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Abstract. Explicit bounds on the quantum partition functions are given in terms
of classical partition functions, incorporating effective pair potentials, which
account for Fermi- and Bose-statistics, respectively. The bounds may be used for
the limit h -> 0 and eventually for showing the interchangeability of the classical
with the thermodynamic limit. A simple derivation of the thermodynamic limit
for free particles with general dispersions is given.

Introduction

The correspondence principle for partition functions is quite an old problem. There
exist heuristic discussions in text books and expansions in h, but they are
mathematically unsatisfactory. The problem may be divided into two points:
1) How is the trace over the Hubert space related to the phase space integral?
2) How does the 1/N\ for fermions and bosons originate?
The first question is settled in some detail by now [1-9], the second one is answered
in this paper.

The main results appear in Id and 2e, equation (29), (30), (43). They concern the
canonical ensemble and read, expressed in the free energy:

Fcl(Hcl) S FF(H) £ Fcl(Hcl + VF(K β)) for fermions

and

Fd(Hcl - VB(h, β)) S FB(H) S Fcl(Hcl) for bosons

(cl stands for "classical", F for fermions, B for bosons, β = 1/kT). The Hamiltonians
are supposed to be of the form

H= I f t 2 l K ( x , . . x w )
/ = l

and Hcl is the same function of canonical coordinates instead of the operators pi9 xt.
Almost no condition restricts the set of allowed potentials V, one has only to make
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sure, that the Hamiltonian and the partition functions are well defined, and that the
Golden Thompson-inequality may be applied to exp(— βH). For the lower bound
on the free energy the kinetic energy per particle may also be some other functions of
its momentum. For the upper bound the configuration space has to be divided into
cubes. The comparison Hamiltonian is

with U a stepfunction, which is constant on each cube and dominates V. The
correction potentials VF and VB may heuristically be understood as effective pair
interactions, which mimick the effect of quantum statistics. They go to zero in the
limit h -• 0 as well as c, and also Hcl converges to Hcl in this limit, provided V is
sufficiently well behaved and one lets the diameter of the cubes approach zero more
slowly than h.

Provided that Hcl — VB is thermodynamically stable, which is the case, if Hcl

involves a sufficiently strong short range repulsion, all of the above bounds remain
sensible in the thermodynamic limit. The interchangeability of the limit N -> oo and
h -> 0 posses therefore little problems, it is mainly a question of the continuity of Fcl

in Hcl. It is not treated here. The reader may consult [4] for those questions and also
for the history of the subject.

To achieve some completeness, the proof of several well known results have been
included: The use of coherent states for bounds on partition functions goes back to
Lieb [5] and Berezin [6, 7]. The original use of the Golden-Thompson inequality
[8, 9] was just to give the bound of our section 2a, but the present proof is simpler
than the original one.

The logical interrelations of the sections are the following: la is needed for \b and
lc, Id and le are used in 2e, 2a gives the prerequisites for 2c, 2ά and 3. 2d, where the
left hand sides of the above equations are derived, uses also the Appendix B.

The indices used throughout the paper are: B, F, MB, cl, to indicate Bose, Fermi,
quantum mechanical Maxwell-Boltzmann or classical Maxwell-Boltzmann statis-
tics, respectively. N and D indicate the presence of Neumann or Dirichlet boundary
conditions.

1. Microcanonical Ensemble

The usual definition of the entropy as a function of the energy is

S f,B(£) = l o g T r F j B θ ( £ - H ) (la)

for fermions and bosons, respectively, and

SMB = \og^jTr0(E-H) (lb)

for Maxwell-Boltzmann-Statistics. Since the ^-function cannot be treated with our
methods of part a) and b\ we investigate rather the mean energy as a function of the
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entropy, defined for Sεlog N

E(S) = MΎτPsH, Ps = P$ = Pl ΎvPs = es. (2)

We assume that the range of Ps is in the space with the appropriate symmetry.

