
Communications in
Commun. Math. Phys. 79, 181-188 (1981) Mathematical

Physics
© Springer-Verlag 1981

On the Symmetry of the Gibbs States in Two
Dimensional Lattice Systems

Charles-Edouard Pfister
Departement de Mathematiques, Ecole Polytechnique Federate,
61, Av. de Cour, Ch-1007 Lausanne, Suisse

Abstract. Under fairly general conditions if a two dimensional classical
lattice system has an internal symmetry group G, which is a compact connected
Lie group, then all Gibbs states are G-invariant.

1. Introduction

For a large class of classical lattice systems with an internal symmetry described
by a continuous group G all Gibbs states are also G-invariant if the space dimension
is two [1,2]. One says that spontaneous symmetry breakdown is impossible.
This phenomenon occurs in various other situations. We refer to [3] for examples
and rigorous results in the field of statistical mechanics. Results of this kind are
established here for classical lattice systems on Z2 with a compact connected Lie
group G. A lattice system is given by a measure space Ωχ, which is the space of
configurations of the system at the lattice point x, a measure dwx on each Ωχ

and a potential U describing the interactions in the system. For example Ωχ = S1,
the unit circle, dwx is the uniform measure on S1 and U is given by two-body
interactions — J(x — y)cos(wx — vvy) which are G-invariant with G = S1 in an
obvious way. Here w^eΩ^ and wyeΩy. If J(x — y) = |x — y|~ α , then the system
is ferromagnetic. Theorem 1 below proves that for α ̂  4 all Gibbs states are
G-invariant and there is no spontaneous magnetization. On the other hand if
2 < α < 4 there is spontaneous magnetization at low temperature and therefore
there are Gibbs states which are not G-invariant [4]. This remains true with
Ωχ = Sn, the n-sphere in (R"+ *, and (wx | wy) instead of cos (wx - wy), where (— | - )
is the Euclidean scalar product in Rn + 1. G is Sn and the results follow from [5]
when 2 < α < 4.

The results of this paper extend previous results obtained by Dobrushin and
Shlosman [1] and [2]. First of all the theorem below covers the case of power-law
decaying interactions and not only exponentially decaying interactions (see also
Remark 2 at the end of Sect. 2). This extension gives complete results for the class
of ferromagnetic systems introduced above (see also Remark 1 at the end of
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Sect. 2). Finally the proof is quite different. It is based on a very simple physical
argument dealing with the energy of configurations. This leads to a proof free of
technical difficulties, which is not the case in [2]. Since the general case can be
obtained from the case with G = S1 (see [1]), the next section gives the results in
this special situation and for two-body interactions only. Many-body interactions
and the general case with a compact connected Lie group G are treated in the last
section.

2. Main Results for G = S1

In this section G = S1, the simplest compact connected Lie group, and the potential
U is given by two-body interactions Ux only, x and yeZ2. For the sake of simpli-
city all Ωχ are the same and Uyy(wx, wy) = Uxy(wy,wx) is translation invariant.
The group G acts on Ωχ and the action of geG on wχeΩ is denoted by g-wχ€Ωχ.
The main assumptions are the following one.
a) G-Invarίance. The measure dwx is G-invariant and the potential U is G-
invariant

b) Smoothness. For any two-element subset of Z2, any fixed WΛ and wy, the real-
valued function

defined on S1 is twice differentiable. Since S1 = U/Z this function may be consider-
ed as a periodic function on the real line R. The first and second derivatives are
denoted by U'Xty and U'Xty.

To express the decay property, which is the next condition, the following
notations are used. If x = (x1, x2)eZ2 then χ\ = max( |x 1 | , |x 2 | ) . For each posi-
tive integer k let

= max(l,ln kλ)

where lnkA = In lnk_lλ and let fk(λ) = 1 whenever lnk/l is not defined. For
l<β<2 f k ( λ » ) ^ β f k ( λ ) .

c) Decay Property. Let

Wχ,Wy

There exist a positive constant C and an integer p so that

This means that the divergence of the above expression is at most like InL ln2L . . .
lnpL for large L.

Remark. It is also supposed of course that the Gibbs measures for finite systems
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are well-defined and so on. In particular
Γ II < oox,y II oo

in order that the thermodynamic limit makes sense.

Theorem 1. If a classical lattice system satisfies conditions A, B and C, then all
Gibbs states are G-inυariant.

Proof. The proof is based on a physical intuitive argument of Herring an Kittel
[6] showing, in the case of the ferromagnetic models described in the introduction,
that there is no state with spontaneous magnetization.

