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Abstract. The integral over two n x n hermitan matrices

Z(g, c) = \dAdB exp< - tr \ A2 + B2 - 2c AB + -(A4 + £ 4) \ϊ is evaluated in

the limit of large n. For this purpose use is made of the theory of diffusion
equation and that of orthogonal polynomials with a non-local weight. The
above integral arises in the study of the planar approximation to quantum
field theory.

1. Introduction

In their study of planar diagrams some authors [1,3] have discussed integrals
of the form

Z =
0 expj - Σ V(M(i)) + £ Cu tr M(ί)MU) 1 (1.1)

\. i i<j J

V(M) = tr M2 + - tr M 4 (1.2)

where M ( 1 ), M ( 2 ),... are hermitian matrices of order n x n. The integral is taken
over all independent real parameters entering the matrix elements,

$dM= ί . . J l W a Π rf(ReM..)d(ImM..). (1.3)
— oo ί= 1 l = i < j = «

The case of one matrix is the simplest. There are no cross terms containing
.j. The integral reduces to that over the eigenvalues [4],

Z(g) = dM exp< - tr M2 - - tr M 4

t.Jexpj- t (*ϊ + fe)}MW|/'Π^P (L4)= const.
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where

Δ(X)= Π (xt-Xj) (1-5)

and β = 2. It is now known [1,2] that

-^lnW)=Eoig)+^Ei{g)+0{n~A)' (L6)

with

E0(g) = - | l n α 2 + ^ ( α 2 - 1)(9 - α2), (1.7)

^ (1.8)

2. (1.9)
3βg

In stead of hermitian matrices one could have taken matrices which are real
symmetric or which are quaternion self-dual. The corresponding integrals reduce
again to Eq. (1.4) where the parameter β is 1 for real symmetric matrices and it is
4 for quaternion self dual matrices. These integrals can again be evaluated in the
large n limit, and give the same E0(g) except that β is now 1 or 4. The correction
term Eγ(g) may be different. The details of this calculation being of no interest
are omitted.

The next difficult case of two matrices was discussed by Itzykson and Zuber
[3]. They reduced the integral to that over the eigenvalues. However, the expres-
sions given by them are too complicated. Below we will reinvestigate this case

Z(g, c) = $dAdBexp< - tr(A2 + B2) - - tr {A* + £ 4 ) + 2c tr AB 1 (1.10)

where A and B are n x n hermitian matrices. We will show that

where/(x) is given by an algebraic equation of the fifth degree

f(x)U\-6Q-f{x)\ -c2\+l2g2f*(x)-±cx = 09 (1.12)

and the root to be taken equals | cx( l — c2)~x when 0 = 0.

2. The Method of Diffusion Equation

Consider the partial differential equation

dξ l δ 2 ξ OK
x * {2Λ)
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where the constants D. may be unequal for different directions. The unique
solution satisfying the initial condition ξ(X O) = η(X) is known to be [5]

;t) = jK(X,Y;ήη(Y)dY, (2.2)

K(X, y;ί) = Π(2πD i ί )- 1 / 2 ex P | -Σ(x ί -y ί )
2 /(2ί) ; ί )} (2-3)

Now let A be an n x n hermitian matrix with elements AtJ. The Au are real, while
the real and imaginary parts of Atj for ί<j are denoted by Re^ ; j . and ImA^
respectively. Similarly for the matrix B. Then

ξ(A;t) = $K(A,B;t)η(B)dB, (2.4)

= (2πtΓ"2/2 expj - γ{ Γ Σ(Λ ( ί - Bh)
2 + 2 % (Re Al} - Re Btj)

2

(2.5)

\dB= f ...\Y]dB.. Y\d(ReB.)d{lmB), (2.6)
J J J ± ± II X ± v ιJ ιJ

- oo i i < j

satisfies the equation

and the initial condition

(2.9)

