = 0}. (1.20)

Later on, once Lie group structure has been introduced in 0 (respectively ^°), i f
(respectively JS?0) will be identified with its Lie algebra.

Let

s/ = space of all C00 connections on P(M, G) (1.21)

and

srf C stf = subspace of irreducible connections. (1.22)

dΛ:Γ(EJ-+Γ{Ead®Λ1) (1.23)

where G has adjoint action on its Lie algebra L(G).
We define
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is exterior covariant derivative (local expression is (1.12)). We have a right
^-action on si:

1dAg. (1.24)

It is useful to introduce one more structure.
Recall that the structure group G is a matrix Lie group, hence a subset of

M(w,C) (algebra oϊ nxn complex matrices).
We introduce the associated bundle of matrices:

EM{nχ) = PxGM{nX), (1.25)

where G has adjoint action on M(n, <C). We also introduce the space of C00 sections

(1.26)

where 0t has the structure of an infinite dimensional algebra (pointwise the
structure of a matrix algebra). We have both:

(1.27)

II. The Group of Gauge Transformations
as an Infinite Dimensional Lie Group

A. Topological Group

We obtain from 3ί a group with the structure of a Hausdorf topological space, in
fact a complete metric space, and verify it is a topological group.

Since [see Eq. (1.27)]

we shall give a topology on ^ and to ^ the induced topology. To give the topology
on M we exploit the fact that M has pointwise the structure of a matrix algebra.

Let {%, φa}: C00 bundle atlas for P(M, G) as in (1.4), and {%,fa}: C00 atlas for
M. Then for gvg2e&, we introduce the norms:

Ilii-ffill^flll^i-^)/.-1^)1 '2, (2 i)

where

\\φa(ai-g2)fa~1\\k = \\βl.a-β2jl= ί <* VOl Σ |J>%1,. - 02,α)|2

Here f̂ α is the fibre coordinate of the section gt over ^ α , and

ι/ι2=α/)=tr/*/.
d(vol) is the volume element with respect to Riemannian metric on M. This gives
an admissible norm on 01. (See Palais [4], Sect. 4.)
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$k is the completion of 01 using (2.1). ^k is the completion of ^ in the induced
metric (Sobolev space of sections). ^k is closed in 0lk for /c>dimM/2 (Eells [5],
Sect. 6), using the Sobolev embedding theorem and the fact that the structure
group G is closed in M(n,C). See also [2]. Using the Sobolev inequality:

| | / .0 | | k ^const | | f | | k ||g||fc, (2.2)

valid for k > (dim M)/2, it follows that the group operations in &k are continuous in
the above topology (exactly as for finite dimensional matrix groups). Thus ^k (and
also ^£, #fc) are topological groups.

B. Lie Group Structure

We have g> = Γ(EJC@. Let ξl9ξ2e&, ξitΛ (ί = l,2) the fibre coordinates of the
sections of £ a d , over f α c M . Then [similar notation as before, (2.1)] we can
introduce the distance || ||fe in S£:

H£i-£2II*2 = Σ ί d{vo\)Σ\D\ξUa-ξ2J
2

UG), (2-3)

where \X\l(G) = {X,X)L(G), the bi-invariant metric on the Lie algebra L(G) of the
structure group G. We have the completed Sobolev space of sections of the adjoint
bundle:

&k = Γk(EJCίXk. (2.4)

It is a Hubert space.
Let 1̂ (0) C JS?fc be a sufficiently small neighbourhood of the origin. Since L(G) is

the Lie algebra of the (compact) Lie group G we can introduce, poίntwίse, the
exponential map:

Using the Campbell-Haussdorf formula and the inequality (2.2), we have:

exp (ξ + h) exp (-ξ) = exp (μ(£) h + r(h, ξj), (2.6)

where

(i) μi& .sek-+<ek

is linear and continuous. Explicitly:

^factors

Kerμ(ξ) = Φ, sufficiently small <J in

(ii) llrίΛ.QI
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Thus the exponential map is differentiable (easily generalised to C00). Moreover,
using the inverse function theorem, the exponential map provides a local
diffeomorphism. Thus we have:

Proposition 2.7. There exists a sufficiently small neighbourhood of the identity e,
Nk(e)C^kfor which the exponential map (2.5) provides a chart in 5£k.

