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The Boltzmann Equation with a Soft Potential

II. Nonlinear, Spatially-Periodic

Russel E. Caflisch*

Department of Mathematics, Stanford University, Stanford, CA 94305, USA

Abstract. The results of Part I are extended to include linear spatially periodic
problems-solutions of the initial value are shown to exist and decay like e~λtβ.
Then the full non-linear Boltzmann equation with a soft potential is solved for
initial data close to equilibrium. The non-linearity is treated as a perturbation
of the linear problem, and the equation is solved by iteration.

1. Introduction

The linear Boltzmann equation with a soft intermolecular potential was solved
globally in time in Part I [1], if the initial density is a spatially homogeneous
perturbation of a global Maxwellian. Moreover it was proven that this per-
turbation decays in if2 or sup norm like e~λtβ, with λ>0, 1 > β > 0 , if it is initially
bounded by a Maxwellian. We will refer to formulas or results from Part I by
preceeding their numbers with an " I " as in (11.7).

In this paper we find the same result even if the initial perturbation is spatially
dependent in the cube with periodic boundary conditions. In addition we can solve
the spatially periodic nonlinear problem globally in time if the initial perturbation
is small enough, and we find that the solution decays to the Maxwellian
equilibrium.

The linear, spatially-dependent Boltzmann equation is

f(t = 0) = f0ejr, (1.2)

where fΌ and f=f(t ,x,ξ) are periodic in x e T 3 = [0,2π] 3, ί^O, ξ e R 3 , and

^r=ίgr(x,ξ): f Jv>(ξ)0(x,ξ)<ίξdx = O for φ(ξ) = U , , or ξ2\. The requirement

that f^eJf just means that we have chosen the right Maxwellian equilibrium to
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perturb about, so that it has the total mass, momentum, and energy. Our first
result, Theorem 2.1, is that the solution of this problem decays like e~λtβ.

As in Part I we remove the null space of L = v + K by adding on a finite rank
operator. N(L) is spanned by the functions tpf(ξ) defined in (12.14). We define the
modified linear operator

(1.3)

(1.4)

P= Σ(Wi, )Ψi, (1.5)
ί = 0

where now the inner product is the ^ 2 (x ,ξ) inner product. Since φ. are
independent of x and P / o = 0, the linear problem (1.1), (1.2) is not changed if we
replace L by L. Since the nonlinearity vΓ of the Boltzmann equation is also
perpendicular to ψ., this replacement of L by L does not affect the nonlinear
problem either.

The relevant norms, which are defined in Sect. 2, are ££2 norms of / and its
spatial derivatives, then 5£2 or sup over ξ. The derivatives are introduced in order
to be able to use the Sobolev inequality when estimating the nonlinear terms. For
consistency they are also included in the linear theory of Sects. 2 and 3 where they
are not really needed. The estimates on K given in Part I all have analogues which
are presented in Sect. 2.

Just as in Part I the velocities are cut off by defining the characteristic function

and introducing

Bw = ξ~+v(ξ) + χwK, (1.7)

as an operator on J^ 2(ξ^w, xe T3). The only new twist in the spatially dependent
problem comes in the analysis of the semigroup e~tBw, given in Sect. 3. This
employs spectral perturbation theory [4] and an argument given by Ukai [5]. The
rest of the proof of Theorem 2.1 goes exactly as in Part I.

The nonlinear Boltzmann equation is

έέ (L8)

(1.9)

where / and f0 are periodic in x. If f0 is sufficiently small, this problem can be
solved for all time and the solution f(t) decays to 0, as stated in Theorem 4.1 in
Sect. 4. The estimates on Γ in Sect. 5 state that if / is small, vΓ(f, f) is even smaller.
So this problem is just a perturbation of the linear problem, which also keeps its
solution small. The solution is found by an iterative procedure described in Sect. 7,
after the iteration equation is analyzed in Sect. 6.
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References to previous work and more explanation of the Boltzmann equation
are found in Part I. I am very grateful to Harold Grad, who suggested this
problem, and to Percy Deift, George Papanicolaou, and Robert Turner for a
number of helpful discussions. This work was performed at the Courant Institute
and the Mathematics Research Center I am happy to acknowledge their support.