As ^ and J5 are hermitian, we can choose unitary matrices UA and UB such
that

, B=U$YUB9 (2.10)

where X = [*Aj] a n (^ ̂  = C)7^/;] a r e diagonal matrices. The x. are the eigenvalues
of A and the y. are those of B. Changing the variables from matrix elements to
the n eigenvalues and n(n — 1) angle parameters on which UΛ and UB depend,
we have [4]

dB = A2(Y)dYdΩB, dY=f\dyr (2.11)
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so that

| ^ t r ( X - U+ YU)2\η(Y,ΩB)Δ2(Y)dYdΩB, (2.12)

where

U=UBU$ (2.13)

Observe that if η(B) is independent of ΩB, then ξ(A;t) is also independent
of ΩA as can be seen by a change of variables from ΩB to Ω (depending on U\

ξ(X;t) = const .r n 2 / 2 jexpi - ~ t r ( X ~ (7+FC/)2L(r)zί2(r)ί/rrfΩ. (2.14)

Seperating1 the Laplacian into parts depending on X and on UA,

one sees that ξ(X t) satisfies the (diffusion) equation

and has the initial value

ξ(X;0) = η(X) (2.17)

Set

F{X;t) = Δ{X)ξ(X;t) (2.18)

Then

fξ + 2{diΔ){d.ξ) + ξdfA}

Thus F(X;t) satisfies the (diffusion) equation

et^3^ ( 1 2 0 )

and has the initial value

F(X O) = Λ(X)£(X O) = Δ{X)η{X). (2.21)

1 The Jacobian of the transformation from matrix elements to the eigenvalues and angle variables

for a hermitian matrix is Δ 2(X)f(ΩA), where/is independent of the xi [4J. Therefore the Laplacian

is given by Eq. (2.15) ([5], end of Chap. 1)
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Therefore F{X;t) is given by [5]

F(X t) = const. Γ"/2f exp j - ~ £ (x. - JΛ)2 l ^ y ^ y ^ y . (2.22)

choose

= exp { - V(B) + c tr 52} = exp j - V(Y) + c £ j Λ (2-23)j
where V(M) depends only on the eigenvalues of M. Setting c = — in Eqs. (2.4)-(2.6),
(2.18) and (2.22) one gets 2t

Δ{X)\dB exp { - V{B) + ctrB2-c ir{A - B)2}

= \Yc) 1)lΊdY^p\-v(Y) + cΣyf-cΣ(χi-yi)
2\^(Y) (2.24)

The constant is obtained by choosing V(B) = c tr B2 and performing the gaussian
integrals on both sides. Therefore

J exp { - V(A) - V(B) + 2c tr ABjdAdB

= const. $dXdΩAΔ
2{X)expj - V(X) + c£:>

• jrf5 exp { - V(B) + c tr £ 2 - c tr (A - B):

= const. JrfZJ7J(X)zJ(7) expj - V(X) - V(Y) + 2 c ^ ^ / } . (2.25)

This is essentially the result of Itzykson-Zubar [3] expressed in a simpler
form. The constant can be fixed by considering V(A) = tr A2 — ^x 2 . The gaussian
integral on the left hand side is then straight forward, while that on the right
hand side is given in the appendix. As a result the unknown constant is

3. Orthogonal Polynomials Revisited

To get the asymptotic behavior of Z(g, c)/Z(0, c).
where

Z(0, c) = J expj - t r U 2 + B2)~^ ^(Λ4 + B4) + 2c tr AβldAdB

= const, jexp^ - £(x 2 + y2) - »Σ(χf + yf)

•Δ(X)Δ(Y)Y\dxidyi, (3.1)
i

we will use orthogonal polynomials with a non-local weight.
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Writting A(X) = Y\ (x. — Xj) as the Vandermonde determinant, one sees that

i(x ί )] i J = i 2 j . . . ; Π j (3.2)

where

(3.3)

is an arbitrary polynomial of degree; with the coefficient of xj equal to 1. Similarly,

