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The Field Copy Problem:
to what Extent do Curvature (Gauge Field)
and its Covariant Derivatives Determine Connection
(Gauge Potential)?

Mark A. Mostow

Department of Mathematics, North Carolina State University, Raleigh, N.C. 27650, USA

Abstract. We show that a connection of a principal bundle is determined up to
(global) gauge equivalence by the curvature and its covariant derivatives
provided that the infinitesimal holonomy group is of constant dimension and
the base space is simply connected. If the dimension of the infinitesimal
holonomy group varies, there may be obstructions of a topological nature to
the existence of a global or even local gauge equivalence between two
connections whose curvatures and covariant derivatives of curvature agree
everywhere. These obstructions are analyzed and illustrated by examples.

1. Introduction and Notation

We follow the definitions and conventions of Kobayashi and Nomizu [7]. Let P
be a fixed principal bundle with gauge group G over a base space M, and let
π : P->M be the bundle projection. The group G may be any Lie group (we denote
its Lie algebra by g), while M and P are smooth ( = C°°) manifolds, and π is a
smooth map. We denote the (right) action of G on P by (u,g)^*u geP, where ueP
and geG. Let ω be a (g- valued) connection 1-form on P and Ω its curvature
2-form, as defined in [7]. In physical terms, ω is a gauge potential (usually denoted
A in physics), and Ω (denoted F in physics) is the gauge field it determines. lϊX is
any smooth vector field on M, letX denote the (ω-)horizontal lift ofX to P. [Thus
ω(X) = 0 and π^Xu=Xκ(u} for all we P.] If / is a C°° vector-valued function on P,
one defines the covariant derivative of f along X to equal the usual derivative Xf of
/ along X.

Given local coordinates (x l9 ...,xw) on an open set FcM, we let d^d/d^ and
denote δ by Dί? so that Dtf is the covariant derivative of / in the ith direction.
Now choose any C00 local trivialization P| V — > V x G. This is equivalent to
choosing a local gauge (section) on F, namely, the section corresponding to
F x { l } c F x G , where 1 is the identity element of G. Then the restriction ω\V x G

n

equals θ+ £ A^x^ where θ is the canonical left-invariant g-valued 1-form on G
ί = l

and the Ai : V x G->g are smooth functions of type ad, that is, A^u g)
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= adg_1(Ai(u)) for all ueP\V& V x G and all ge G. Recall that as a tangent vector
on V x G, D. = <3 = 9. — Ai9 but that when we compute the covariant derivative of
any function / :P-»g of type ad, Dt acts as dt + adAi(u), that is [7, p. 97]

The curvature has components

Fjk = 2Ω(dp dk) = djAk - dk

which are also functions on V x G of type ad. By covariant derivatives of curvature
we mean D{Fjk, D^Di2Fjk, etc., which are all functions of type ad on VxG
[7, p. 97]. To be concise, we will let / be a multi-index (i1? ...,i r) of r integers i;

between 1 and n = dimM (here r = 0, 1,2, ... is called the order of I), and let DjFjk

denote DtίDi2 ...DirFjk. If / is empty, then DjFjk means Fjk. If ω' is another
connection, we let D'^D'j denote covariant derivatives with respect to ω', and
let Ω' denote the curvature of ω'.

A gauge transformation of P is a map B\P-+P mapping each fiber to itself and
satisfying B(u - g) = B(u) - g for all weP, geG. In a local trivialization FxG^P|F,
the map B can be written in the form B(x, g) — (x, b(x)g) for some function b : V-+G.
Equivalently, B = (id,Lb(x)), where for /zeG, Lh :G->G denotes left multiplication
by h. Applying B corresponds locally to changing from the gauge (section)
χt-*(x, 1) (xe V) to the gauge χt-*(x,b(x)). We could allow b and B to be C1 maps,
but as we shall see in Sect. 2, we might as well assume they are C°°, so we shall do
this.

In gauge field theory there has been considerable work to find out how many
different potentials ω can give rise to the same field Ω. If G is abelian, then Ω = dω
so that Ωf = Ω if and only if ω' — ω is a closed 1-form. In the case of a non-abelian
group G, Roskies [9] and Calvo [2] found sufficient conditions on Ω for Ω to
determine ω uniquely.

Now two gauge potentials ω and ω' are considered physically equivalent if
they are gauge equivalent (denoted here by ω~ω'\ that is, if there is a gauge
transformation £:P-»P which pulls back the 1-form ω' to ω [we write then

JB*(ω/) = ω], or equivalently, which maps ω-horizontal vectors in P to
ω'-horizontal vectors. (We say for short that B takes ω to ω'.) Hence another
natural question to ask is :

If ω and ω' have the same curvature Ω, do ω and ω' have to be gauge
equivalent?

