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On the Distributions Corresponding
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Abstract. Using properties of an integral transform giving directly the matrix
elements of a quantum mechanical operator from the corresponding classical
function, we restrict the class of distributions corresponding to bounded
operators. As a consequence, we can exhibit a class of functions yielding trace-
class operators, and give a bound on their trace-norm.

1. Introduction

In the Weyl quantization procedure classical functions on phase space are
"decomposed" by harmonic analysis in exponential functions, which are then
replaced by the corresponding "elementary building blocks for operators", i.e. by
the Weyl operators. One obtains in this way a map

f^Qf (1)

from functions on phase space to operators on a Hubert space ffl carrying an
irreducible representation of the Weyl commutation relations. It has been shown
in [ί] that this map can also be defined using only / (skipping the harmonic
analysis step) and replacing the Weyl operators by so-called Wigner operators,
which are simply the Weyl operators multiplied by parity.

In both cases (the original Weyl procedure, and the prescription in [1]), the
quantization formula written down is to be understood in a formal sense as long as
the class of functions considered is not specified. It has been shown [2, 3] that the
Weyl quantization map (I) is a unitary map from L2(E\ the square integrable
functions on phase space, to ^HS(^), the space of Hubert-Schmidt operators on
$e\

$dvf*(v)g(υ) = Ύτ(Qf*Qg). (2)

For/in Ll(E\ the absolutely integrable functions on phase space, the operator Q/
is compact [4], and for/in the Schwarz space £f(E\ the operator Q/is trace-class

* Wetenschappelijk medewerker bij het Interuniversitair Instituut voor Kernwetenschappen (in het
kader van het navorsingsprojekt 21 EN)

0010-3616/80/0075/0229/S02.00



230 I. Daubechies

[5, 6] other exact results concerning Q/ which can be considered as pseudodiffer-
ential operators can be found in [6, 7].

One can now try to extend (2) and associate a distribution TA to any bounded
operator A by putting [5, 8]

(3)

It is clear that this is then an extension of the inverse of the quantization map
restricted to the Hubert-Schmidt operators. We shall prove that these distri-
butions TA lie in the dual of the space ̂ 4v+ \ where ^k is defined by

I
' '

/;/ is Ck in x, p and max sup |(1 + |x|2 + \p\2) 2 d[™]f(x, p)\ < oo > .
| m | £ k ' J

Moreover one has the following bound:

with
k-\m\

|| /1| f = max sup
,|2

<oo

where v = f dim (phase space) = dim x-space.
As a consequence, all the functions in 5^4v+1 yield trace-class operators, and

one can give a bound on their trace-norm:

In Sect. 2, we give some definitions and notations. We also introduce the
integral transform associating directly to any classical function / the matrix
elements between coherent states of its quantized Q/ [9]. In fact the results we
prove are a consequence of the properties of this integral transform which is
closely related to the Bargmann integral transform [10, 11]. These properties will
be studied in a deeper and more thorough way elsewhere [12] we have however
tried to make this paper self contained, and to prove all intermediate results
leading to our main statement. All this is done in Sect. 3.

2. Definitions and Notations

In most of what follows we shall use intrinsic coordinate-free notations.
Occasionally however, we shall give explicit x — p-notations.

We denote by E the phase space, i.e. an evendimensional real vector space
(dimension 2v, veN^). On this phase space a non degenerate symplectic (i.e.
bilinear, antisymmetric) form σ is given. Moreover we suppose we have a
<τ-allowed complex structure J on £, i.e. a complex structure J:£->£ (J linear,
J2 = — i) preserving the symplectic structure σ
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symplectic structure σ

Vι;, we E : σ(Jv9 Jw) = σ(v, w)

such that

These last conditions ensure that the bilinear form s(u, w) = σ(v, Jw) defines a
Euclidean structure on E.

Occasionally we will denote by |ι;| the norm on E defined by the Euclidean
form s :

|t>=l>(tMθ]1 / 2. (4)

In x — p-notation one usually takes

E— R2v = x-space ©p-space

E3V = (X, p)

σ((x, pi (*', p'}} = l(pxf - p'x)

I(χ,p)|=-7rl/"ϊ5+p.
V2

For any function / on phase space we define its symplectic Fourier transform / by

f(v) = 2 - v $ d v ' e ί σ ( v > v ' ) f ( v ' ) .