Let Mk(e) C Nk(e) (neighbourhoods of identity) such that

Mk(e)-Mk(e)cNk(e).

Let gx =exp£ 1 , g2=expξ2eMk(o). By the Campbell-Haussdorf formula:

g1 g2 = expf(ξ1,ξ2), (2.8)

where the Campbell-Haussdorf power series:

f(ξ1,ξ2) = ξ1 + ξ2+$lξ1,ξ2] + .. (2.9)

converges absolutely in <£k for sufficiently small ξvξ2 [use (22)]. Thus we have
coordinates by the exponential map:

g1 g2-+f(ξ1,ξ2), (2.10)

where f is C00. Thus we have:

Proposition 2.11. The topological group &k is a local Lie group, moreover 5£k is its
Lie algebra.

We shall now transport the C°° structure [provided by the exponential
map in Nk(e) C ̂ J everywhere in &k by right translation by the following standard
method: consider a neighbourhood of identity M'k(e) such that

) . (2.11)

Then

M'k(e)CMk(e)CNk(e). (2.12)

Let ae@k. Then Mk(e)a provides a neighbourhood of a.
We now define a chart on Mk(e) a:

geM'k(e) a. (2.13)

Then,

g = gξa, gξ = expξeM'k(e). (2.14)

Then

g-»ξ (2.15)

gives a homeomorphism of M'k(a) = M'k{e) α-> neighbourhood of origin in 5£k

[since M'k(e)-+Mk(e) a is a homeomorphism]. Thus (2.15) gives a chart for M'k(e) a
in ^k. Finally, if ge M/

k(α1)nM/

k(α2)

g = gξί

 ai=9ξ2ma2 ( 2 1 6 )
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whence [using (2.11)], axa2 *, a2a~[γ eM'k(e). We have:

gξl=gξ2a2a~\

whence

ξ^M^a^1). (2.17)

Similarly

Hence, the charts are C00 related, and % is a C00 manifold modelled on the Hubert
space S£k.

Thus we have proved:

Theorem 2.18. ^Sk (and also $k, §k) has the structure of a Lie group. <£k may be
canonically identified as the Lie algebra of$k.

dimM
Remark 2.19. For k> — - — , by the Sobolev embedding theorem, ̂ k is contained

in the space of continuous sections of the gauge bundle. Convergence in || ||k
implies uniform convergence, (Eells, [5], Sect. 6]. It follows that &k is closed in $k.
@k is a closed Lie subgroup of &k.

Remark 2.20. As a consequence of Remark 2.19, the exact sequence [1]

is a principal fibration.

III. The Action of the Lie Group &k + ί

on the Space of Connections stfk

A. Preliminaries

Let Γk+1 _p{EΆά®Λp): Sobolev space of sections of Ead®Λp (i.e. p-forms on M with
values in Ead) in class (fe + 1 — p). First introduce a pointwise inner product using
Riemannian metric on space of forms and invariant metric on Lie algebra L(G).
Sobolev norms are then introduced as in Sect. II. These are Hubert spaces.

s/k is the Sobolev space of connections of P(M, G) in class k. I.e., ifΛί,A2e^k,
then A1-A2 = τeΓk(EΆά®A1) and s$k is an affine space. stfkCstfk is the subspace of
irreducible connections. For Aesrfk or j / k , we have the exterior covariant
derivative:

dA:Γk + 1{EJ^Γk{EJ®Λ1)9 (3.1)

a continuous linear operator.

For ωieΓk+1_p(Ead®Ap), p = 0,1 we have Sobolev inequalities

ω 1 | | k + 1 _ p | | ω 2 | | f c + 1 _ p (3.3)
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valid for fc > (dim Af)/2. We shall hold k>—-— + 1 , hereafter held fixed. By the

Sobolev embedding theorem, s/k is embedded in the space of C 1 connections.

B. Group Action on s$k

We have the gauge transformations

The group action is differentiable (in fact C00). Let

Af = A + τ, τeΓk{AΆά®Aι) (3.5)

A'->τ coordinatizes s$k.

