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Abstract. We consider the motion of a particle in a weak mean zero random
force field F, which depends on the position, x(f), and the velocity, v(t) — x(f).
The equation of motion is x(ί) = εF(x(f ), υ(t\ ω), where x( ) and v( - ) take values
in Ud, d g; 3, and ω ranges over some probability space. We show, under
suitable mixing and moment conditions on F, that as ε -» 0, vε(t) = v(t/ε2)
converges weakly to a diffusion Markov process υ(t\ and ε2xε(t) converges

t
weakly to §v(s)ds -f x, where x = lim ε2xε(0).

o

1. Introduction

For simplicity we do not discuss the general situation in this section, but restrict
ourselves to force fields which depend on position only.

Let F(x), xeUd, be a random vector field, a random force field, which
is stationary and has mean zero. Let x(ί) be the coordinate of a particle of unit
mass moving through this force field. The equation of motion is

x = F(x). (1.1)

with given initial position and velocity. Suppose that the force is weak and weakly
correlated for points that are far apart. Then one expects that after a long time
the velocity x will behave like a diffusion Markov process and the position x
like the integral of this diffusion process.

To be more specific, suppose that the root mean square of the force field F
is proportional to ε so that we may replace (1.1) by

x - εF(x) (1.2)

in which F(x) is of order one. Rescaling of time t into ί/ε2 and putting x(ί/ε2) =
v\t\ x(ί/ε2) = xε(ί) leads from (1.1) to the system

>at &

(1.3)
at
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It is proved in the following sections that under suitable conditions on F, vε conver-
ges weakly as ε — » 0 to a diffusion Markov process v(t) whose generator is given

ί
explicitly. Moreover, ε2xε(t) converges weakly to §v(s)ds + x, where x = lίm ε2xε(0),

o
as £ -> 0.

The Eq. (1.2) describes for instance the motion of a charged particle in
an electromagnetic field, and several authors have obtained formulas for the
limit process by perturbation methods or similar procedures [1-5]. We now
give such a formal derivation of the relevant results for (1.3). We note that the
method used in [6] for the much simpler problem than (1.3)

,
at ε ε

does not work well in the present situation.
Let/(ι;) be a bounded and smooth function on Ud and let wε(f, x, ι;) =f(vε(t x, v))

where xε(ί;x, υ\ vε(t;x, v) is the solution of (1.3) with xε(Q) = x,vε(Q) = v. As a
function of ί, x and v, uε satisfies (the adjoint) Liouville equation

duε 1 duε 1 r/ λ duε

—- = ̂ 1;— + -Fx •—, t>Q,
dt £ OX £ 0V

u ε ( 0 , x , υ ) = f ( v ) , (1.4)

Here d/dx and d/dv denote the x and v gradient operators and stands for dot
product in Ud. We now attempt to solve (1.4) by a formal series expansion uε =
uQ + εu1 + £2u2 + ... . Inserting this into (1.4) and collecting terms leads to the
equations

••-»

l - , 0 , e , . ,1.7)
x v dt

From (1.5) we conclude that u0 = u0(t, v) and w0(0, ι;) =f(v) (to satisfy (1.4)), but
u0 is otherwise undetermined at this stage. We consider (1.6) and note that we
can write the random function uί in the form

ul(t9x9v) = χ(x9υ) ̂  (1.8)
0V

where χ(x, v) satisfies

v^ + F(x) = 0. (1.9)
ox

CO

One may write formally χ(x, v) — J F(x + vt)dt but of course this expression does
o
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not make sense. We retain it anyway with the understanding that some conver-
/ 00 \

gence factor has been introduced like J e~βtF(x + υt)dt I.
V o /

Now we use this in (1.7) and demand as usual that the expectation of
du

dt
Specifically EuQ(t, v) satisfies

'-^ —^ be zero. This gives a diffusion equation that determines u0(t,v).