In the abelian case the answer is yes if M is simply connected. The reason
is that ω — ω' is then a closed 1-form which can be written in the form
π*(df) for some / : M-»g if we define a gauge transformation B : P-+P by B(u)
= w exp(/(π(w))) [or £(x,g) = (x,0 + exp(/(x))) in coordinates - here exp :g-+G is
the exponential map] - then B*(ωf) = ω' + π*(df) = ω. In the nonabelian case the
answer is no a counterexample was exhibited in [10]. Thus if G is non-abelian, the
curvature alone is insufficient to determine the connection up to gauge
equivalence.

If we consider the curvature together with its covariant derivatives we are led
to the field copy problem :
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If Ω = Ωf and all corresponding covariant derivatives of curvature are equal (i.e.
in each coordinate chart, DjFjk = DfjF'jk for all 7, k and all multi-indices / of all
orders, at all ueP\ do ω and ω' have to be gauge equivalent?

Gu and Yang [6] proved that the answer is no by exhibiting two connections
ω, ω', satisfying the hypotheses, which are not gauge equivalent on M. In their
example, ω and ω' are locally gauge equivalent in the sense that M can be covered
by open sets Ua for which ω\Ua~ω'\Ua. That is, one can define gauge transfor-
mations Ba onP\Ua = π~ 1(Ua) taking ω to ω', but the Ba do not piece together to a
global gauge transformation B. They believed that this example demonstrated the
general behavior, that is, that if (Ω = Ωf and) DjΩ = DfjΩf for some ω and ω', then ω
and ω' must be locally gauge equivalent [and may or may not be (globally) gauge
equivalent].

It turns out, though, that ω and ω' are guaranteed to be locally gauge
equivalent when DjΩ = D'jΩ' only if several hypotheses are added. (I shall exhibit
an example in which ω and ω' fail to be locally gauge equivalent.) There are
topological obstructions both to finding local gauge equivalences and to piecing
together local gauge equivalences to a global gauge equivalence. These obstruc-
tions depend not on the base space per se but rather on the topology of its subsets
on which the dimension of the infinitesimal holonomy group is constant. In this
paper I shall solve the field copy problem by analyzing the obstructions and
obtaining conditions for ω and ω' to be locally or globally gauge equivalent.

2. Results and Examples

A key role in our results is played by the infinitesimal holonomy group φ'(u) and
its Lie algebra g'(w) (as defined in [7]). Given a connection ω on P and a point
ueP, cj'(w) is defined to be the linear subspace of g generated by the values of all
(Fjk and) DrFjk evaluated at u (this is independent of the choice of coordinates).
The facts we shall need about infinitesimal, local, restricted, and global holonomy
are listed at the beginning of Sect. 3 below.

We start with a simple well-known result.

Theorem 1. Let P be a C°° principal bundle with group G over a connected manifold
M, and let ω, ω' be two connections on P. Suppose B:P^P is a C°° gauge
transformation with B*(ω') = ω, Then B is uniquely determined by any one of its
values B(u), for any fixed ueP.

Proof. Since B takes ω-horizontal vectors to ω'-horizontal vectors, it maps
ω-horizontal curves to ω'-horizontal curves. Thus the value of B(u) determines B(v)
uniquely for every point v on every ω-horizontal curve starting at u. The fact that
B(v g) = B(v) g for all veP and geG determines B of any point of P not already
considered. Q.E.D.

Let B be a gauge transformation taking ω to ω'. If B locally equals (id, Lb(x))
(see Sect. 1), then b satisfies the usual partial differential equations

fc-13£& = (Λi-adM3e)-14' l)6fl (1)
where At = At(x, 1) and A'i = A'J(x, 1). (In particular, observe that if ω and ω' are C°°
and Bis C1, then B is in fact C°°, since if b is Cn then so is dtb for all z, so that b is
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We would like to find necessary and sufficient conditions on ω and ω' for these
partial differential equations to admit a solution b, that is, for ω and ω' to be gauge
equivalent (on V x G). For necessary conditions, observe that if ω = B*(ω')9 then

DjFjk at ( x , l ) = adb(xrl(D'IF'jk) at (x, 1) for all x,/J,fc. (2)

[This can be proved easily from the definitions by exploiting the relationships
between the pullback (B*) of the differential forms ω' and Ω,' and the pushforward
(B^) of the tangent vector δ. (see [7]) and by using the fact that DjFjk is of type ad.]

Conversely, suppose we are given ω, ω', and b for which condition (2) above
holds. We want to know if ω is gauge equivalent to ω'. Let ω" = B*ω'9 where B is
the gauge transformation corresponding to b. Clearly it is equivalent to find out if
ω and ω" are gauge equivalent. But

DjF^Df^. (3)

Hence our necessary conditions (2) will be sufficient if and only if condition (3) is
sufficient. It turns out that condition (3) is sufficient to guarantee a solution only if
certain topological conditions are satisfied. To isolate the differential geometry
from the topology, we first study the special case in which dimg'(w) is constant. We
remark that Gu and Yang [6] have a somewhat different proof of a local version
of the following theorem. They do not explicitly assume dimg'(w) to be constant,
but their proof depends on this assumption or one similar to it.