2. The Linear Equation

We will use an <£2 Sobolev norm over space alone, as well as norms over both x
and ξ, which are sup or ££2 norm over ξ of the Sobolev norm over space. If the
function is not spatially dependent these (x,ξ)-norms are exactly those used in
Part I and we will use the same notation.

Definition. Let / = /(x,ξ) be periodic in x. Define

s=l\τ3

) \ \ H Λ i x ) , (2.3)

(2.4)

(2.5)

Denote ^ = {/(x,ξ): | | / | | α < o o and / periodic in x}. As in Part i , α will always
refer to exponential decay and r to algebraic decay in ξ. If y ever appears in the
subscript of a norm it is in the algebraic decay part. The algebraic decay is used in
the following proofs, but not in the statements of the theorems. The Sobolev
inequality in Γ 3 states that

\\fβ\\H4(x)£c\\f\\HΛx)\\g\\HAM. (2.6)

The main result for the linear problem is the following:

Theorem 2.1. Let 0 < α < | , and let foejVnJ^a. Then there is a unique solution of
the linear Boltzmann equation (1.1) and (1.2) in J^a. It decays in time like

ae-»β, (2.7)

α e - ^ , (2.8)

II/WIL ^11/oil.- (2.9)
2 (c \β

In which β = - and λ = (l — 2ε)α1"/? -^ , for any ε>0. The constant c depends

onε.

The estimates on K are exactly as before. We first note that, since K is
independent of x,
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Using that inequality we easily show

Proposition 2.2.

, (2.12)

(2.13)

These estimates and Theorem 3.1 of the next section are used to prove
Theorem 2.1 just as in Part I. In the proof we solve two types of equations:

-g + Bwg = g i , on ξ<w, (2.14)

in which Bw = ξ - — h v + χwK, and

J J U + vfc-*,. (2.15)

We rewrite these as

\ (2.16)

\ (2.17)
0

Now take the H4(x) norm and use Theorem 3.1 to estimate

(2.18)

+ \e-«-^\\h1\\H4(s,ξ)ds. (2.19)
0

These are exactly like the equations treated in Sects. 9-12 of Part I.

3. Spectral Theory for the Cutoff Linear Operator

Consider the transport and collision operator

B = ξ~+v + K (3.1)

on «£?2(x, ξ). Recall that K is the modification of K defined in (1.4). We shall show
that, after restriction to a bounded set of velocities, this operator generates a
strictly contracting semi-group. Our main result is
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Theorem3.1. Consider the operator Bw = ξ — + v(ξ) + χwK on ^2{x,ξ:ξ<w}.
UX.

i) — Bw is maximally dissipative.
ii) Let 0<μ<l. If w is sufficiently large,

\\e-tB™\\^e-tμviwK (3.2)

The theorem is proved by looking at the Fourier transform of Bw. The
modification of K only affects the 0 Fourier variable, so that

, k + 0, (3.3)

(3.4)

where k a vector with integer components. Each Bwk is an operator on J£2(ξ<w)
and satisfies

The following results are analogous to Theorem 7.1 and Proposition 7.2 in Part I.
An important point is that the statements are independent of k.

Proposition 3.2. Let 0<μ< 1. For w sufficiently large, Bwk has spectrum whose real
part is bigger than μv(w), i.e.

σ(Bwk)C{λ:Reλ>μv(W)}. (3.6)

Moreover the sufficient size of w is independent of k.

Proposition 3.3. Let f be an eigenfunction of Bwk with eigenvalue λ such that
ReA<μv(w). Then f is rapidly decreasing in ξ, i.e.