ί>0, u 0 ( 0 , v ) = f ( υ ) (1.10)

where ϊ£ is given by

= Σ -
Λ k =! d

with

Ajk(v) = ]ε{Fj[x)Fk(x + vt)}dt. (1.12)
0

When the correlations in the force field die out rapidly enough, the diffusion
coefficients Ajk(v) are well defined if v =/= 0 but they are necessarily singular at
υ = 0. (Note that J&? is not always self-adjoint if F depends on v as well; see (2.3)
and (2.4) below.)

The problem then is to show that vε(t) converges weakly to the diffusion
generated by J&? of (1.11) under some suitable hypotheses. The theorem of the
next section gives such conditions for convergence. It is discussed further there.
Some specific examples are given in Sect. 4.

It is of interest to point out some special cases of (1.11) and (1.12) here.
Let

Rjk(x) = E{Fj(x + y)Fk(y)}9 J9k=l,29...9d, (1.13)

be the covariance of the force field F. It is assumed that it decays rapidly with x;
in fact much stronger asymptotic independence assumptions are introduced
in the next section. Let us assume also that the symmetry condition

RJk(x) = Rjk(-x) (1.14)

holds. Then (1.12) may be written in the form

Ajk(v) = ajk(v}^ ] Rjk(vt)dt. (1.15)
— oo

If we introduce the power spectral density Rjk(l), then

(1.16)
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and (1.15) becomes

ajΊc(υ) = πlδ(l v)Rjk(Qdl (1.17)
κd

where <5(α) is the delta function with unit mass at zero. The expression (1.17) for
the diffusion coefficients is useful when F(x) is the gradient of a potential V(x).
If we set

R(x-y) = E{V(x)V(y)} (1.18)

then (1.17) yields

From this we see that in the potential case the limiting diffusion operator is
degenerate. The limit diffusion process is concentrated on the sphere | υ \ = \ v0 \
where v0 ^ 0 is the starting velocity. (Since a(v)-υ = 0 and L(v2) = Q ) (2.6) is
automatic when \v is constant, but unfortunately, our theorem as stated does
not allow α. .(u) to become singular, and hence does not apply without modification
to the above case. One such modification of the theorem is given in Remark 5 of
Section 4. The conclusion of the theorem remains valid if (4.2) and (4.3) hold,
even when α( ) becomes singular. This comment also applies to other cases where
I v(t) I remains constant (e.g. when F(x, v) is always perpendicular to v9 such as
when F(x, v) is of the form F(x, v) = v Λ Γ(x)).

2. Statement of Theorem

Throughout (Ω, J% ̂ ) denotes our basic probability space. On this space F(x, y, ω):
Rd x Rd x Ω -» Ud is a random field with the following properties:
(I) F is jointly measurable with respect to & x Si x ̂  where 9t is the Borel field
in Ud. As a function of (x, t;), F( , ω) is almost surely in C2(Rd x IRd).
(II) F is strictly stationary in x, i.e. for any x.9v.eRd the joint distribution of
F(xi + h, v ί ) 9 ... ,F(xk + h9 vk) is independent of heUd. Equivalently, the process
{F(x, ,ω)};c6Kd is stationary in x. In addition

E{F(x,ϋ)}=0, x,veRd. (2.1)

(III) For /ί c= Rd, set

= sigma field generated by F(x, v9 )9xeΛ9veUd.

l,Λ2cιUdddmQ

v(Λ,,Λ2}= sup \P(B)-P(B\A)\.
Ae&Λί,Be&Λ2

Also, set

β(p) = sup {a(Λ1 ,Λ2):Λ19Λ2e& with d(Λ1 , Λ2) ̂
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Here

d(Λί9Λ2) = mΐ{\xί — x2\ :x.eΛ.}.