^ ( ^ = det[β J ._i(^)] u = i> 2,.. ., n, (3.4)

where Q/x) is another set of similar polynomials.
Since

w(x, y) = exp j - (x2 + y2) - 9-{x* + / ) + 2cxy\ (3.5)

is symmetric in x and y, we will choose P^x) = (λ(x) and such that

f J w(x,y)Pi(x)P.(y)dxdy = h^. (3.6)
— oo

where the Kronecker symbol δt. is 1 or 0 according as i =j or i φj. Such a choice
is possible. In fact

p.(x) = const, det
mΌO mιoi

m

1)0 m(i-l)l

(3.7)

where

y = ί (3.8)

are the moments of w(x, y). In particular, since yj can be expressed as a linear
combination of Pk(y) with /c ̂ 7, one has

00

J J w(x, = 0, for / > j . (3.9)

With such a choice of P^x) we expand the two Vandermonde determinants,
multiply and use the orthogonal property (3.6) to integrate various products.
The only terms which contribute have equal indices of the polynomials in x and
in y, they contribute the same quantity, and they are n! in number. Thus

Z{g9 c) = const, n! (3 1 0 )

and we need to know the asymptotic behaviour of the product of h.. For this
purpose, we proceed as with the usual orthogonal polynomials.
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As w( — x, — y) = w(x5 3;), m.j = 0 for i +j odd, and P.(x) has a definite parity,

Pi(-x) = (-l)ίPi(x) (3.11)

Let

xP£(x) = Pi+1(x) + Rf^ix) + S iP j_3(x), (3.12)

where # . and S. are certain coefficients. Iterating thrice we get

x3P,.(x) = P i + 3 (x) + (R, + Λ i + 1 + R. + 2)Pi+ Jx)

ι(x)+.... (3.13)

Thus expressing xkPi(x) as linear combinations of Pj(x)J ^i + k, and using equa-
tion (3,6) we get

Π Pi-1WΛ(y)(x - cy + 21 x3 W

C i?Λ- 1 (3-14)

Also integrating on x by parts, the left hand side of the above equation is

because of equation (3.9). From the last two equations we get

Similarly by integrating

P.{x)P._Λy)[x-cy + — x3 )w(x,y) (3.17)

V n J
and

P_Jx)P{y)\x — cy-\ x3 )w(x,y) (3.18)
1 V n J

in two different ways, we get the relations

^ = ^-1{~ ̂  + ^ ^ + V ( j R ί~i + ^' + K/ +1)] + V ( S ί + ^+ ̂  + 5 ^2>} ? (3.19)

and

2-h. = cS.h.^. (3.20)

4. Asymptotic Evaluation of Z(^, c)

Let us write/. = h./h._19 so that Eqs. (3.16), (3.19) and (3.20) can be rewritten as
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\ (4.1)

+ 2^(Si + Si+1+Si_2), (4.2)
n

and

cS^AA-Jt-z- (4-3)

For large ί and n, the/J, R. and S. can be replaced by continuous functions.
Thus

/. - nf(x), fi±1~ nf(x ± ε),

R.~nR(x), Ri±1~nR(x±ε),

St ~ π2S(x\ Si±, - π2S(x ± ε), (4.4)

x = -, ε = -. (4.5)

n n

Making these substitutions, we get to the leading order,

f(x) = cR(x){l+6gR{x)}-1, (4.6)

cf(x) = ~ \ + R(x)(l + 6gR(x) + 6gS(x)9 (4.7)

cS(x) = 2gf3(x). (4.8)

Eliminating .R(x) and S(x) from the last three equations, one gets

- 69-f{x))~2 -A+ \2g2f\x) = ίCχ. (4.9)

When 0 = 0, the value of/(x) will be denoted by/0(x). From (4.6) and (4.7)

0 f (4.10)

Now from Eq. (3.10) we have

ί)"ί i We)' ( }

"Σ to K = n In h0 + £ (n - ί) ln/p (4.12)
i = 0 ί=l

i « 1

-^ X (n - i) ln/.fe, c) = f (1 - x) ln(n/(x))ώc + 0(π' 2 ) . (4.13)
n i=i o
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Therefore

But

Γ ί
> -\χ2 + y2

(4.15)

Hence

λo(0, c)

Eqs. (4.14), (4.16), (4.9) and (4.10) together give the result announced in the intro-
duction, Eqs. (1.11) and (1.12).