It is easy to check that this defines a continuous map from the Schwarz space £f(E)
to itself; moreover one can check that, up to a constant factor, the function« ^ ' . *
/ is again /. The measure dv on E is normalized by the requirement that / be
equal to / :

f(υ} = 2-^dυ'f(υ'}eiσ(^\ (6)

2? is a separable Hubert space carrying an irreducible representation of the Weyl
commutation relations, i.e. carrying a strongly continuous irreducible family of
unitary operators W(v) satisfying

In terms of these operators the Weyl quantization formula is

(7)

t
the functions eισ('*υ'} in (6) have been replaced by their quantization Wi -- .

One has

W(a)QfW(-a) = Q(TJ) with (TJ)(v) = f(v-a).
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In [1] it was shown that (7) can also be written in the form

Qf = 2v$dvf(υ)W(2v)Π9 (8)

where Π is the parity operator, which can be intrinsically defined (up to a factor)
on tf by

W(v)Π = ΠW(-v).

In (8) the symplectic Fourier transform is no longer needed.
One can use either (7) or (8) to define the quantization of the harmonic

oscillator hamiltonian h(v} = s(v, v). This can be done quite rigorously, although h is
not in ^(E), Ll(E) or L2(£); one can use e.g. the concept of pseudodifferential
operators [6,7,13] : in the notations of [6] h can be seen to be a GLS-symbol of
order rg 2 which is bounded below and hence gives rise, in the Weyl quantization
procedure, to a unique semibounded selfadjoint operator on ffl which we call Qh.

This Qh is in fact everybody's quantum harmonic oscillator hamiltonian and
has all its usual spectral properties we denote its normalized ground state by Ω.

The coherent states are defined as displacements of this ground state:

\/aeE:Ωa=W(a}Ω.

Note that for any α:| |Ωα | | = ||Ω|| = 1.
These coherent states have several very nice properties [14, 15], the most

important of which is often called "resolution of the identity":

VφeJf :φφ defined by φφ(a) = (Ωa, φ) is in L2(E):

ΦφeL2(E)

and

or

Using this resolution of the identity (9) one easily sees that any (bounded) operator
A on 3? is given by an integral operator on the φφ with kernel A(a, b) = (Ωa, AΩb}:

(φ, At/;) = jj da db(φ, Ωa) (Ω\ AΩb) (Ωb, ψ)

One can now try to use the formal expression (8) to obtain a direct cor-
respondence, not between/and Q/, but between/and the matrix elements Qf(a9 b)
of Q/ between coherent states:

Qf (a, b) - (Ω\ QfΩb) = 2V j dυf(v) (Ωa, W(2υ)ΠΩb]

{a,b\υ} (10)
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= 2V exp ι;) + 2σ(ι;, α)]

(11)

Expression (11) for the integral kernel {α, b\υ} was obtained in [9] by explicit
calculations in one particular representation of the Weyl commutation relations,
but of course it is valid in any representation.

As announced in the introduction, we will make use of the analogy between the
integral kernel {α, b\v} and the Bargmann integral kernel [9]. For the sake of
convenience, we therefore also give here the explicit expression of the Bargmann
integral kernel :

A(z q) = 2V'4 exp [ - \(z2 + q2} + \/2z q\

[the constant has been adjusted to our normalization of the measure : we have

fΛ>exp(-M 2 )=l]
(10) is still a formal expression. In [12] it will be studied which sense can be

given to these formal matrix elements. In any case, since (8) was already rigorously
true for fe&Ί and since it is obvious that for / in ̂  the integral over v and the
"sandwiching" with Ώα, Ωb may be commuted, (10) holds without problems or
interpretation modalities for / in &*. This is all we shall need here.