Assume that

00

j {β(t)}1/24dt < oo. (2.2)
0

Note that (2.2) is in a sense a measure of the rate at which F(x1? ) and F(x2, )
become independent when x2 — x1 \ -* oo.
(IV) For some constant C0 and all v0 e Ud, 0 ̂  | β \ g 2 and r - 16d + 64

sup

As usual jS stands here for a multi-index and Dβ for the corresponding partial
derivative. Thus DβF(x, v) can be any mixed derivative of F.
(V) Let

+ 00

α,..(t))= I E^MF/ftMOjA, (2.3)

bt(v) = X j £ {F/O, v)-^Fi(tv, v)ldt
j 0 I "ϋj J

(2.4)

Here (d/dvpp(tv9 v) = \_(d/dv^F(x, v ) ] x = tv. The integrals in (2.3) and (2.4) can be
shown to be absolutely convergent on the set {i; ̂  0} and to be bounded as | v \ -» oo
by means of (III) and (IV) (use Theorem 17.23 of [7] or Lemma 20.1 of [8]).
Assume that a^v) is strictly positive definite on {v ^ 0} and that α 7.( ) and b^ )
are C00 functions on {v ^ 0}.

For any/eC2(Redefine

&f(v) = 1 ̂ a..(v)-^—f(v) + Σ^) —, ϋ + 0. (2.5)
i,j ί j i i

Let Kf be a diffusion with generator^ and starting-point v0 ^ 0 (see Remark 1
below). Assume finally that for each VQ ^ 0 and T < oo

lim Pvo \ I V. I ̂  — for some t ̂  T > = 0. (2.6)
M-oo I M J
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Last, let {vε(t\ yε(t)} = {vε(t, ω), yε(t, ω)} be the solution of the equations
dyε 1

at ε2

dvε 1

at ε

These solutions exist and are unique with probability one by the argument in
step (ii) of [6]. Denote by Qε the probability measure on C = C( [0, GO) ;(Rd) induced

Theorem. // d ̂  3, v0 ^ 0 and F( ) satisfies conditions (I)-(V) above, then Qε

converges weakly on C as ε I® to the measure Q corresponding to the diffusion
process in Ud with generator j§? and initial point v0 (i.e., Q(v(0) = v0) = 1).

Corollary. Under the conditions of the theorem the measure Rε induced by
(vε('),ε2yε(')) on C([0, oo);Rd x Rd) converges weakly to the unique measure R
which is concentrated on the set

and whose marginal distribution of X(-) coincides with Q.
(Here X^(t\ ..., Xd(t\ ^(ί),..., Yd(t) are the coordinate functions on

C([0, oo);Rd x Ud).

Remark 1. The diffusion Vt on tRd\{0} can be constructed by "patching together"
local diffusions. The local diffusions can be obtained as solutions of suitable Ito
equations (see [9], Ch. 4.3) or by semigroup theory (see [10]). It is also possible
to define the diffusion Ft

(w) which has generator y on

, 1

υ \> -
n

and is killed at time τn = inf {ί: V}n)φCn}. For m^n, V^m} up until time τn is equiva-
lent to V^n} ([11], Corollary in Chap. 5.24), and Vt can be viewed as a limit of the
V(n}.

Remark 2. In our most important examples (see Remark 3) the coefficients
αf .(ϋ) and υ.(v) are singular at the origin so that one should not replace (V) by the
simpler condition α./ ). fe.(-)eC°°(IRd).

In Remark 6, Sect. 4, we shall discuss a replacement for the condition
d^3 and a^Ίb ^eC^R^O}). We shall also give some sufficient conditions
for (2.6). For the definition of the spaces C([0, oo);[Rd),D([0, α));[Rd) and weak
convergence on these spaces see [12] and [13].

Remark 3. Note that under R the process {X(t\ ^(ί)}f>o °f tne corollary is a
singular diffusion the 7-part has zero diffusion coefficients. By itself the 7-part
is not Markovian, let alone a diffusion.
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3. Proof of Theorem

The basic outline of the proof is the same as for Theorem 3 of [6]. We first introduce
a truncated process (in step (i)). The truncation will be removed only in the last
step. The second step proves the basic mixing lemma which is used in step (iii)
to show tightness of the family of measures (indexed by ε) induced by the truncated
processes. The remaining steps identify the limit process as the solution of a
certain martingle problem.

Step (ί)

In contrast to [6] we need here not one, but several cutoff functions. These will
depend on parameters η, δ, M, ΛΓ, which remain fixed until step (v). We shall
not exhibit these parameters explicitly in the notation before step (v); it is under-
stood, though, that all constants C below may depend on these parameters, the
dimension, d, and the length of the time interval, Γ, but not on ε.