5. Some Remarks

5.1. Formula (2.25) looks trivial, but it is not. To be honest, we have no shorter
way to derive it.

Itzykson and Zuber [3] derive a formula equivalent to (2.25) in a different
way as well. They introduce the decomposition of unity into characters of irreduci-
ble representations of the unitary group. Using the orthogonality of these charac-
ters they can perform the angular integrations. The final result is a series containing
eigenvalues of A and B, characters of irreducible representations of the unitary
group, their dimensions and the number of times an irreducible representation
occurs in various Kronecker powers of the initial matrix. This method can be
adapted to deal with real symmetric or quaternion self-dual matrices; one has
only to replace the unitary group by the orthogonal or the symplectic group.
The formulas however, do not seem to be simple.

5.2. The same method adapted to evaluate the integral over a chain of matrices

Jexpί-
II ί = l ι = l

in the limit of large n will be considered elsewhere [7]

5.3. An expansion in powers of g gives

l^ί = 1 _ 6gx(l - c2)-2 + 3#2x2(l - c2)~ V + 8c2 + 15) + 0(g3) (5.1)

so that

= - 0(1 - c 2 Γ 2 +1# 2 (1 - c 2 Γ 4 ( c 4 + 8c2 + 9) + 0(g3) (5.2)
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5.4. Denoting by < > the average with respect to any positive measure, one has
the inequality [16].

Taking

<...> = \dAdB exp{ - tr(yl2 + B2 - 2cAB)}..., (5.3)

or

Γ b 1
< ... > = JdXdyz1(X)zl(7) exp< - £ ( χ f + yf - 2cχ.y.)>... (5.4)

I l J
and

F=- -tr(A* + B4) = --f(x4 + y4), (5.5)
n n j

we get the inequality (see the appendix)

Z(g,c)
Z(0,c)

^ e x p { - 0 ( l - c 2 ) - 2 ( n 2 + ^ ) } (5.6)

Thus one sees that in agreement with Eq. (5.2),

E0(g)=+g(l-c2Γ2 + 0(g2),

In general, let D be the p x p matrix [<5f. — C y ] and Dk the same matrix with
its k'h row and /c"1 column removed. Observe that

Jexpj- Σ tr^f + 2 Σ CtJtrAiAJidA1 ...dAk_ιdAk+1 ...dAp

with

α. = (det Dk)-«2'2, ajb-"2'2 = (det D)-" 2 / 2 .ak - ( d e t DkY\ akbk

A power series expansion in g gives

p

f + ̂ f +2 Σ CiJtIAtAJ\dAί...dAp
J

= Z(0)<! 1 - | ( 2 n 2 + 1) f b;2 + 0(g2) \.
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So that

5.5. An obvious upper bound for Z(g)/Z(0) is 1. Another of the form k1g
k2 can be

obtained by Schwartz's inequality.
5.6. Note that if V(M) has a term in tr M 6 (tr M 8 , . . . ) , then xP.(x) in Eq. (3.12) will
also have a P._ 5 (x)(Pf _ 7 (x),...) present.
5.7. Let us represent the integral in Eq. (1.1) by a graph; the matrices M ( I ) are
noted as points and the points i and j are joined by a line if C.. φ 0. If this graph
contains no cycles, the angle variables can be integrated by using Eq. (2.24). The
remaining integrations over the eigenvalues, even in the limit of large n, are not
simple.