Theorem 2. Let P be C°° principal bundle with group G over a simply connected base
manifold M, and let ω be a C°° connection on P for which dimg'(w) is constant on P.
Let ω' be any other C°° connection on P, and suppose that ω and ω' have identical
curvatures and covariant derivatives of curvature, that is, that in each chart,
(Fjk = F'jk and) D jF jk = D'jF'jk at all ueP for allj, k, and multi-indices I. Then ω and
ω' are (globally) gauge equivalent. In fact, given any ueP and any geCG(§'(u)), the
centralizer of g'(w) in G [ = {gεG\adg(X)=X for allXeQf(u)}]9 there exists a unique
gauge transformation B P^P satisfying (a) B*(ω') = ω and (b) B(u) = u-g.
Conversely, if B is a gauge transformation satisfying B*(ω') = co and if ueP, then
B(u) = u g for some geCG(tf(u)).

Remark. The hypotheses imply that ω and ω' have the same infinitesimal
holonomy Lie algebra CJ'(M) at each u.

The proof of Theorem 2 will be given in Sect. 3. Now we shall give a
generalization of the theorem and discuss some consequences. We shall let
h(ω, y, u) denote the holonomy of a connection ω around a loop y in M using a
reference point u in the fiber of P over y(0) (see Sect. 3 below or [7] for the
definition of holonomy).

Theorem 2'. Same hypotheses as Theorem 2, except that M need only be connected.
Let ue P and x = π(u). Then there is a right action of the fundamental group πx(M, x)
on CG(g'(w)), where the latter is regarded only as a manifold [i.e. the action need not
respect the group structure of CG(g'(w))7 The action is

= h(ω', y, u))gh(ω, y,u)~l, (4)
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where 0eCG(g'(w)) and y is any pίecewise C1 loop in the class [y]eπ1(M, x). There is
a gauge transformation J3:P->P with B*(ω') = ω and B(u) = u-g if and only if g
belongs to CG(g'(w)) and is invariant under the action of π1(M, x). (There may not be
any such g.)

Remark i. Theorem 2' is related to the general result that any two connections
ω, ω' admit a global gauge equivalence B taking ω to ω' and utou-giϊ and only if
gh(ω,γ,u) = h(ω',γ,u)g for all loops y at x = π(u). (This is precisely the condition
that allows one to construct B by following the procedure in the proof of Theorem
1.) In the general case one must verify this equality for every loop y, since the
condition may hold for one loop and fail to hold for a loop homo topic to it. If the
hypotheses of Theorem 2' hold, however, one need only verify (4) for one loop y in
each homotopy class.

Remark 2. Although Theorems 2 and 2' as stated require all the covariant
derivatives to be equal, results of Gu and Yang [6] and of Deser and Drechsler [3]
show that it suffices to require only that all corresponding covariant derivatives of
order ^ r be equal, where r is some integer depending only on the group G.

Remark 3. The right side of formula (4) makes sense for all g in G, but it need not be
independent of the choice of y within its homotopy class unless #eCG(g'(w)).

Corollary 1. Let P be a C°° principal bundle over any manifold M, and let ω, ω' be
C°° connections satisfying (Ω = Ω' and) DIFjk = D'jFf

jk for all IJ9k. Suppose that
Q'(U) = Q for all weP, and that CG(g), the centralίzer of g, equals {!}. Then ω = ωr.

Proof. Cover M with open balls I7α, and let Pa = P\Ua. By the theorem, there exists
#« : Pa-+pa with B*(ωΊPJ = ω\Pa. For any uε Pa, Ba(u) = u gtoτ some ge CG(g'(w)).
But CG(g'(w)) = CG(g) = {l}, so g = l and Ba(u) = u. Hence ω|Pα = id*(ω'|Pα) = ω'|Pα.
Therefore ω = ω'. Q.E.D.

Remark. A slightly stronger statement than Corollary 1 can be proven directly.
Replace the hypothesis that the centralizer CG(g) of g in G equal {1} by the weaker
condition that z(g), the center of g ( = {XeQ\[_X,Y]=Q for all Yeg}) equal {0}.
Since Dif = dif+[Ai9f\ for each g-valued function of type ad on t / x G c P
[7, p. 97] we have

0 = D'Wj, - DfrFjt = (D( - D^Fj, = lA't - A, D1F) J .

Hence A'. — A{ commutes with span {DjFjk} = g. Therefore A'i — Aiεz(Q) = {0}.
Hence A'i = Ai and ω = ω'. Q.E.D.

Corollary 2. Let P be an analytic principal bundle over a simply connected manifold
M, and let ω, ω' be C°° connections on P for which (Ω = Ωf and) DjF jk = D'jF'jk. If ω
is analytic (ω' need not be), then ω and ω' are gauge equivalent.