As will become apparent it is best to define the cutoff functions as nonanticipa-
tory functionals which depend in addition on a variable which ranges over Rd.
We begin with the velocity cutoff. Let D = D([0, oo) Ud) and η > 0, and f o τ X ( )eD
set

if χ(kη) £ 0

ifX(kη) = Q.

In addition let ψ0 : Ud x Sd~1 x Sd~1 -> [0,1] be a C°° function (Sd~1 is the unit
ball in Rd) such that

\ l / 0 ( u , x ί 9 x 2 ) = Q if

or — or —

>2M

(3.1)

Ψ0(u, x l s x 2 ) = 1 if τ7 ̂  u\^M and

1 1

Throughout we take M so large that

(3.2)

Now define Ψ : [0, oo ) x D x Ud by

lf °~if kη
(33)
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To prevent the / path at any given time to come too close to a value taken
on before another cutoff function is needed. It will be seen in step (ii) how this
guarantees a certain amount of independence between the present and the "distant
past" for the truncated process, and thereby allows us to prove the mixing lemma.
We construct a function φk :D x Ud -» [0,1] which is smooth in its second argu-
ment, uniformly in the first argument and k. The principal requirement for φk

if k ̂  1 is that for fixed X(-)eD,

9z) = 0 if inf

k(X,z)=l if inf

z-\X(t)dt
0

z-]x(t)dt >2δ. (3.4)

To construct such a function we take

χk(X,z) = inf z-\X(t)dt

where χ is continuous, 0 ̂  χ ̂  1 and

ίθ if | v l < ί < 5
χ(y) = 1 if

Also we take for Δ( ) a nonnegative function Cx(K.d) with support in {|z| ^ (5/4}
and such that

A(z)dz = ί.

Then

φk(X,z)=$Δ(z-x)χk(X,x)dx
03d

satisfies (3.4). Finally we define Φ = Φε :[0, oo) x D x (Rd by

Φ(t,X,z)=l iϊQ^t<η,

Φ(ί, X, 2) - φk(X, ε2(z -y0)) iϊkη^t<(k + l)η, k^l.

Lastly, we set

G(ί, X, z, w) - Ge(ί, X, z, w) - !P(ί, ̂ , w)Φe(ί, ̂ ? ̂ )Ffe w)

and we define our truncated process w( ), z( ) as the solution of

Jz_J_

dί ε2

rfw 1

(3.5)

(3.6)

(3-7)

(3.8)
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As in [6] this means that z and w are continuous functions which satisfy

1 '

w(ί) = v0 + - J G(σ, w( ), z(σ), w(σ) )dσ . (3.9)

Note that G is continuously differentiable in its last two arguments and for
kη ^ t < (k + l)η depends on w( ) only through the values of W(M) on u ̂  kη. In parti-
cular, for t < η, G does not depend on its second argument and (3.9) has w.p. 1
a unique solution on t ^ η by the argument of step (ii) of [6]. Once a solution has
been found for t ^ kη, the dependence of G on its second argument is determined
up to time (fe -f- l)η and by step (ii) of [6] one then obtains w.p. 1 a unique solution
foτt^(k+l)η.

Of course w( ) and z( ) depend on ε. When necessary we shall indicate this
by writing wε(ί) and zε(t). In particular we denote by Rε the measure induced on
C([0, oo);tRd) or D = D( [0, oo) Ud) by wε( ) Towards the end we shall write
Rε( M, N, η, δ) to indicate the dependence of Rε on M, JV, f/, 5. For brevity we
shall write

G(f, w, z) = G(ί, w( ), w, z)

for w, ze[Rd and w( ) the solution of (3.8). Similarly

!P(ί, w) - !P(ί, w( ), w), Φ(ί, z) - Φ(ί, w( ), z).