a) A Lower Bound for Discernible Particles

Let us assume that the Hamiltonian is operator-bounded below by H°, which allows
for a diagonal representation with the coherent states (Appendix A):

d3Nz
^H^f^^fψXzl. (3)

We abbreviate the integral and normalization as \dΩ(z). (2) becomes:

E(S) = inϊTr \dΩ(z)Ps\z}H0(zKz\ = inf$dQ(zKz\Ps\z)H0(z)
Ps " Ps

^inijdΩ(z)fs(z)H0(z\ 0^fs(z)Sl \ dΩ(z) fs(z) = es (4)
fs

(where we have used J dΩ(z) {z\Ps\z} = Tr Ps).
For that expression to become small, it is necessary that fs concentrates as much

as possible at those z, where Ho is small. Therefore one need only consider
characteristic functions of sets Λs:

E(S) ̂  Ecl(S) = inf f dΩ(z)H0(z), f dΩ(z) = es. (5)
As As As

The inverse of the function Ecl(S) provides us with an upper bound on the number of
states such that the sum of the energies does not exceed a prescribed value.

b) A Lower Bound for Fermions

Again we use (4), but with the additional restriction that Ps ^ PF, where PF is the
projector onto the antisymmetrized wave-functions:

PF = ηrfj Σ σ(P)u

P> (Upψ)(xί...xN) = \l/(xp{1)....xp{N)). (6)

is the group of permutations of {1, 2 , . . . N}, σ(p) is the sign of the
permutation p.)

That implies:

IV . p

(The iV-particle coherent state |z> is a tensor-product of the 1-particle coherent
states |zf>. For the last inequality see ref. [10])
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And we arrive at

EF(S) ^ inf — J dΩ{z)H0{z), J dΩ{z) = N\ es (8)

which with permutation symmetry of H0(z\ is equivalent to using eq. (5) but with the
restriction that

Vpe^(iV), p Φ id:(x1 xN)eAs=>(xpil)... xp(N))φAs.

c) Bounds for Non Interacting Discernible Particles in a Box

N

I a cubic box of length /, (1) and (2) become, with H = —h2 Σ ^t

i = 1

<rr2 3N

The sums may be regarded as integrals over step-functions: For Neumann-
boundary-conditions we associate each n={nί... n3N}, (nfe{0, 1, 2,...}) with the
cube x :rc i^;x i^72 i+ 1}. For Dirichlet-boundary-conditions only those n are
allowed, for which nt =/= 0, and we associate n with the cube {x :nt — 1 ^ xt ^ n j .
Formally:

(njvίx)^ = [x j , (nD(x))i = [x j + 1

which implies

and

d3Np ( \
SN(E) Z Scl(E) = log VN J ̂ p θ i E - ΣPΪ) ^ SD(E), (11)

EN(S)SEcl(S)^ED(S) (12)

where (with V = /3)

To obtain bounds in the other directions one may use Robinson's method of
comparing Dirichlet- and Neumann-boundary-conditions [11]. Ecl evaluates to

2/3Λr
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d) Bounds for Non-Interacting Bosons

Suppose the 1-particle states φn to be labelled by n = 1,2... . Certain iV-boson states
may be labelled by (n1? n2... nN) with nt ^ n{ + x

 1 This stands for the symmetrized
product state of φnι which is an eigenstate of the Hamiltonian

HN= Σht
ί = l

with eigenvalue E = J X ; . (When /*</>„ = εnφn.) We want to compare the situation
with the case of discernible particles: There, the iV-particle eigenstates are the tensor
products of not necessarily different φn's, and to a given collection of wf's there exist
N\/Y[kn! different eigenstates to the eigenvalue E = Σε . (fcM is the multiplicity of

n

occupation of the level n, Σkn = N and 1 ̂  iV !/Q fcw! ̂  ΛΓ!.) Therefore

^ l o 8 ^ Σ β(£-Σ8,,,)=S M 1 ,(£). (14)

not ordered

For particles in a box this may now be further developed into a classical bounds.