Proof. In this case, dimg'(w) is constant [7], so that Theorem 2 applies. Q.E.D.

Remark. Gu and Yang [6] proved a result (their Theorem 4) similar to Corollary 2,
using a different method.

Let us now apply Theorems 2 and 2' to the field copy problem in the general
case, in which dimg'(w) need not be constant on P.
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Thus suppose that ω, ω' are any C°° connections on P (with arbitrary
connected base manifold M) and that DTFjk = D'jFjk for all /, j, k (in every chart).
Let {Va} be the collection of maximal connected open subsets of M on which dimg'
is constant. Pick a point ua in each Pa = π~ 1(Va) and let xa = π(ua). Let Sa = CG(g'(wJ)
if Va is simply connected; if nί(Va)ή= {!}, let Sa be the set of elements of CG(g(t/J)
which are invariant under the action of π1(P^, xa) (Sa may be empty). By Theorems
2 and 2', the elements of Sa are in one to one correspondence with the gauge
transformations taking ω\Pa to ω'\Pa. For geSα, let Ba g denote the unique gauge
transformation of Pa for which £* g(ω'\Pa) = ω|Pα and Ba g(ua) = ua-g. The problem
of finding a global gauge equivalence £ between ω and ω' reduces to finding
choices of gaeSa for each a in such a way that the map ua£fl>0a mapping uflPfl to
itself can be extended to a C1 (and hence C°°) map B : P-»P. Such an extension B is
unique if it exists, since uflPfl is dense in P, as one can show easily using the lower
semicontinuity of dim g' (or see [8, p. 108]). Moreover, B is determined by its value
at any one point of P, by Theorem 1.

We illustrate these ideas now with examples. For concreteness let
P = K2xSO(3). Identify g = so(3) with the three-dimensional cross-product Lie
algebra and let {e1?e2,e3} correspond to the standard basis of that algebra. For
example, we may let

O 0 l

e2= 0 0 0

\-l 0 O

(see [1, p. 24]). Let (x1? x2) be the standard coordinates on R2. Let /: R-+R be any
C°° function for which /" x(0) is some closed interval q^x^r. Let h :R->R be any
C°° function with h(x)φQ if and only if q<x<r. Define a connection

Define another connection ω by

The curvature Ω' has one component

while
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Now, acting on functions of type ad, the covariant derivative operators at
((x l 9x2),l)are

Define open sets F1? F2, F3 in R2 by the conditions x1<q, respectively q<x1 <r,
respectively x1 >r. On V^uV39 Λ(x1) = 0, so that D1 =D\. On F2, /(χ1) = 0, so that
Ff = F = 0. It follows that DIF = D'IF' for all multi-indices / on F1uF2uF3, and
hence on R2, by continuity.

The infinitesimal holonomy Lie algebra g'((x1,x2), 1) equals 0 on F2 and g on
FiuF3. Hence its centralizer GXί X2 = CG(g((xl5x2), 1)) equals G on F2 and {1} on
F1uF3. By the previous discussion, the gauge transformations of F2 x G taking ω
to ω' are in one-to-one correspondence with the elements of G = SO(3), while on
V1 x G or F3 x G only the identity map takes ω to ω'. Suppose there is a global
gauge transformation B on P taking ω to ω'. Such a map must be the identity on
(FtuF3) x G. If B = (id,Lb(Xί X2)), then b:R2-^G must satisfy the partial differential
equations

51fe = A1-ad f t ( J C l f J C 2 )-1A /

1 [at ((x19x2),l)]

Hence b = b(xί\ and b(xί) = lξG for x^q or x^
x1=q or r).

For q<x^<r we get

δ 1fc = Λ(Xι)βι (at((x l sx2),l)].

The unique solution satisfying b(q) = 1 e G is

(using continuity for

i eG.

Letting H(x1)= j h(t)dt, we compute

/ I

b(x1)= 0

\0

Thus b(r) = 1 is satisfied if and only if #(r) = 2πn for some integer n. Since the latter
is not usually true, we see that in general, no global gauge transformation B taking
ω to ω' can exist. Our argument shows, however, that B can always be defined on
{x1 < r} or on {x1 > q}. Also, our constructed b(x) always equals 1 for xί rg q, and if
b(r) = 1, then b(xί) = 1 for all x^r. Hence ω~α/ on R2 if and only if H(r) = 2πn.