Let g<=G be fixed and let Λt be the subset {x :\x\ ^ /} of Z2. The main step in
the proof is to show that for any configuration w = (wx,xeZ2) of the infinite
system there exists another configuration w = (wx, xeZ2) with the properties
a) wχ = g-wχ,iϊ\χ\ gί
b) wχ = wx, if I x ^ / + L for some L
c) £(w) - E(w) ^K,K independent of g and /
where E(w) — £(w) is the energy difference between the two configurations.
This quantity is well-defined since w and w are different only over a finite region.
Using the isomorphism between G and [R/Z the identity element of G is represented
by 0 and the element g by φe [0,1) or by ψe [ — 1,0) such that ψ + I = φ. Let

0 < φL < φL_! < ... < φί ^ φ and 0>ψL> ΨL_± > ... > Φί ^ψ.

Each ψ. or φ. represents a well-defined element of G denoted by the same symbol.
The argument of Herring and Kittel suggests to define w as w1 or w2 where

1 2 fj. A

In particular φ - wx = ψ wx = g - wx. Let

Q(L) =

For large L Q(L) diverges like lnp+1 L.
The choice of φn and ψn is

φ

k F ( k ) '

and

Therefore φ1 = φ and ι/^ = φ. Let φχ (respectively ψχ) be the rotation applied
atx.
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For all x and y \ φx - φy\^ l .For/+ 1 <;|x|< |y|<;L + /,

X"1 1
~

\-iSk<M-ikFp(k)

<jρ \ χ - y \
= β(L)( |x |-/)F p( |x |-/y

Finally for xeΛl and \y\>l

Similar estimates hold for ψχ.
By hypothesis A

U(wx, Wy) = U(φχ.wx, φy wy) = U(wx, (φy -

By hypothesis B and with αe(0, 1)

for some θ depending on wx and w^ , 0 < θ < α.
By hypothesis C

y

for fixed β > 0. Therefore

Cι<^ (2.3)
y

and there exists β, 1 < β < 2, such that

Σ J(M)δ2(M)^c2L-3 (2.4)
|y|^^

and

Σ J(b|)b|2^C2Fp(L) (2.5)
|y|^^

For a given w the configuration w will be w1 or w2 according to the value of
E(w') - E(w).

= Σ Σ U'(wx,wy)(φy- φx)
xeΛ l y:\y\>\x\

\y\>l

+ Σ Σ L2U"(Wχ,θ Wy)(φy-φχf.
xeΛL + l y:\y\>\x\

\y\>l

The last line is smaller in absolute value than (see (2. 1) and (2.2))
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)e2(M)+gLτ Σ Σ
UWxeΛ^^MZtixl-Dβ

Σ J(\y\)Q2(\y\)

By (2.3), (2.4) and (2.5) this is smaller than

+ gϊ) c ! Σ 8(» + ') = gy(*: 1 (2/+i) 2 +

Therefore, for any fixed finite /, the last expression is smaller than some K, in-
dependent of / and g when L is large enough. When w1 is replaced by w2 a similar
estimate holds and the term containing the first derivatives of the potential is in
this case

Σ Σ t/'K, *,)(*, -f,).
χeΛL + ly' \y\>\χ\

\y\>ι

Since (ψy - ψx) = ψ φ ~ 1 (φy - φ x) and ψφ'1 <0 the above expression and the
corresponding one for w1 have different signs. Therefore for any configuration
w and any finite box Al and any rotation geG = S1, there exists a configuration
w such that

This is the key estimate. The rest of the proof is an easy adaptation of the main
result of [7].

Let geG be given. Let /be a positive local observable depending only on
wχ for xeΛr Let A = ΛL+ 1 with L large enough. The Gibbs state for the finite region
A and a fixed configuration WΛC outside A is given as usual by the measure on

ΠQ, = fl*
x<=Λ

Let μ be any Gibbs state of the infinite system and μg the Gibbs state obtained
from μ by a rotation g. By definition of Gibbs state the expectation value of/
in the state μ isg

<f>μg = ίμtfw)/(0 w)= Sl4dw)SvA(dηΛ\wAe)f(g ηΛ). (2.6)



186 C. -E. Pfister

Let wΛc be fixed. On ί?1 the transformations Tί and T2 are one-to-one

where w^ and w^ are the configurations studied before. They leave the measure
dηΛ invariant by hypothesis A. Furthermore they coincide with the rotation

0™ Π 0
xeΛi^x'

Finally there exists a partition of ΩA in two subsets Ql and Ω2 such that

Consequently if χ . is the characteristic function of £2.