e) Bounds for Non-Interacting Fermions

As for the bosons, the iV-fermion states may be labelled by (n1... nN), but with n{

strictly smaller than ni + 1. This restriction forces us to find another correspondence
between the fermion states and groups of indiscernible-particle-states: The group of
AΓ!/l~[fcπ! product-states with the occupied levels (n1? n2... nN) (where the nt are
ordered) is now compared to the fermion state (n1? n2 + l, n3 + 2... nN + N — 1),
which has the energy

^ N(N-i)
^Σεn, + » SUP (8n + ! - 8 j .

i ^ n

For particles in a 3-dimensional cubic box of length / it follows from number-theory
that indeed

h.2 2

sup (επ + 1 - ε j S A = 5—^- (15)

is finite (Appendix C). For Neumann-boundary-conditions the 5 may be replaced by

1 The rc/s are not the usual occupation numbers!
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3. (We conjecture that in 3 space dimensions that sup is also finite, if regions of a
more general shape are chosen.) The extra term in the energy is the same as would be
present as the effect of a mutual interaction with strength A and range at least the
diameter of the volume.

Without correction, the bound is in the other direction, since each fermion state
corresponds to N! states of indiscernible particles with the same energy (but not all
states of the indiscernible particles are reached in this direct way):

SMB(E)^SF(E). (16b)

It has to be remarked that the above method works only in at least three space
dimensions. A more general upper bound for the energy may be found by another
correspondence of groups of eigenvalues of discernible particles to the eigenvalues of
the fermion system: We "forbid" the discernible particles to occupy the N — 1 lowest
levels and consider for them the partition function with H =YJhi replaced by
£fti0(ftf — εN). The group of eigenstates for which the levels (nί9..., nN), N^nt

t^nί + 1, are occupied has higher energy than the fermion state (n1—(N
— 1), . . . ,%_ -L — 1, nN) and therefore

£ θ(EΣΛ (17a)
i V ( H i . . . n N ) V

not ordered, Π[ > N

and

Σ =N\es. (17b)
(ni...nN)eAs

2. The Canonical Ensemble

a) Discernible Particles: Upper Bound to the Partition Function

The Hamiltonian is supposed to be of the form H = K(p)+ V(x\e~ βK(p) defining an
integral kernel in x-space:

We will make use of the fact that Kκ(0) is just the classical phase-space integral:

(18)

An upper bound to the partition function is found by use of the Golden-Thompson
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inequality:

d3N

xd
3N

v

= I (2πhfN 6 βH"(P'X>-

The classical Hamiltonian is defined by replacing the p- and x-operators by
coordinates.

The following bound goes back to Lieb [5]. It has the disadvantage not to be
immediately applicable to all Hamiltonians (this topic is discussed in the Appendix
A). Furthermore, the bound is weaker than (19). On the other hand it remains valid,
when the exponential is replaced by any convex and decreasing function, and for
other types of coherent states [5, 4].

We suppose, that the Hamiltonian has an operator-bound below, which is
representable by the coherent states as

\z>H0(zKz\£H. (20)

Denote the complete set of eigenvectors of H as {φn}. One has

and since the exponential is a monotone function:

exp( -/K«AJH|^>) ^ exp( -

Since |"dΩ(z)|<ι/>n|z>|2 = \\ψn\\2 = 1, we may use the convexity of the exponential:

e-βH°ω. (21)

b) Discernible Particles: Lower Bound to the Partition Function

With the completeness of the coherent states and again by the convexity of the
exponential one has [5]:

e-e<*w*>. (22)

c) Bounds with Quantum Statistics, Involving the Coherent States

We use the form of the completeness relation which is valid in the iV-particle-space
for bosons and fermions (Appendix A), due to Thirring [15]:

i = 1

and denote ["J α*(zf)|Ω) = \zx. . . . zN) = \z). These states are not normalized: For
fermions it is known that by the Hadamard-theorem [10]

(z\z)F = N!<z|PF|z> = det (z^zΛ ^ 1. (23a)
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For bosons by the Marcus-theorem [12]

=per<zt\zj>£l. (23b)

This has to be remembered when one uses the convexity of the exponential:

^ ( z \ z ) e - β ^ M . (24)

It is not easy to write down the scalar products and expectation values as functions
of z. But it may be seen that, for N fixed, in the classical limit, (z|z) converges to 1 and
(z\Hz) to the classical Hamiltonian almost everywhere. Everywhere for bosons, for
fermions for those z, where all z{ are different.