Before turning to the proof of tightness of the family of measures
{#ε( ) : 0 < ε g l } we need some simple observations. First, G(£,w,z) is constant
in t over each of the intervals [kη,(k + ί)η). Second, for every T there exists a
constant C1 = C^(T,M,η,δ) such that

dz
Φ(t,X,z) (3.10)

for all XeD, w, zeIR'', 0 ̂  t g T, 0 < ε g 1 and \β\ ̂  1. Formula (3.10) is obvious
for f from (3.3); for Φ it follows from (3.5) and (3.6). Indeed, for kη^t<(k + ί)η,

δ V

$\DβΔ(x)\dx.

Lastly, for any z of the form z(ξ) H ^— w(^), Φε(ί, z) does not depend explicitly

on ε, but only through { w ( w ) : 0 g w ^ ξ v ((k — l)η)+}9 when kη^t<(k + l)η.
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Indeed for such ί, the above z and u ̂  ((k — l)η) +

ϊ~ ~\ M

z(ξ) + ^-w(ξ)-yΛ-^
6 J o

Finally, we have the following simple

Lemma 1.

2M
g2M forallt^O.

1 1
— αnd(w(ί),w f c)^ —

for kη ̂  ί < (k + 1)?

(3.11)

(3.12)

- ~9 / 8

^s.t^ T ^ C2ε

(3.13)

(3.14)

Proo/ Formulas (3.11) and (3.12) are easily proved by induction on k. If they
hold at ί = kη, then they must hold up till (k + l)η because Ψ(t, w(ί)) vanishes
as soon as (3.11) or (3.12) fails. Formula (3.13) is immediate from (3.9) and (3.11).
Lastly, for (3.14) observe that

\t-s
sup|F(z(A),w(λ))|

so that by (3.11), (3.13)

^ P{ I w(ί) - w(s)| ^ |ί - s |e~ 9 / 8 for some 0 ̂  5, t ̂  T]

sup (3.15)

Formula (3.14) now follows from the fact that the set {(z, w): | z | ^ (2M/ε2)T + | y 01,
w ^2M} can be covered by at most C3((T + l)/ε2)d cubes of edge-length one,
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and for any z0 , w0

Pi sup

sup
l, |w-

(by (II) and (IV)). Thus, the left-hand side of (3.14) is at most

+ 1 y*p» /8-2dj e

= C0C3(T + l)dε8. (3.16)

Step (ίί)

This is devoted to the fundamental mixing Lemma 4 and some of its consequences.
The preparatory Lemma 3 gives a bound for expectations along the path of z
which will be used frequently. Both lemmas rely on the possibility of "predicting"
z(σ) by the linear function z(ξ) + ((σ — ξ)/£2)w(ξ\ which depends only on the
path up until time ξ. A crucial role is also played by the measure theoretical
Lemma 2 which follows directly from the definition of the mixing coefficient β.
For convenience we extend the definition of β by setting

β(p) = 2 for p ^ 0

We also replace /?(•) by its left continuous modification. This can always be done
without invalidating (III) because β ( - ) i s nonincreasing. We need a further conven-
tion. For Θ = (θ',θ")εUd x Ud,τθF will denote the random field whose value at
(z, w) is given by

If h is a function of the F(z, w) which depends only on (F(z,u) :zeΛ, wεUd} and

such that h(F) is <8 A measurable for some A c: Ud, then we see immediately that
h(τθF) is yA + θ, measurable. In the next lemma we shall take θ itself also random.
Lastly, we set

yt = σ{z(u\ W(M), F(z(u\ w(u)):u ^ t] (3.17)

Lemma 2. Let X be an ̂  t measurable random variable with £{ | X | } < oo and
let gi = (g'rg'l) be Rd x Ud valued random variables, measurable with respect to
^ t ana such that

min{ |0;-z(tt) | :u^ί}^p (3.18)

a.e. on the set {X^O}. Lastly, let hi be B or el functions of {F(z,w):zezl., we[Rd}
for Borel sets A. c Ud with

Qe Δ., diameter Δ.^K (3.19)

and

I h.(F) I ̂  A everywhere. (3.20)
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Forθ.eR* x Ud set

Ut(θ) = ̂ .(vF)}, V(θi9θ2) = E{h,(θl)h2(θ2)}.