ι exp( - £

' exp( - E(Γ, ι

^** £
i = l , 2

exp( -

Using this inequality in (2-6) and integrating with respect to μ gives

where K is independent of/, μ and 0. Therefore there exists 0 < K < oo independent
of/, μ and 0 such that

Since these last inequalities are true for the characteristic functions of cylindrical
subsets, they remain true, by a limiting procedure, for any characteristic functions
of subsets of the tail field. Let μ be an extremal Gibbs state. These inequalities
show that μ and μa coincide on the tail field (since μ is extremal) and therefore
μ = μg i.e. μ is g invariant for all ge G. This finishes the proof.

Remark 1. The example of ferromagnetic models described in the introduction
shows that the theorem is valid if α ̂  4. It is not valid if α < 4. More precisely the
theorem is valid for the coupling constants J(|x — y\) behaving for large \x — y\
like

(\x-y\Γ4ln2\x-y\..Λnp\x~y\.

On the other hand the proof fails if the behavior of J ( \ x - y \ ) for large | x - y \ is
like

or even

\ l + ε
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with ε > 0. In fact the theorem is not true in these cases. Indeed using the results
of [5] it is sufficient to find a reflection positive potential with such a behavior for
large | x — y in order to have a counter-example to the theorem. Potentials with
such a behavior can be constructed [9].

Remark 2. If the interactions [7 have an exponential decay for large |x — y\,
then the condition C can be weakened and the growth condition fv (L) . . .fp (L)
replaced by L. One uses the exponential decay as follows.

Let

|| ί^.v II oo ^ c e~ κ]x~ yl . Then there exists β > 0 such that

u II <
y:

x\^ \nLβ

Therefore it is sufficient to be able to bound the sum with [/" only

for I x — y 5Πn Z/. This is possible if φn = ——- Σ γ and Q(L) — Σ 7

Therefore the results of Shlosman [2] are covered.

Remark 3. The results are still valid for systems extended in three dimensions
provided the thickness is finite.

Remark 4. No particular property of the space Ωχ of the configurations at x
is used in the proof. However since the condition C is expressed through the
sup-norm || ^ genuine models of unbounded spin systems in statistical mechanics
do not satisfy the hypothesis of the theorem.

Remark 5. Examples of systems with a continuous symmetry group and with
several phases in two dimensions can be found in the work of Shlosman [8].

Remark 6. It is sufficient to have that l/(wx, α wy) = U(wx, wy)+ U'(wχ9 wy)α +
Wίth

some real valued function. Therefore if U'x y exists and satisfies a kind of Lipschitz
condition the theorem is also valid.

Remark 7. Concerning the idea, at the end of the proof, which was taken in [7],
one should mention earlier works of Sakai in [10] and of Rost, reported in [11].

3. Generalizations

3.1. Many Body Interactions

The restriction to two body interactions can be removed. In the general case the
potential U is a family of functions UA indexed by the finite subsets A of Z2. Let
A be the subset {xί,..., xn} c Z2. The function UA is defined on ΩA = Y[ Ωχ and

xeA

an element of ΩA is WA = (wx :xeA). Let UA be a symmetric function of its argu-
ments w , . . . , w . Let φ be a rotation. The function UA must be G-invariant:
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For fixed w^ and for α 2,.. .,αΛeG, ^Γχ(wJc l,α2 w J C 2,...,α l | wJCw) defines a function
on G x ... x G(n — 1 factors). The function must be twice differentiate in the
variables α 2 , . . . ,α n .

Let
n n

J(Aϊ= Σ Σ l |ϋA l l j x i - x j l t a - x j
j=2k=2

where l/Λ aj.ak is the derivative of UA with respect to α . and αfc . Then the decay
condition becomes

ΛL(xι)n(A\{xι}) γ0

withΛL(xl) = {x :\x — x j ^ L}. Under these conditions theorem 1 is still valid.

3.2. Compact Connected Lie Groups

An argument used by Dobrushin and Shlosman [1] shows that the case where G
is a compact connected Lie group follows from the previous situation. Smooth-
ness and decay conditions are as before. The reduction of the general case to the
case G = Sl is done as follows. For any element geG there is a one parameter
subgroup of G containing g. If this subgroup is closed then it is isomorphic to S1.
Otherwise the closure of this subgroup is isomorphic to a torus. This shows that
there exists a dense subset G0 of G such that any element of G0 is contained in
a subgroup isomorphic to S1. From the proof of the theorem it is clear that in
the general case this is sufficient in order to prove Theorem 1 under the appropriate
smoothness and decay conditions.
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