If one uses coherent states with compact support, that is to say, \zt} is given for
zf = 0 by the wave function 0(xf) and the support of φ(x) is D, a set with finite
diameter /, then one has in the case, that all \rt — Γj\ ̂  / (r is the space coordinate of z)
(z|z) = 1, and by the locality and symmetry of H also (z\H\z) = <z|//|z>. One gets a
simple bound by restricting the integrations to this region:

Q F i B (j8)^^T ί dΩ(z)exp(-j8<z| i ί |z». (25)

This restriction simulates a hard core potential, and the r.h.s. of (25) equals the
classical partition function with the Hamiltonian

ifalll̂ -Xjl >ί

oo if some \xt — xj \ ̂  /.

φ is the Fourier transformed φ.

If V(Xl. ...xN)=Σ v(χi - XJ)> t h e n

Φ>+ Σ

lV(x-y)\φ(z-y)\2\φ(-z)\2d3zd3y, |

For the upper bound, we make the observation, that the Hamiltonians are often
in a form, which allows to regard them as operating on the whole-iV-particle space
without restriction from the statistics. We assume therefore (20) and write the
partition function as a trace over the whole space, but including the appropriate
projection operator, given by eq. (6) for fermions and similarly for bosons (without
the σ(p)). One gets analogously to eq. (21):

z\PBιF\z>e-fiH°<*\ (26)
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We may use (23a):

QF{β)^^\dΩ{z)e-"H^\ (27)

For bosons we use the corollary from Appendix B:

QB(β) g - L I dΩ(z)exp ( - βH0(z) + £ |<Z ( |z,> |). (28)
™ ' i < j

d) Bounds with Quantum Statistics, Involving the Golden-Thompson-Inequality

The kinetic energy is supposed to be of the form K(p) = Σ kip^e' βk giving rise to an
i

integral kernel Kκ(x — y\ which is positive definite, since e~ βK is a positive operator.
Therefore, for any N and (xί... xN)9 the matrix (m^) = (Kk(xt — Xj)) is positive
definite:

QF(β) ^ Tr PFe~ βKe~ βV = ̂ $ d™x det ( m o > " βV^

< — id3Nχ(K (0)Ψe-βy^-—[d xd p _ β Ή d ( p χ)

For the first inequality in (29) as well as for the corresponding step in (30), it is of
course essential, that not only K + V, but also K and V separately commute with the
appropriate projector PF or PB.

For bosons, we use the corollary of Appendix B for the matrix aij{x) =
Kk(Xi-Xj)/Kk(0):

QB(β) ̂  i y J d3Nx(Kk(0)f per (αy (x))e' βV^

1 Γd
3Nxd3N?

— AT » •' /o ϊ\3N e X P V P\ncl\P> X) ^ LJ VB\xi xj)))' P Ψ
iV ! {ZTtfϊ) i < j

The effect of the bose-statistics is here estimated by the effect of an attracting

interaction-potential VB(x) = — Kk(x)/Kk(0). For the non-relativistic kinetic energy,
P

k = p 2, it is

1 / ' • - • ( 3 1 )

e) Bounds with Quantum Statistics, Involving Jensen's Inequality

We assume in this section, that H = K + V9 K = ΣPΪ> V = V(χι XN)- For any
orthonormal set of wave functions {\jjn} one has