Then

I E{Xhl(τlιF) }-E{XUί(g1)}\ί 2Aβ(p - κ)E{ \ X \ } , (3.21)

and

\E{Xhl(τgιF)h2(τg2F)}-E{XV(g^g2)}\^2A2β(p-κ)E{\X\}. (3.22)

If (3.18) is replaced by

mm{\g'2-z(u)\:u^t}^ρ and \g'2-g\\^p (3.23)

a.e. on the set {X =£ 0}, then

^2A2β(p-2κ)E{\X\}. (3.24)

Proof. We only prove (3.21). First we change g1 , g2 on the set X = 0 such that
(3.18) holds everywhere. Since {X = 0}eJ^r we can do this in such a way that the
modified g. are still J% measurable. Moreover this modification does not affect
(3.21). We may also assume p — K > 0 since we took β(p) = 2 for p :g 0. Now take
0 < τ < (p — κ)/2 and let Cί , C2 , . . . be a sequence of disjoint cubes whose union
is all of Ud and such that diameter (C.) ̂  τ. Let

E. = {z:d(z9Ci)>p-2τ}

7f = indicator function of [g\ e C.}

and last,

R is the (random) range of z( ) up until time ί, and it follows from (3.18) that if
0ι eC., then R must be contained in D.. Consequently

E{Xhl(τgF)} = ΣE{χWgFVi} = Σ£{^ι(^/)A * c A ) - (3-25)
i i

Now E. is an open neighborhood of D., and we proceed to show that for any
& t measurable random variable Y one has

YI[R c D.] is ̂ £f measurable. (3.26)

To verify (3.26) it suffices to consider only 7's of the form

with 0 ̂  u. ̂  ί and K.: IRd x [Rd x Rd -* (Rd bounded Borel functions (e.g. by [14],
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Theorem 1.20). Now let ζ: !Rd -> [0,1] be a smooth function such that

C(z) =

0 if zφE.,

and set

Also, let z*( ), w*( ) be the solution of

o

w*(ί) = VQ + - J G*(σ, w*( ), **(*), w*(σ))rfσ (3.27)
8 o

One can obtain z*, w* by the usual iteration procedure, i.e. z*, w* — lim (z(n\u(n\
H-> OO

where z(0)(f) = y0, w
(0)(ί) = u0 and

w(n+ 1}(ί) = ϋ0 + - } G*(σ, w(ll)( ), z(B)(σλ w(π)(σ))d(7. (3.28)
ε o

For fixed z, w and ί < ,̂ G*(f, w( ), ,̂ w) is clearly ^£. measurable and hence by
(3.28) so are z(1)(ί), u(1\t). It then follows by induction on n from (3.28) that (z(n\t\
w(π)(ί)) and also z*(ί), w*(f) are ^£. measurable for all ί < 77. This remains valid
for t = η by continuity and the argument can now be repeated for η ̂  t < 2η etc.
It follows that (z*(f), w*(ί)) is ^£. measurable for all ί. However, it is also clear
that z*(ί), u*(t) coincides with z(ί), w(0 for all t ^ 5, where S = inf {t; ̂  0 : d(z(t;), C.) ̂
p — §τ}. In particular this holds until the first time z* leaves D. and

YI[R c= /).] - 7*/[#* c /).] (3.29)

where 7* and R* are defined by replacing z( ), w( ) by z*( ), w*( ) in the definition
of 7 and R. Since the right-hand side of (3.29) is $E measurable, this implies
(3.26).

Now set

and £$1 = the collection of Borel sets of C. x IRd. Then the map from C. x (Rd x Ω
into IR given by (θ, ω) -> h^(τβF) is .̂ x ^f . measurable, because for fixed θ =
(θ7, θ")ECί x (Rd, θ7 + A. c: F. and hence h^τ^F) is ^F. measurable in ω. Moreover,
for fixed ω, τθF is continuous in θ. We now combine this with the fact that for
any Borel set £cC. x (Rd, ^/./[^eBj/pR cD.] is ^£. measurable (by (3.26))
to conclude that

c Dj/z^τ^F) is ̂ uF. measurable . (3.30)