This example can be modified to construct ω and ω', again on R2 x SO (3), with
DIFjk = D'IF'jk, which are not gauge equivalent even when restricted to an
arbitrarily small neighborhood of (0, 0) in R2. Indeed, the formulas for Ai and A't
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remain the same, but we change the functions / and h. For n=l,2, . . . let
Vn = {xεR\l/(n+l)^x^l/n}. Let F0 = {l^x}, and V_2 = {x^0}. Choose / to be
any C°° function from R to itself which is zero precisely on those Vn with n odd and
at the point 0. Let h be a non-negative C°° function which is zero precisely on those
Vn with n even. These choices are possible since for any closed set CcR" there
exists a non-negative C°° function k:Rn-+R with k~ί(0) = C [4, p. 17]. Now
suppose there existed a neighborhood U of (0,0) and a gauge transformation B
taking ω| U x G to ω'| 17 x G. For any large enough even n and some open interval J
around 0, U contains (VnuVn+1uVn+2)xJ. But by the previous example, B can be

defined on this set if and only if J h(t)dt is a multiple of 2π. Since these integrals
vn + ί

are all positive [(n+1) is odd] and approach 0 as n-»oo, it follows that for large
enough n the integrals are never multiples of 2π. Hence B cannot be defined on U.

The foregoing examples illustrate that the configuration of the open sets VacM
on which dimg' is constant strongly influences the existence of a gauge transfor-
mation B taking ω to ω' when DjFjk = D'jF'jk. We shall now find conditions on {V a }
which guarantee that such a B always exists globally, respectively locally. We shall
content ourselves with convenient sufficient conditions only, since the enormous
variety of configurations possible seems to preclude any set of simple necessary and
sufficient conditions. (See Remark 1 after Theorem 3.)

Definition. Let M be a C°° manifold and let {Va} be a collection of disjoint, open,
connected subsets of M whose union is dense in M. The collection {Va} is said to be
good if

1. There are only finitely many Va.
2. Each VQ is simply connected.
3. Each Va is a C1 submanifold of M with corners, having interior Va and

boundary Va—Va. That is, on some neighborhood U of any point of Va—Va there is a
C1 chart of M under which the set

{(xΐ,x2,...,xn)ERn\xj>ΰ,j=l,2,...,k}

for some i<k^n (which we shall call a sector) corresponds to Var\U, while its
closure corresponds to VanU.

4. The Va have at least one common intersection point x.
5. For all Va,Vb, every point ye Var\Vb is connected to x by a piecewise C1 path

lying entirely in VanVb. In particular, Var\Vb is connected.

Definition. Let M, {Va} be as before. Then {Va} is said to be locally good if M can be
covered by open sets U each having the property that the collection of all components
of Var\ U is good in U.

Theorem 3. Let P be a C00 principal bundle with group G over any base manifold M.
Let ω, ω' be connections on P for which DIFjk = D'IF'jk in each chart and at all ueP,
for all I , j , k. Let {Va} be the components of the interiors of the subsets of M on
which dimg' = 0, respectively 1,2,...,dimg. (More generally, let {Va} be a collection
of disjoint, connected, open subsets of M whose union is dense in M and on each of
which dimg' is constant.) Then

a) // {Va} is good then ω and ω' are always (i.e. with no more conditions on ω
and ω') gauge equivalent (globally on P).

b) // {Va} is locally good then ω and ω' are always locally gauge equivalent on P.
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Remarks. 1. The converses are false. For example, if we separate R2 into four
regions by removing the x^axis and the parabola x2 = xl, we get a configuration
which is not good, since no C1 chart in a neighborhood of the origin can map
either "wedge" onto a quadrant of R2, as required. Nonetheless, the conclusions of
Theorem 3 are true for this configuration.

2. In the example given injwhich there was no global gauge equivalence, {V^
failed to be good because [V^ lacks a common point of intersection. In the
example of no local gauge equivalence, the basic problem was the lack of local
finiteness of {Va} near {xί=Q}. This caused there to be no common point of
intersection. Away from {x1 = 0}, the collection is locally good.

3. Proofs

We will need the following facts about holonomy. Their proofs are collected in [7].
1. Q'(U) is a sub-Lie algebra of g.
2. g'(w 0) = ad0-ι(g'(w)) (hence dimg' is constant on each fiber of P).
3. If ue P and y is a piecewise C1 path in M starting at x = n(u\ let y denote the

(ω-)horizontal lift of y to a path in P starting at y(0) = u. If y is a loop in M, then y(l)
= u g for some #eG, and h(ω, y, w)(def.) = g is called the holonomy of ω around y
with reference point u. For fixed u and ω, {h(ω, y, u)} C G is called the holonomy
group φ(u) of ω with reference point w, while the subgroup φ°(u) = {h(ω,y,u)\y is
contractible} is the restricted holonomy group. For any open neighborhood V of x
in M, let φ°(u, V) = {h(ω,y,u)\γ is a loop contractible in V}. Then φ*(u), the local
holonomy group of ω at w, is defined to be the intersection r\φQ(u, V) over all
connected open neighborhoods V of x. The Lie algebras of φ*(u), φ°(u\ φ(u) are
denoted g*(w), g(w), g(w), respectively (the latter two are equal).