We divide the physical space into cubes with sidelength /, denote their centres by ξ
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and choose as (φn} the eigenfunctions of the kinetic energy with Dirichlet boundary
conditions on the faces of the cubes. Such a ψ may be characterized by the numbers
of particles in each cell, p(ξ) (a non-negative integer) and in addition by the occupied
levels in each cell (n1 . . . npiξ))ξ:

Σ πp(-βK[l>Λndξn-βVlpΛ(rιdξm (32)
}

P(ξ)

The εM's constitute the spectrum of — h2 ΔD on L2(C\ C a cube with sidelength L
Firstly, we aim at removing the dependence of F[p, {(n^}] upon the levels and at
giving an upper bound to it in the form £/[p]. We define the comparison potential U
as the step function

U ( x l 9 . . . , x N ) = U ( ξ { x ± ) 9 . . . , ξ (xN)) (33a)

where ξ(x) denotes the center of that cube C(ξ), in which x is located (the boundaries
are inessential), and

U(ξί...ξN)= sup V(Xl...xN). (33b)
xιeC(ξi). . . xNeC(ξN)

If this sup happens to be infinite, it may nevertheless be used consistently in the
sequel with the definition e~ °° = 0 . U dominates V pointwise, and obviously

Since the contributions to X[p, {(n^}] from different cells are additive, and
since the occupation numbers (nf) of different cells may vary independently of each
other, one may rewrite the r.h.s. of (32) with V replaced by U as

/ P(ξ) \

Σ exp(-j8l7[p])ΠTr4iP(ί)exp -β Σ P2DΛ ( 3 4 )
ip(ξ)} ξ \ »=1 /

TϊξfP means the trace in the space of (anti) symmetrized wave functions for p
particles in the cube C(ξ).

U\_p] is the potential energy U(ξ1 ξN

} of any lattice configuration {ξί... ξN)
which has the lattice occupation numbers p(ξ). Adopting the convention 0! = 1,

there are Nil Y\ρ(ζ)l I such lattice configurations. The sum over {p(ξ)} may
\ ξ /

therefore be transformed into a sum over configurations (ξ1... ξN):

1 / piξ)

'H^— Σ exp(-βU(ξ1...ξN)Ylp(ξy.Trξ,P™p(-β Σ PD.I
lλl '(ξi ξN) ξ \ ί=l

= ^ Σ ™p{-βU(ξ1...ξN)-βΣF(β>P(ξd). (35)
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In the second step we have introduced a modified free energy of p particles in a cube

C(ξ):

i = 1

(36)

which is bounded from above by the free energy of discernible particles, using the
methods of Id and le):

(37)

Δ =
5h2π2

for bosons

for fermions.

The trace is here over the Hubert space for discernible particles. The extra term for
fermions may be written as a pair interaction

VF(x,y)=VF(ξ(x),ξ(y))9

fo ξ ψ n
VF(ξ,η) =

A ξ = η.

1

(38)

Writing FD (β, p) = - - log Tr e " βκ°' we have:

(39)

But for discernible non-interacting particles the free energy is a sum over the free
energies of the individual particles:

(40)

e x p ί - β ( Σ f ( β ) + Σ VF(ξi9ξJ)+U(ξ1...ξN))). (41)
i y ξι...ξN \ \ί i< j / /

For f(β) one finds upper bounds:

Λ
c{β,hj\ (42)

πh2/ί2 if Z?^2//2 ^ 4/π

l/9π3.

Now, one may reinterpret the sum over the ξt together with / 3 i v as integral over the
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step functions:

(43)
If U is a stable potential, that bound has a thermodynamic limit, which commutes
with the classical limit, if the classcial free-energy-density is continuous in the
limit U -+ V. This is the case, if Simon's microstability contition holds ([4]).

3. The Grand Canonical Ensemble

For mutually interacting particles one may use the results of part 2) to bound each
single term of

Ξ(z)=ΣzNQ(β,N).
N

For noninteracting particles, only the upper bounds for fermions and the lower
bounds for bosons may be summed up explicitly, and they give the bound by
classical MB-Statistics. One can do better:

The partition function may be expressed as a function of the one-particle-
Hamiltonian:

Ξ(z)BfF = ΎτfB,F(h\ fB,F(h)= ± l o g ( l ± * T ' h ) .