ξ, (3.7)

in which the constants cm are independent of λ, w, /, k.

The following lemma will be used in the proof of Proposition 3.2.

Lemma 3.4. Let / e i ? 2 , θeR, and keIR3 with fc=l. Then

lim sup j 7 2 d ξ = 0 (3.8)
ε^O θ,k=l A

in which A = {ξ:\k'ξ + Θ\<ε}.

Proof of Proposition 3.3. Rewrite the eigen-equation as χwKf={ — (v — λ)
+ /k ξ}/ . Therefore \Kf(ξ)\^(l-μ)v(ξ)\f(ξ)\. Then proceed as in Proposi-
tion 17.2 using this inequality and the estimates (16.1) and (16.2).

Proof of Proposition 3.2. If k = 0, the proposition is exactly Theorem 17.1. So we
consider only k + O

a) First we show that the values λeσ(Bwk) with Reλ<μv(w) are necessarily
discrete eigenvalues with finite multiplicity. [In fact we could put here v(w) instead
of μv(w).] The proof is exactly as in [2] using the methods of [4].

The Fredholm set of (-zk ξ + v) is {λ :λ+ -ik ξ + v(ξ)}. Since χwK is
compact, then this is also the Fredholm set of Bw k. Therefore the set
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S = {λ : Re/l<v(w)} is contained in a connected component of the Fredholm set of
Bw k. This set S contains negative values of λ which are in the resolvent set of Bw k

because of (3.5), so that nul(J5w k — λ) = άQΪ(Bw k — λ) = 0. Since the nullity and
deficiency are constant in connected components of the Fredholm set, except at
isolated points, nul(Bw k — λ) = dQΪ(Bwk — λ) = 0 in S except at isolated points.
These points are isolated eigenvalues of finite multiplicity. Every other point of S is
in the resolvent set.

b) Now suppose the theorem is not true, so that there are sequences wn, λn, kn

with Reλneσ(BWn k J , λn<μv(wn) and k π Φθ. According to (a) each λn is an eigen-
value for Bwkn with eigenfunction fn, i.e.

BWn,kJn = λJn and | |/J = 1. (3.9)

Write λn = φn + ίθn. Then just as in the proof of Theorem 17.1, φn->0 and Kfn^>g,
after restricting to a subsequence, with the result that

lim( — v(ξ) + ikn ξ + iθn)fn = g. As before we can divide by the factor on the right

to obtain

/ = lim / „ = lim \ g. (3.10)

Denote the function inside the last limit in (3.10) as gn.

Next we show that limfcMΦ oo. Suppose to the contrary it was oo and restrict to
a subsequence with lim/cII= oo. Choose ε as in Lemma 3.4, such that

sup $f2dξ<ε, (3.11)
ρ,k=l A

in which 4̂ = {ξ: |k ξ + ρ|< ]/s}. Choose n large enough that — <ε and

| | / — gn\\2<ε. We will obtain a contradiction by integrating f2 over the two sets

4 , = {ξ:|k,, ξ + 0 J < l / U and Ac

n = JR3-A, Denote kπ = kn/fcn. Then

%}. Since \lγkn<γl,

(3.12)
An

In Ac

n,g
2<g2/kn and

f ^ J ί / f 2 J Ϊ I
J J ^ζ= J Qn dζ + ε

^ ε | | ^ | | 2 + ε. (3.13)

Adding (3.12) and (3.13) together results in

(3.14)

By choosing ε small enough we get a contradiction since | | / | | = 1, which shows that
lim/cM< oo.
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Similarly θn must stay bounded, and we get k π ^ k and θn-+θ after restricting to
a subsequence. Since kn is on the integral lattice, kn = k for n large enough and so
kΦO. Take the limit n->co in the eigen-equation (3.9) again and find that

iθf. (3.15)

Integrate this against / ; the real part is (v/ + K/,/) = 0. Since L = v + K is a
positive semi-definite self-adjoint operator, then feN(L\ which means that

/(ξ) = αo + α ξ + α 4 ξ 2 . (3.16)

Since (v + K)f = 0, then -(k ξ)f = θf, which implies that k = θ = O. But this is a
contradiction, since kφO. This concludes the proof of Proposition 3.2.