From Sect. II [(2.11) et seq.], geMk+1(e)-a for some ae&k+1.

g-+ξ coordinatizes Mk+1(e)-a.
Then the map:

reads in coordinates

_ χ

 k a d > < _ 1

 X k+1~* k a d > < _λ (3.7)

Using (2.6), and the inequalities (3.2) and (3.3), we obtain:

- ( Φ J ξ ( τ , ξ)h + (ΦJx(τ9 ξ)η + r fah ξ,τ) + r 2 ( Λ ; ξ 9 τ ) , (3.8)

where:
(i) (Φ*)ξ' <&k+1-*Γk(E&d®Aί), linear, continuous

(ΦJξh = a~ Hexp ( - ξ) dΛ. (μ(ξ)h) exp (ξ))a

A' = A + τ

(ii) {ΦJτ:Γk(E&d<g>A')-+Γk{EΛά®Λ1)9 linear, continuous

(ΦJτη = a-1(exp(-ξ).η exp(ξ))a (3.10)

(iii)

Urn WM
I k + i - o \\h\\k + i (3.11)

•=c(&τ),

where C is a constant (depending on ξ9 τ).
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We have:

Proposition 3.12. The group action stfk x ̂ f c + 1 -> $tk given by (3.4) is C 1 (it is easy to
generalize to C 0 0).

C. Free Action

We now take special cases of the above.
(a) Take ^kx^+ί-^^k.
(b) Take ^kx^k+ί^s/k.
In both cases the group action is free:
If A' -g = A'. Then dA,g = 0, i.e. g is covariant constant. For case (a) g(xo) = e.

Hence by parallel transport g — e everywhere. For case (b), g — e follows by
applying άA, again and using irreducibility and "absence" of centre.
D. From now on we restrict ourselves to the two cases of C, where we have C00 free
action. We shall concentrate on stfk (subspace of irreducible connections) and

+ 1 . Let

A = ^A^A = co variant laplacian

a continuous, linear operator.
For AeJtfk, KQVΔA = 0, using positivity (in L2 of the scalar product on ^k+1)

and irreducibility. From Proposition 3.3 [2], ΔA is also surjective. Thus ΔA is an
isomorphism.

Let GA = ΔA

1, the Green's operator. We have the fundamental inequality
which will play an important role in the following:

Aeάk9 Γ^E^A1)

We shall use another fact: for k k

(3.14)

is a splitting. Here TA(s/k) may be identified with dA<2
?

k+1 (tangent space to orbit
through A) and T\\J) with KerJ* (see Proposition 3.3 [2]).

Now stfk C jtfk is open in stw Hence we also have:

(3.15)

is also splitting.

IV. Manifold Structure for the Gauge Orbit Space

A. We consider the C00 free action of # f c + 1 on stfk and consider the quotient space

where π stands for the canonical projection. We give the quotient space the
quotient topology so 9ϊlk is a topological space and π is a continuous map.
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By the structure of a manifold on Wlk we mean a system of neighbourhoods
covering SOΪfc? homeomorphic to open sets in a Hubert space (model space). In this
section we show how a manifold structure is given. In Sect. V, we will see that the
structure is C°°, i.e. coordinate changes on overlaps are C00.

B. Local Gauge Sections. Let

Nk(A) = {A'eάk\\\A'-A\\k=\\τ\\k<c] (4.2)

be a neighbourhood in ja^, centred at Ae srfk.
Let

We define:

Srk(A) = Hk(A)nNk(A). (4.3)

Proposition 4.4. For sufficiently small c, the set ^k{A) is (i) locally complete and (ii)
globally effective.

(i) means: given AΈNk{A), 3 unique (small) ge^k+1 such that A' geέfk(A)
(ii) means: given A\ A"eSfk(A), A' + A", there does not exist any ge§k+1 s.t.

A' = A".g.

Proposition 4.4 is proved along the lines in [Sect. 6, [6] and [9]). The proof
goes through for Sobolev spaces connections because the inequality (3.13) is valid,

will be called a local gauge section.

C. Coordinate Neighbourhoods in Orbit Space

* ^ i = 9 W t (4.5)

and π is continuous in quotient topology. Then, by virtue of Proposition (4.4),

"A = "\y«Av#iW-**lk(AKWk (4-6)

is a homeomorphism \jηk(A) is the image of Sfk{A) under πA~\. We define:

σA is a continuous local section of (4.5). {^(^4)} provides a system of (coordinate)
neighbourhoods covering 9Jlk.