These are convex functions and the coherent states, |w> = |r, s>, may be used
successfully:

d3rd3<ϊ drds
f K W > ) Ί f { h ) ~ ί ( W / B F ( M W ) ) (44)

zn

For bosons, one has a slightly better upper bound: expand fB(h)= £ — e ~ β n h ,
n ft

bound each term with the help of the Golden-Thompson-inequality and sum up the
series:

Tr/B(Λ) ̂  J § ^ / B ( M P , *))• (45)

The interchange of the expansion with both the trace and the integral is allowed, in
view of the Lebesgue dominated convergence theorem.

Eq. (45) is not only stronger than the r.h.s. of eq. (44), it is also applicable to a
wider class of Hamiltonians. It may be used for photons, where h(p, x) = \p\ + V(x\
for example, and for V(x) unbounded from below.

The differences between upper and lower bounds vanish in the thermodynamic
limit for free particles, provided one lets the coherent states vary as ΨΛX)
= φ(/~ 1/2x\ where ί is a characteristic length of the system. This is therefore an
elegant way to derive the thermodynamic functions for free particles: Whenever the
kinetic energy is k{p), where k is not too wild (a Ή1 -function with polynomial growth,
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for example):

lim -^Ξ(z)B,F = ± J-^-log(l ±e-βk^). (46)
v -> oo V (zπn)

Appendix A. On the Coherent States

The basic definitions are as follows [13]: Let φ(x) be any normalized
function, denote it by |0> and define

where W(z) is the Weyl-operator:

W(z) = e~ '>*/W s *, z = (r, 5),

r and s vectors of IR".

Then the identity on ^2(Un) is H = JdΩ(z)|z><z|.
Consider an operator H on if 2(Rn) and suppose, for the moment, that it is given

as

H=$dΩ{z)H0{z)\zXz\. (A.1)

Then, if all w are in the form domain of H, define

H{w): - <w|H|w> = \dΩ{z)p(w - z)H0(z), (A.2)

where p(z) = |<0|z>| 2, and the Fourier transform of A.2 is

H(u) = p(u)H0(u). (A3)

This formula makes sense, if H0(z) is only polynomially increasing. Ho is then a
tempered distribution. When does the inversion of A.2,

H0(u) = H(u)/p(u)

make sense? If φ(x) is a Gaussian, then also p is a Gaussian, and H/p will be no
longer only polynomially increasing, for general H. But it is certainly so, if H is a
distribution with compact support. This is the case, by the Paley-Wiener theorem
[14], if H(w) has an extension to an entire analytic function of exponential type. Ho is
then a function of the same type. This is a sufficient and clearly not a necessary
condition, but it covers the cases, where H is a polynomial in p, x and several
exp O'/cpc), for instance.

Now consider H = p2 + V(x). A representation of p2 in the form

P

2 = $dQ(z)\z>K(sKz\ (A.4a)

exists, if φ is in the operator domain of p and is given by

K(s) = s2 + 2<φ\pφ)s + 2(φ\pφ)2-(pφ\pφ}. (A.4b)

Similarly, the operator identity

V(x)=$dΩ(z)\zyV0(rKz\ (A.5a)
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holds for

V(x)=jV0(r)\φ(x-r)\2dnr. (A.5b)

It is either difficult or impossible to find the representation in this form for usual V,
but for V bounded from below one can find bounds: Take an absolutely continuous
φ with compact support in the domain D, and define

W0(x)= MV(x-y\ (A.6a)
yεD

then

Sd(z)\z>W0(rKz\£V. (A.6b)

The following version of coherent states for bosons and fermions is due to W.
Thirring [15]: Set

a*(zd = \a*{x){W{Zι)φ){x)dnx, (A.7)