3. Bounded Operators and the Corresponding Distributions

Writing out (11) explicitly in x — p-notation (5) we get

{α, b\v} = T exp l- (paxb - pbxa + 2pbxv - 2pvxb + 2pvxa - 2paxv)

~~ (Xv ~^~ Pv ) ~Ί~ {Xv(Xa ~^~ Xb) ~^ Pv\Pa '

1 „

•l /Λ r Q L D i α

-!K2x"--^-7?- + o--;2 ]/2 |/2

•exp

" 1̂

+

But this is in fact, up to a Gaussian factor, a product of two Bargmann integral
kernels. Indeed, one has

'x 4- ίp

— 2V/4 exp exp (13)
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Comparing (12) with (13) we see now that

1/2 '
Pa + Pb X b ~ X a . l/2Po (14)1/2' i,

(15)f V
[ 2(|C-

with

1

Note that

[Here |α|, |fc|, |cj, |<y are defined as in (4) or (5).]
The square of the Gaussian occurring in (14) or (15) is exactly the weight

occurring in the corresponding measure dμv(cab) dμv(dab) in [10].
As a consequence of (15) we can use Bargmann's estimates [11] in particular

^\Qf(aM^k2-v/2 + k\\f\\l(l + \cJ2 + \dJ2Γk/2

or

\Qf(a,b)\^ak2-v/2 + k\\f\\s

k(l + \a\2 + \b\2Γk/2 (16a)

with

k-\m\

| |/t|f = max sup(ί + \v\2) 2 3M/(ί;)|. (16b)
|m |^k υ

Here αfc is the constant defined by Bargmann (see [11], Theorem 1.2, (1.18d) with n
replaced by 2v):

with α k = l for fe^2, ^k = ( e ~ l k ) k for /c^3; the factor 2~v/2 + k in (16a) is a conse-
quence of the |/2-coefficients for x t, pv in (15).

To derive the bounds we aim at, we also need the following two lemmas:

Lemma 1. For any fin L2(E):

(Ω^QfΩb) = \dvf(v){a>b\v} (17)

and

V/ gεL2(E): j j da db Qf(a, b)Qg(a, b) = f dvf(ΰ)g(v). (18)

Proof. We know already that (17) holds for
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On the other hand, if we put MfeL2(E)\φf(a, b) = $dv{a,b\v}f(v), then we know
from (15) and [9] that the map f^φf is isometric from L2(E) to L2(E x £):

j j da dbφf(a, b)φg(a, b) = f dvf(υ)g(v) . (19)

Take now feL2(E), and fne^(E) such that fn-^-*f.

One easily can show from the similar statement in [9] that L2-convergence of a
sequence /„ in L2(E) implies pointwise convergence of the φfn. So

φf(a, b) — lim φfn(a, b) = lim Qfn(a, b) .
n-» oo «->• oo

On the other hand fn - >/ implies Qfn — > Q/ hence

V α, b : β/(α, 5) - (Ωα, Q/ί25) - im (Ω", QfnΩ
b)

= lim

Statements (17) and (18) follow now directly from Qf(a,b) = φf(a,b), the definition
of φf and relation (19). Π

We use these results to prove the following lemma.

Lemma 2. For any B trace-class on 3tf , the function ψB(b) = B(b9 b) = (Ωb, BΩb) is in
Ll(E] and

Tr B - J dbιpB(b) = j db(Ω\ EΩb) . (20)

Proof. Let B be a trace-class operator on ffl . There exist C, D Hubert-Schmidt
operators such that B = C* D.

Because of the unitarity of the Weyl correspondence between L2(E) and j£fHS(.^f )
[3], there exist /, g such that C = Q/, D = Qg. Hence

fl, QgΩb) .

Since Q/*(b,α), Qg(a,b) are both in L2(Ex£), ιpB is clearly in //(£). Moreover,
using (2) we get

a, QgΩb)
α, QgΩb)

= $dbψB(b). D

With the help of these two lemmas and the bounds (16), we shall be able to prove
our main statement.

Generalizing (2), we define for any operator AeJ^ f) the corresponding
distribution TA as [5, 8]

for any fe,9>.

This makes sense : for /e<9*, Qf is trace-class [5, 6], and since A is bounded, AQ/
is trace-class, too.