Claim. 9Jίfc has a manifold structure modelled on a Hubert space fflk(E^®Λι).
In fact σA gives a chart in ηk(A) as follows. We define:

τ(m) = A - σA(m), me ηk{A)

and Jί?k(ESid®Λ1) as the Kernel of d*A in Γk(E^®Aγ) (it is independent oiA up to an
isomorphism). 34?k(Ead®Λί) is a closed subspace of Γ^E^φΛ1). It is a Hubert
space. Clearly έfk(λ) is isomorphic to an open set in fflk(EΆά®Λι) and

1



468 P. K. Mitter and C. M. Viallet

V. ^ k ^ » ^ k / ^ k + 1 = 9EWk as a C°° Principal Fibre Bundle

In Sects. II-IV, we have shown that the Lie group ^k+ x has C00 free action on s$k

and the topological space 5Dtfc has been given manifold structure [system of
neighbourhoods homeomorphic to open sets in 3tf?

k(EΆά®A1)~\. We shall now prove
C00 local triviality.

Let ηk(A) be a coordinate neighbourhood in 9Jΐfc, coordinates being supplied by
S?k(A) (Sect. IV, B, C). We consider the map

(5.1)

It is easy to check that ΦA is an isomorphism. To this end, define first the map:

by:

A' • gA{A') ~1 = σA(π(A')) = σjrri). (5.3)

Such a gA exists because σA(m!) is a point on the orbit through A'. gΛ is uniquely
defined because ^ k + 1 ' s action is free. We have:

. (5.4)

Next we define the map:

Λf ^xMΊ = (nA\ gA{A')) = (m\ gA{A')). (5.5)

Then

*Λ(XΛM) = ΦA^\ gA{Ά)) = σA{m>) gA{A')

ΦA(XA(A')) = A'.

χA(ΦA(m\ g)) = χΛ(σΛ(mf) g) = (rri, gΛ(σA{rri) g))

χA(ΦA(m\g)) = (m\g).

Hence ΦA is an isomorphism and ΦA

 1 = χA.

We shall now prove:

Proposition 5.6. The application ΦA of (5.1) is a C00 diffeomorphism (local
triviality).

Proof. We have already checked that ΦA is an isomorphism. Hence it is sufficient
to check that ΦA is a local diffeomorphism.
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Let

(m',g)eηk(A)x§k+1. (5.7)

Then

σA:m'-+A + τeyk{A) (5.8)

provides coordinates for rή.
Let geMk+ί(e) a. (M'k+ί(e)'a is a neighbourhood of ain§k+ί) [see Sect. IIB,

especially (2.11) et seq.].
Then

and (5.9)

g-+ξeVh+1(0)cXk+1

provides coordinates for g. Vk+ί(0) is a neighbourhood of the origin in J5?k+1, the
Lie algebra oϊ@k+ί.

Let:

ΦA(m\g)e^Cπ~1(ηk(A)). (5.10)

Here % is isomorphic to an open set in Γk(Eaά®Aι\ Sfk{A) is isomorphic to an open
set in ^ek{E^®A% and Vk+ι(0) to an open set in Γk+1(Ead). j#k(EΛd®Λ1) and
Γk+1(Ead) are Hubert spaces.
Hence we have to show, for sufficiently small <%, £fk(A), Vk+1(0\

ΦA:yk(A)xVk+ί(0)^ (5.11)

is C00 and also Φ ; 1 is C00.
That ΦA is C00 follows from Sect. IIIB leading to Proposition 3.12. That ΦA

 x is
C00 will follow from the inverse function theorem if we can show that the
differential {ΦA)# is an isomorphism of tangent spaces on both sides of (5.11).

This we now show:

ξ1(0))-^TA,.g(®), (5.12)

using (3.8)-(3.1O)

(ΦAU^h) = cι-1^xp(-ξ)'(dA>(μ(ξ)h) + η)^xp(ξ) α, (5.13)

where we also have:

d > = 0. (5.14)

See (2.6) for definition of μ(ξ).

