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Erratum
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On p. 57, line 9, “Let Q denote an open ...” should read “Let Q denote a
bounded open ...”

On p. 58, last line, “if u is a classical ...
smooth classical ...”

On pp. 67-68 the proof of Theorem 4.2 does not work as it is, since f is not in
general in Z2. The proof should be modified as follows:

For any positive integers N', N’, N'> N", we have
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should read “if u is a sufficiently
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with fm’kz mi/mk—m)) and  Iy(k)={me Z?lm,k—mel,}. Setting Fy(k)

= Y I, and Jyk)={meZ*m=N,k—m|>N} we get FyKk)
mel n(k)

= Y Iy~ Y Ty The last sum tends to 0 and the limit F(k)= lim Fy(k)
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exists because the series Y |1, we x| converges. Since Z (I ) <%0, BN is
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Cauchy in I*(du,). Using (1), and observmg that (BM), BX (v ))Lz(du ,=0 for k+k

and any N, N”, one gets that (B™, 0> is I*(du,)-convergent V¥ 0es. Convergence

almost everywhere is shown only in the gaussian case. To show that

F (k)=0Vke Z?, which completes the proof, observe that
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the first sum vanishing by antisymmetry. By elementary geometric considerations
one gets F(nk)=nF(k), ke Z?, n=0 integer. The proof is concluded by the estimate

|Fy(nk)| <c, for N large enough, ¢ a constant independent of n (which is obtained,
J_

e.g, by estimating the sum Fy(nk)+ | |[<N e

dx the integral being O by

antisymmetry). The proof of Theorem 6.1 needs a small obvious modification.
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