4. g'(tt)Cβ*(w)Cfl(4
5. The dimension dimg'(w), regarded as an integer- valued function on M, is

lower semi-continuous. That is, for each integer m, {π(w)eM|dimg'(w)^m} is open.
6. If dimg'(w) is constant on P, then g'(w) = g*(w) = g(w) for all weP, and φr(w)

= φ*(u) = ψ°(tι).
7. If P and ω are real analytic and M is connected, then dimg'(ι/) is constant.
8. If M,t;eP are connected by an ω-horizontal path in P, then g(tt) = g(u). It

follows that if L7 is an open set in M with dimg' constant on P\U, and if u, t; are
connected by a horizontal path in P| 17, then g'(w) = g'(t ).
Proof of Theorem 2. First we prove the theorem locally, using a local trivialization
P\U&Rn x G. Without loss of generality, we may take our reference point w0 to be
(0, l)e#" x G. By the discussion after Theorem 1, a C°° gauge transformation on
P|L7 with B*(ω') = ω and JB(w0) = w0 ^0 exists if and only if there exists a C1

function^ :Rn-^G satisfying the system of partial differential equations

with initial condition b(0) = g0 [for then we can define B(x,g) = (x9b(x)g)~], To
simplify the computations we shall think of G as a matrix group and g as a matrix
Lie algebra, but it is possible to complete the proof for any G without doing so.
Thus we can write

dtb = b(x)Aί(x) - Λ;(x)b(x)e TGb(x) ,
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where At(x) means At(x, 1), etc. and bAt and A'{b are computed by matrix
multiplication. Now if a solution b(x) existed, then its graph Γ = {(x,b(x))} would
be a submanifold of Rn x G. (Remark : This Rn xG should not be identified with
P\U. It is, rather, a local trivialization of AdP|£7, where AdP is the bundle over M
with fiber G associated [7, p. 55] to P by the adjoint action of G on G. AdP is not a
principal bundle.) The tangent space of Γ at (x, b(x)) would be spanned by vectors

tb = d. + b(x)At(x) - 4(x)fe(x)e T(£" x G)(JC> fc(JC)) .

Let us therefore define vector fields X. on all of Rn xG by

Xt(x, g) = dt + gAt(x) - A\(x)g .

Let 3C(x,g) be the linear subspace of T(Rn x G)(x g} spanned by [X.(x9g)}"=1. Then
3C is a C°° 77-dimensional distribution ( = field of n-planes) on Rn x G. A graph Γ as
above containing (0,0 0)ejRwxG exists if and only if 9C admits an integral
submanifold through (0, g0) which projects down to Rn (under π) in a one-to-one
and onto manner.

We check first if 9C is integrable. The Theorem of Frobenius [7, p. 10] says that
3C is completely integrable (admits integral submanifolds through every point of
Rn x G) if and only if ΰ_Xj,XjJ](Xtθ) always lies in 3£(x,g). Here we write [[ , ]] to
denote the bracket product of vector fields, as distinguished from [ , ], the Lie
bracket on g. But π^j(x9g)) = djeTRn

χ9 so that πJ|[([Df^J]) = [[3j,3J]=0.
Hence [pf j,Xfc]](x g) is a vertical vector. But the only linear combination
Σct^i(χ9 g) which is vertical is the zero vector. Therefore ?£ is completely integrable
if and only if [pf^J] =0 for ally, k. Breaking up this bracket product into terms,
we compute that [[gAj(x)9gA]l(x)J]=g[Aj(x),Ak(x)']9 since on each fiber {x} xG,
gAj and gAk are left-invariant vector fields. On the other hand, [[A'jg,A'kg']']
= -\.A'3(x\A'k(x}\g. (Proof: The flow generated by A'$ is (t,g)^e\p(tA')g. By
[7, p. 15],

\A'kg - exp(tA'j)A'k exp( - tA'^g)

Furthermore, [[gf^l/x), ̂ M ]̂] = ̂ ' since ̂ e flow of gAj(x)9 respectively of Af

k(x)g,
on {x} x G is a one-parameter family of right, respectively left, translations of G, so
that the two flows commute (see [7, p. 16]). Also, [[dj9gAk(x)J]=dj(gAk(x))
= gdjAk. Collecting terms, we get

J] = 9(SjAk - 8kAj + \_Ap Ak-\) - (djA'k - 3kA'j + [A'f A'^g

Hence the condition [LXj,XjJ]=Q is satisfied only at those (x9g) for which gFjk(x)
= Ff

jk(x)g, that is, where

F f c(x,l) = a d _ 1 ( x , l ) . (5)
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Let Q0 denote the subset of Rn x G satisfying this condition. Now S£ satisfies the
Frobenius condition on g0, but 9C need not be tangent to Qo Indeed, if Xt is
tangent to some curve in Q0 at (x,#), then [[_Xi,gFjk — F'jkg']'] = Q at (x,g). We
compute, in a manner similar to that of the previous calculation,

0 = gdf^x) - dtF
f

jk(x)g + \_{jgA^ - A\(x)g9 gFjk(x) - F'jk

= gdtFjk - d{F'jkg + g[At(x)9 Fjk(xJ] - \_A't, F'jk]g

= gDiFjk-D'iF>jkg.