\z) = ϊ\a*{zd\Ω), (A.8)
i = 1

where |Ω) is the no particle state. Then

\z)B,F=y/N\PBtF\z1....zN>, (A.9)

where \z1...zN} is the unsymmetrized product of the \zt). We have then the
following representation of the identity in ΛΓ-boson or fermion space as the projector
PB or PF:

Appendix B. On Permanents

The permanent is defined as

peSf (N)i= ί

It admits an expansion quite similar to the one for determinants: Denote by M k ι the

(N — 1) x (N — 1) submatrix of A without the fe'th column and Γth row: C^-kdu = a&

i ΦK j Φ l The expansion formula is

N

X aklper°Akl (B.2)

for any /.

In considering upper bounds one may use as a first step that

per C^ per A, if c y = |θy|, (B.3)

and treat in the sequel matrices with positive elements.
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Theorem. Let A be an N x N matrix with 0 t== atj = ajt S au = 1 for all i, j . One has
the inequality

per AS Π U+*ij)
1 £ i < j £ N

Proof. Replace the Z'th row of A by the row (1,1,. . . , 1) and denote this matrix as
P^A). Because all atj are positive, per P^A) ^ per A holds. Now one proves

perP z (X)g Π (1+fly) ( B 4 )

by induction on the rank N:
a) For N = 1, A equals P/^l) = 1, and per 1 = 1.
b) Suppose (B.4) to hold for (JV — 1) x (JV — 1) matrices and use the expansion (B.2)
for the N x N matrix Pt{A):

perPι(A)= Σ fl«°(AW)w (B.5)
t = 1

Now, °(P,μ))/ I = °AU and, for /c φ I:

0 Akl is not a symmetric matrix, but °An is, and Pz(°XfcZ) differs from Pk(°An) only by
the interchange of two rows, an operation, which has no effect upon the permanent.
(This is immediate from the definition B.I) For Pk(°Au) B.4 applies:

i, j , ί < j,iψ I, j ψ I

Since the r.h.s. does not depend upon fc, and since

1 _ι_ V1 <f ΓT (Λ I \
kl "̂  Z-ί kl = 1 i \ kV">

this inequality together with (B.6) used in (B.5) gives (B.4). q.e.d.

Corollary. // A is a symmetric matrix with \aυ\ rg 1, then by (B.3):

p e r ^ l ^ Y\ (1 + |α o |), (B.7)

and, since 1 + x S=ex'

(B.8)

The following simpler proof of the weakened, but generally valid inequality (with
restricted validity first proven by Thirring)

(B.9)
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is due to A. Pίlug (private communication):

The second inequality arises as follows: The product of all (1 + | atj |) is equal to a sum
over all subsets M of the set of pairs {1 N} x {1... N}:

I*«l)= Σ Π K l
i, j Me{l...N}x{l...N)(i,j)eM

But the N! permutations of £f(N) define a special subclass of the 2N subsets M, of
the form {(i,

Appendix C. On the Sums of Squares

It is a classical result of number theory, that n φ 4α(8m + 7), n, a, m non-negative
integers, is a necessary and sufficient condition for n to be the sum of three non-
negative squares [16]. The maximum number of consecutive integers, which are not
representable by three squares, is therefore two: One of them has to be odd and is
therefore 8m + 7, the other must be 8(m + 1), since 8m + 6 is not divisible by four.
The simplest example is m = 1 3 , giving 13.8 + 7 and 14.8 = 42.7 as consecutive
numbers which are not the sum of three squares.

The above consideration solves the question of the biggest gap between
consecutive energy levels in a cube with Neumann boundary conditions. For the
Dirichlet boundary conditions one has to find the maximum number of consecutive
integers, which are not the sum of three strictly positive squares. If n is a sum of two
squares, n + 1 is a sum of three squares, so, the worst situation one can think of, is a
sequence n to n + 4 of the form

8m+ 7, 4α(8/c + 7), /2, I2 + 1,

none of them being a sum of three positive squares. It may be, that such a sequence
does not really occur, but we have the desired upper bound on the energy gap.
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