Proof of Theorem 3.1. i) Since Bw is densely defined on j£?2(x;ξ : ξ< w) and

5 (3.17)

then £ w is maximally dissipative.
ii) This proof is exactly that of Theorem 1.1 in [5], except that we have

removed the null space by changing the operator K to K. Denote Λw = ί,

^ w = χwK, and BW = AW + KW, operators on J^w = J^2{(x,ξ): ξ<w}. We

outline the proof in the following steps
a) Kw(λ — ΛJ'1 is compact on J£?2(ξ,x), for Reλ<μv(w).
b) σ(Bw)C{λ : ReA<μv(w)} for w sufficiently large.
From a), Kw is ^-compact so that σe(BJ = σe(Aw) = {λ:Reλ^v(w)} [4]. In

{ReA<v(w)}, y4w is Fredholm and so is Bw. Moreover if Re/l<0, then λ is in the
resolvent set ρ(Bw). Therefore {Reλ<v(w)}Cρ(Bw\ except for a discrete set of
points which are eigenvalues of Bw. But Proposition 3.2 shows that Bw has no
eigenvalues to the left of Rελ = μv(w) for w large enough.

c) limsup \\Kw(λ-AJ\\^0.
μ | R λ ( )

d) Denote Z{λ) = (λ — Aw)
 1{I — Kw(λ — Aw)

 x) 1Kw(λ — Aw) \ so that
{λ-Bw)-1={λ-Aw)-1+Z{λ\ Denote

β 2π - ^

If β = μv(w)> Zβ(t) converges absolutely in the weak topology and \\Zβ(t)\\ ^c where c
is independent of t and λ.

Choose β = μv{w). Since \\e~tA™\\ ^e~tv{w\ the result (ii) in Theorem 3.1 follows.

4. The Nonlinear Equation

Theorem4.1. Let 0 < α < ^ . There is a positive constant δ, such that if | | / 0 | | α

then the nonlinear Boltzmann equation (1.8) and (1.9) has a unique solution in
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which satisfies

ae-λt\ (4.1)

^ , (4.2)

II/WII. ^ c | | / 0 | | α (4.3)

in which β = and λ = (1 — 2ε) - -̂ - for any ε > 0. 77ze constant c depends

on ε.

This /? and λ are chosen just as in the linear problem, but they correspond to γ
Oί

and - rather than α.

5. Estimates on Γ

The nonlinearity Γ(f,g) was analyzed by Grad in the Appendix of [3]. We
decompose Γ as (this is slightly different from [3])

(5.1)

(5.2)

(5.3)

dΩ = B(θ,V)dθdξl9 (5.4)

in which / i = / ( ξ Ί ) as given by (2.4) in Part i , etc. The following estimates are
analogous to those proved by Grad.

Proposition 5.1.

| |vΓ 1(/,^)| |α 5^c(| |/ | |α > r_ y | |^ | | + 11/11 | |0 | |β i Γ_ y), (5.5)

| |vΓ 2(/, f lf) | |β i r^c| |/ | |β i Γ. J k_.| | f f | |β i Γ_ 1_ y. (5.6)

Proof, a) By the symmetry in Γx it suffices to consider vΓ11(fg)= \\ fg^\/2 JΩ.
First take the H^(x) norm and use the Sobolev inequality (2.6). Since the integral
does not involve ξ9 we can factor the / term out to get

l l ^ i J \\gJat(x)ωi'2B(θ, V)dθd%1. (5.7)

Replace the first factor using

ξ2\\fL,r. (5.8)