Thus all the Xt are tangent to Q0 at (x, g) only if

(x,g)eQ1 = (dd.){(x,g)eQ0\DiFjk(x) = adg-ίD'ίF'jk(x) for all ij, k} .

Define
Qr = {(x, g)e Rn x GIZ^F -fe(x) = ad^^F'

for all j, fe, and all / of order rg r} .

A similar calculation shows that the Xi are tangent to curves in Qr at (x, g) only if
(χ

5 9)εQr+ι Finally, let Q = r\rQr. Since DjFjk = D'jF'jk by hypothesis, and the linear
span of the DjFjk(x) is g'(x, 1), we see that

Q = {(x,g)eRnxG\geCG(Q'(x,l))}.

We must answer a crucial question before can apply Frobenius' Theorem to 9£\Q :
Is Q a submanifold of K" x G?
Since dimg'( ) is constant by hypothesis, Q'(U) = Q'(V) if u, veP are connected by

a horizontal path (by property 8 of g'). F°r eacn ^e^", let yx be the (radial) path
t^tx from 0 to x, and let t^(tx,fx(t))eRn x G be its ω-horizontal lift starting at
(0, l)e-R" x G. One can show that fx(l) depends smoothly on x. We have g'(0, 1)
= 9'(^/x(l)) = ad/3e(1)-1(a/(x, 1)) (by property 2 of g'). Thus g'(x, l) = ad/3e(1)(S

/(0, 1)),
and CG(g'(x,l)) = ad/x(1)(CG(g/(0,l))). The map from ^"xG to itself defined by
(x9g)ι-*(x9adfx(ί)g) is a C00 diffeomorphism mapping Rn x CG(g'(0, 1)) onto Q.
Therefore β is a C°° submanifold of JR" x G.

Now we can conclude by our earlier calculations that 3C is tangent to Q and
that $£\Q satisfies the Frobenius condition. Therefore, through every point of Q
there passes a unique maximal C°° submanifold (called a leaf of 3C) of dimension n
which is tangent to 3£. Since π^ maps 9£(Xt9) isomorphically onto TR", the
restriction of π : Rn x G^Rn to any leaf Lcβ is a local diffeomorphism (at every
point of L), by the Inverse Function Theorem. I claim that in fact π maps L
diffeomorphically onto Rn.

To see this, we shall use a sort of "analytic continuation" of gauge transfor-
mations (the word analytic is used only to evoke a similar construction in complex
analysis : we continue to assume only C°° smoothness rather than actual ana-
lyticity of maps). Let y be any C1 path in Rn. Let (y(0),0) be a point in Q, and let L
be the leaf containing (y(0),g). By the preceding results, there is an open
neighborhood V of y(0) and a map b : F-»G such that the map x^(x, b(x)) is a local
smooth inverse to π\L. By the remarks at the beginning of the proof, b gives rise to
a gauge transformation Bv taking ω\V to ω'\V. On the other hand, the con-
struction in the proof of Theorem 1 yields a function β : [0, 1]->G with the
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property that if a gauge transformation B exists which takes ω to ω' and maps
(y(0), 1) to (y(0), g\ then B(y(t\ 1) = (y(ί), β(0) for all te [0, 1]. Pick a number τ > 0 so
that for all non-negative t < τ, y(ί)e 7. The uniqueness of B implies that β(t) = fr(y(f))
for all ίe[0,τ]. For all ίe[0,τ] the point (y(t\β(t)) lies in the leaf L, so by
continuity, (y(τ),β(τ)) also lies in L. We have shown that the set {t\(y(t\ β(t))ε L} is
open, closed, and nonempty. Hence (y(ί), β(t)) lies in L for all ίe [0, 1]. Thus we see
that the map π\L :L^Rn has the property of unique path lifting (as do covering
spaces [5]). By lifting radial paths in Rn up to L we can construct an explicit
inverse 5 : Rn^L to the map π|L. Hence LcRn x G is the desired graph Γ, and the
desired gauge equivalence is the function b :Rn->G satisfying s(x) = (x, b(x)). This
completes the proof of the Theorem in the case that the base space M is Rn.

The proof of the Theorem for arbitrary simply connected base manifolds M is
similar, with the following modifications. The submanifold Q is contained not in
Rn x G or in M x G but rather in the bundle AdP (over M) alluded to earlier in the
proof. We can think of a point we AdP in the fiber over xeM as being an
automorphism w : PX-+PX of the fiber of P over x. That is, w(w g) = w(w) gePx for
all uePx, geG. If RnxG is a local trivialization of P|F, then w acts as a left
multiplication, i.e. there exists some /zeG (depending on w and the trivialization)
for which w(x9g) = (x,hg) for all geG. Clearly a gauge transformation of P is
precisely a global section of AdP. The map π\L : L-*M is shown to be a covering
space map (see [5] for the definition of and basic results about covering spaces).
Since M is simply connected by hypothesis, π\L is a homeomorphism, by covering
space theory. Its inverse map s:M->LcAdP is the desired global gauge
transformation. Q.E.D. Theorem 2.