We have now :
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Theorem. For any bounded operator A the distribution TA satisfies the following
bound :

V/e^:|T//)|^KJAH/||5v + 1, (21)

where Kv is a constant depending only on v, and | |/ | |4V + 1 is as defined in (16b).

Proof. Applying Lemma 2 and the definition of TA we get

. (22)

By (16a) for k big enough, Qf(a,b) is certainly in Ll(E x E), which implies we can
use the "resolution of the identity" (9) without any qualms in (22) :

TA(f) = ̂ dadb(Ω\ AΩfl)(Ωα, QfΩb} .

Hence

a,b

^ II A| |α 4 v + ,2
7v'2+ 1 \\f\\l+ί^dadb(ί+\a\

So (21) is satisfied with

= — (2π)v/2(16]Λ(4v+l)e-yv+1Γ(2v)r-~1(4v). D
8

Since the topology on ̂  is completely given by the set of norms || ||£, (21) gives us
indeed a bound on TA in &" '. Note that this bound can be refined if we have some a
priori knowledge of the decay of A(a, b] for α, 6— >oo, or that, on the other hand,
bounds can also be given on TA for A unbounded, but with controlled growth of
A(a, b) for a, b— >oo. Note also that in fact (21) enables us to consider the
distributions TA as elements of the dual of ̂ 4v+ \ the closure of ̂  w.r.t. the norm
II \\S
I I I l 4 v + I'

As a consequence of the theorem we have

Corollary. Let ̂ k be the function space

\v\2) 2 dίm]f(v)\«x>
\m\^k

Then for any f in y4v+1, the operator Qf is trace-class and

/| |5 v + 1. (23)

Proof. Take / in ,9". By the polar decomposition of Qf one has Q/ = U|Q/| for
some partial isometry U.

Since U*U|Ran|Q/| = i|Ran|Q/|, we have also
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Hence

*̂  II \\J I l 4 v + 1

(24)

Since Sf is dense in ^4v+1

 w.r.t. the norm || | |4V + 1, since the integral transform
with kernel {α, b\υ} obviously makes sense on y?4v+1 and gives rise to bounded
operator kernels (if4v + 1 C L2(E)\ we can extend (24) to all functions in ̂ 4v +1. Q

Remark. Since the || ||^-norms form a totally ordered set and determine completely
the topology on 5 ,̂ and since it was proven in [5] that the map Q, when restricted
to 5 ,̂ is continuous from £f to the trace-class operators, a bound of the kind (23)
was to be expected. To our knowledge, however, this is the first time a precise
bound of this kind (with fc and the constant Kv explicitly given) is derived.

4. Concluding Remarks

We have derived a condition (21) for distributions to correspond to bounded
operators in the Weyl quantization. It is obvious that the condition is not
sufficient : the harmonic oscillator hamiltonian for instance does satisfy a bound of
the kind (21), but does definitely not give rise to a bounded operator. On the other
hand, though the bound may be rather coarse, it is a better characterization of the
image under the inverse Weyl transform of the bounded operators than was
known (at least to our knowledge).

We are conscious of the fact that the analogy with the Bargmann integral
transform of the integral transform with kernel {α, b\v} has been far from fully
exploited here as we indicated, whole families of bounds can be derived from it. In
fact the way in which we proceded here is only one of the possibilities to extract
useful information out of the study of the integral transform, and bounds can be
derived for even more general objects than distributions. All this will be developed
elsewhere [12] : our aim here was only to derive this one bound on the class of
distributions on phase space corresponding to bounded operators on the Hubert
space.

Note. In fact sharper results than those in (21) or (23) can be derived using a family
of Hubert spaces J^ρ instead of the Banach spaces yk. We give here only the
results; the derivation of these results can be found in [12] or [16].

Define H2 to be the operator in L2(E)

= (in x — p-notations)

For any ρ in IR, let fflQ be the Hubert space defined by the completion oϊίf(E) with
respect to the norm

One has then the following results :

V ε > 0 :/e Jf2 v + ε=>β/ trace-class
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and

and

where ζ is Riemann's zeta-function.
Since one can easily check that ^3v + 3e J^2v + 2, and 4v+ l>3v + 3 for v>2,

these results are indeed sharper than (21), (23).
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