Claim.

Proof. Suppose (ΦJJ??, h) = 0.
Then from (5.13) we obtain:

άA,(μ(ξ)h) + η = 0 (5.15)
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and using (5.13)

dAdA,(μ(ξ)-h) = 0

A'

Thus

or

-h + GAd*[τ,μ{ξ)-K]=O. (5.16)

A A

Then, using (3.13)

\\μ(ξ)-h\\k+ιSconst\\lτ,μ(ξ)-hl\\k

Scomt\\τ\\k-\\μ(ξyh\\k

=>\\μ(ξ)-h\\k+tZcomt\\τ\\k-\\μ(ξ) h\\k+1 (5.17)

(5.17) implies that (5.16) has the unique solution

μ{ξ)h = O (5.18)

for sufficiently small £fk(A). From (5.18) and (2.6)(i) we have h = 0 for sufficiently
small Vk+1(0) (exponential map is a local diffeomorphism).

From (5.18) and (5.15) using (3.2) we have η = 0. The claim has been proved.

Claim. ( Φ ^ is surjective.
Writing g = (expξ) a (5.9) we can express (5.13) as:

J β β β t β β ι η), (5.19)

where

ΠA. = ί-dA. GA.'d*.. (5.20)

Then ( Φ ^ induces a surjective map:

(5.21)

where T%,.g(Jtfk) is the tangent space to the orbit through A' g and T%,.g(jtfk) is the
orthogonal complement [in the natural Riemannian metric on Γk(EΛd®Λ1)'].

Let us prove surjectivity of (5.21).
Let

and suppose:

(ΦAUη,h) = dA,.g-h0 + η0 (5.22)

shall show there exists (unique) η, h satisfying (5.22).
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From (5.19) and (5.22), we have:

ΠAη)) j
d%)) j( i i ) dA,.gho = d A g g j

From (5.23)(i), (5.20) and using d*η = O, we have:

F(τ, η) = η + dA,GA, * [τ, *η\ = Aάgη0 . (5.24)

From (3.2), (3.3), and exploiting (3.13), we have F is continuous. Moreover
F^ η\τ = 0 = id. Hence by the implicit function theorem, for sufficiently small £fk{A\
(5.24) admits a unique continuous solution.

η = η(τ,η09g). (5.25)

Returning to (5.23)(ii) we have, using irreducibility, "absence" of centre in

&k+ι, and that exponential map is a local diffeomorphίsm (Proposition 2.7), the

unique solution:

h= -μ(ξ)-\GA>d*φ,ηo,g)-Adgho). (5.26)

Again using (3.13) and (Theorem 2.7) h is continuous. Thus surjectivity of (5.21)
has been proved (in the process we have constructed a continuous inverse).

On the other hand, by virtue of (3.15)

W * H Ή ,W©Ή'.,W ( 5 2 7 )
is an isomorphism. Combining (5.21) and (5.27) our claim is proved. Hence we
have proved that (ΦA)% is an isomorphism. Thus by inverse function theorem ΦA

 1

is C00. The proof of Proposition 5.6 is complete.
By virtue of opening remarks of Sect. V and Proposition (5.6), we have proved

the main theorem:

Theorem 5.28. J^k~*^k/^k+i ~^kίS a ^°°principal fibre bundle with the Lie group
# f e + 1 as structure group.

Theorem 5.29. Wk is a C00 Hilbert manifold.

Proof. Let m!eηk{Λ1)nηk(Λ2).
We have:

σA(m') = A'i = A i + τieyk{Ai), ΐ = l , 2 .

Then we have coordinates:

m'->τi5 i = l , 2

in local charts. From (5.3) we have the coordinates change formula:

or
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We have proved Φ~A

ι = χA (5.5) is C00 and hence the map gA of (5.2) is C00. The
map F [between open sets of Jίfk(Ead(g)Λ1y] of (5.30) is the composition of the C00

map gA with a gauge transformation which is also C00 by virtue of Theorem 3.12.
Hence the coordinate change map F is C00.

Remark 5.3ί. S0lfc is separable since stfk is seperable. It can be shown that 9Jlfc is
metrizable. Hence it is Haussdorf and para compact and has a countable
topological base.
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