Proof of Theorem 2'. The proof of Theorem 2 carries over almost completely. We
find in the end that Adπ|L:L-+M is a covering map, but not necessarily a
bijection. Given any C1 path y in M starting at x0 and given a point w0eL lying
over x0, there is a unique lift ywo of y to AdP lying in L and satisfying ywo(0) = w0.
For L->M to be a bijection, it is necessary and sufficient that ywo(l) = ywo(0):=vv0

for all C1 loops y at x0. By the theory of covering spaces, ywo(l) is independent of
the choice of y within its homotopy class (leaving endpoints fixed).

Pick M0e (fiber of P over x0). Let g0e G be the group element for which w0(w0)
= u0-g0. As before, g0

eCG(9'(wo)) Given y, let y1 ? respectively y2, be the ω-,
respectively ω'-horizontal lifts of y starting at MO, respectively w0 00. Then

1. By definition of holonomy around a loop, y1(l) = M0 fe(ωJy,M0), while

y2(l) = (w0 00) h(ω'9 y, w0#0) - w0#0 adg- 1 /

[7, p. 72]

2. By the construction of ywo, we have ^W^ywoW^iW) f°r a^ i-
3. Pick a local trivialization for P over a neighborhood of x0 in which u0

corresponds to (0, l)eRnxG. Then y1(l) = (0,/z(ω,y,w0)), y2(l)=-(0,/z(ω',y,w0)^0),
and ywo(l) is left multiplication of G by

) = (def.)Λ(ω', y, u0)g0h(ω, y, MO)
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The maps Hγ:G^G have the following properties :
a) Hy maps CG(g'(w0)) to itself.

Proof. Since ^(1) and y2(l)e{(0,0)|0eCG(g'(w0))}, and since CG(g'(w0)) is a group,
we must have Hy(#0)eCG(g'(w0)).

b) If y, δ are piecewise C^ loops in M at x0 and y * (5 is the concatenation y, then
<5, then

Hy,δ(go) = Hδ(Hy(g0)) for all

c) If y and (5 are homotopic loops at x0, and if #oeCG(g'(w0)), then
Hy(g0) = Hδ(g0).

Proof. By construction, Hy(g0) is the endpoint of the lift of y to the covering space
L-»M, where L is the leaf of S£ containing the w0e AdP satisfying W0(w0) = w0 #0.
By covering space theory, Hγ(g0) depends only on the homotopy class of
y. Q.E.D.

In summary, π1(M,x0) acts on the set CG(g'(w0)) (we ignore its group structure)
by

The covering map L-+M is a bijection if and only if g0 is invariant under the
action, that is, if and only if

Λ(ω', y, u0)g0h(ω, y, w0) ~
1 - g0

for all piecewise C1 loops y in M at x0. It suffices to verify this condition for a
collection of generators of U^M.XQ). Q.E.D. Theorem 2.

Sketch of proof of Theorem 3. Part (b) will follow immediately from part (a), which
we shall now prove. Following the discussion after Theorems 2 and 2 and their
corollaries, we let Sa denote the set of gauge transformations taking ω\Va to ω'\Va.
We think of these as sections of AdP|l^. Our problem is to choose an sa from each
Sa in such a way that uαsfl can be extended to a global C°° section of AdP. Using
the hypothesis that {V a} is good, and applying techniques similar to those used in
the proofs of Theorems 1, 2, and 2', we prove the following:

1. Every seSa can be extended uniquely to a section s of AdP\Va, where Va is
the closure of Va.

2. For any fixed a and fixed ye Va, the set of values Saty = [s(y)eAdP\seSa} is a
subgroup of the fiber of AdP over y.

3. For any saeSaand_any sbeSb, if sa and sb agree at one point xe Var\ Vb, then
they agree on all of Var\Vb.

4. By definition of goodness there is a point x common to every Va. By Step 3,
the possible values of sa(x) (a fixed) form a subgroup SatX of the fiber of AdP over x.
The intersection Sx = πaSa>x is not empty, since it contains 1. Pick any w0eSx, and
choose an sa for each a so that sa(x) = w0. By Step 3, sfl and sb agree on Var\Vb.
Therefore uαsfl defines a function s: \jaVa = M-+AdP. Since each restriction
s\Va = sa is continuous, and since {ί^} is a finite closed cover of M, s is continuous.

5. The map s is C1 (and hence C°°, by the discussion after Theorem
1). Q.E.D. Theorem 3.
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