5.8. Examples. For a cyclic graph with p points,

> = ίΠ<L4.exp{- t F(Λ) + 2c Σ t r^ .X + 1 j ,
1 I i = l i=ί J

Ap+1 = Aι, with V as in Eq. (1.2).

Z(g) ^ Z(0) expί - β-{2n2 + l)p(thθthψj

where 2c c/zθ = 1.
For a p x q square lattice graph with periodic boundary conditions,

Π ^yexp { - Σ Σ [ m ( ; - 2Ct tr A ( ί + l ) j

-i\ _ A y y i 9Γ cos 1C
hj,ij ~ zrz L L I ι ~ z c i C0S~TΓ Z C 2

P<li=ij=i\ P
1 2π

j j (1 - 2C1 cos 0 - 2C2 cos φ)-x dθdφ
4π2

 0

= -f{(l-2C1 cos θ)2-4i
π o

for p and ^ very large. Hence

Z(g)

Z(0)
^ expΓ - ^ (2̂ z2 + l)pq{\ - 4{C1 - CJ2}-1^ (1 - α2 s in 2 θ)- 1 / 2 dθΓl
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with a2 = 16C1C2{1 - 4(Cι - C J 2 } " 1 .
For a star graph with m branches

m Γ m m Λ

Z(g) = \dA]\dBi exp<̂  - V(A) - £ V(Bt) + 2c t r Σ ^ B ϊ,
i t l l J

Z(0)
"if

where

^ exp - g-{2n2 + 1)(1 - me 2)" 2 {1 + m(l + c2 - me2)2} 1

Fj{x) = π - ^ j expj - (y - x)2 -

Appendix

Evaluation of the constant in Eq. (2.25).
We will need the

Lemma. Let F(X) = F(x1,..., xn) be a symmetric function ofx1,...,xn and Δ (X) =
Yl (x — Xj). Then for arbitrary numbers λ{. one has

\dXΔ(X)F{X)Π (x, - Xj + Ay) = jdXA2(X)F(X).

Proof Expand the product Y\ (xt — x. + λ.j) in powers of x t , . . . , xn and note that

Jxf1^2... x*2A{X)F(X)dX = 0

if any two of the α. are equal; this is so because if α. = α., then integrand is anti-
symmetric in the variables x. and x . Therefore the monomial in xι,... 9xn which
will give a non-zero contribution to the integral must have all α. distinct, and its
degree is at least

0 + 1 + 2 + ... + n - \=\n{n- 1).

This is also the degree of \\{xi — x) = Δ(X). Hence terms containing any λtj

ί<j

drop out on integration. End of proof.
To calculate the constant in Eq. (2.25) we may choose

Then

jexpi - f > 2 + yf - 2cxiyi)Xn{X)A{Y)dXdY
I i J
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Σ ((1 - c2)xf + (y, - cxAA(X)A(Y)dXdY
l J

yf)\Δ(X)Δ(Y + cX)dXdY
J

by the lemma. The integration over the y. is elementary. For that over x. change
variables to

so that

J expj - (1 - c2) Σxf\A2(X)dX = (1 - c2)-{1/2)n^e~p'A2(X)dX.

The last integral can be evaluated2 by introducing Hermite polynomials
which are orthogonal for the gaussian weight. The final result is

jexp{ - Σ(x2 + y2 - 2cxiy^}Δ{X)Δ{Y)dXdY

For Eq. (5.6) we need to evaluate

J

Σ " c2)xf + y2)\n{X)A{cX)dXdY
l J

as above. Once more introducing Hermite polynomials, the last integral is seen
to be2

2 [4], Chap. 6
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Finally, from the three term recurrence relation and orthogonality one gets

Sx*H*(x)e-χ2dx = |(2z2 + 2i + 1) \H2

i{x)e-
χ2dx.

Putting everything together one sees that

Σ(xf + y2t - ZcXiVi)\Δ{X)Δ(Y)dXdY

= (1 - c2)~2(n3 + |n)jexp j - £ ( *

implying Eq. (5.6)
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