Then use the definition (11.6) of ω and the bound (12.21) on B and apply the
Schwartz inequality to the integral over ξx to obtain

j
1R3

(5.9)
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C o m b i n i n g (5.8) a n d (5.9) r e s u l t s i n

^ I I , (5 .10)

from which (5.5) follows.
b) Again we only estimate

" 2 J J .
R3 wlv

β(v,w)
• =—~—αwαv, (5.11)

ir

in which w and v are defined by (12.10) and (12.11). We continue exactly as Grad
did. Resolve ξ into components ξ x and ξ 2 parallel and perpendicular to v
respectively, so that

and, using also the Sobolev inequality,

^Hί + ξJ-'il + ξJ-'e-^WftJgW^. (5.13)

After applying the H4(x) norm to vΓ21 we can use (5.13) in estimating (5.11) to find

j J ( ξ i r ( ξ 2 r ( ^ ) ( % 2 ) Γ
R3 wlv V

(5.14)

Denote the integral on the right by I. According to Proposition 5.2 from Part I,

- j ωίl2(w + ξ2)Q(v,w)dy^c(l + ξ2 + v)-{y+1\ (5.15)
V wlv

so t h a t

( l ^ ) - 1 ( l ξ ) " 1 ( l ^ ) " ( y + 1 ) 1 / 2 ( + ξ ) r f^ J ( ^ 1 ) ( ξ 2 ) ( ^2 ) ( v + ξ 1 ) r f v . (5 .16)
R 3 V

It is easy to see that

( H - ξ 2 + i;)- ( y + 1 )ω 1 / 4(v + ξ 1 ) ^ c ( l + ξ ) - ( ^ + 1 ) . (5.17)

Combine this with the estimate
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which comes (almost exactly) from the Appendix of [3], to obtain

(5.19)

Using this in (5.14), we find

ξr^+1)e-^\\f\\aJg\\^. (5.20)

The result (5.6) follows after replacing r with r + y + 1, dividing, and taking sup
over ξ.

6. The Inhomogeneous Iteration Equation

Consider the equation

~f+ξ~f+Lf=vΓ(hvh2), (6.1)

/ ( ί = 0 ) = / o G ^ n ^ (6.2)

which is an inhomogeneous version of the iteration equations that will be solved in
the next section. Pick λ and β as in Theorem 4.1, i.e. corresponding to α/2. For
fo,h1,h2 we require

ll/olUV (6.3)

fc^lL, eλtβ\\h.(t)l e»β\\hJLt)\U^h i = l , 2 , (6.4)

in which the sup is taken over time as well as over the three components.

Proposition 6.1. The solution f of (6.1) and (6.2) satisfies

) . (6.5)

We will employ two useful inequalities. The first is a special case of an
interpolation theorem for the α, r-norms.

Lemma 6.2.

II/II^ 2. (6.6)

Proof. For any ξo>O,

ξ<ξo ξ>ξo

ύ21/ll/L/ll/L (6-7)

by choosing <?l2ξi=]/\\f\U\\f\\x.
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Lemma 6.3. For 0 < β < 1,

]exV{- λ{t-s)β - λsβ} ds^cil + ty1 e~λt, (6.8)
o

where c depends on β.

Proof. Just use the estimate (t-s)β-(tβ-sβ)>c{{t/2)2-(s-t/2)2} in the integral.

Proof of Proposition 6.1. a) First we infer from Lemma 6.2 and (6.4) that

IWOIU^V 1 ' 2*'. (6.9)

According to Proposition 6.1 and (6.4),

*', (6.10)

2 ? (6.11)

λ*β. (6.12)

Note that the --norm decays, while the α-norm does not. This decay is the reason

for using the α/2 and will be needed in the next estimate.
b) Using the estimates (2.7) and (2.8) for the linear problem and then (6.12) and

Lemma 6.3, we find that (recall that λ corresponds to α/2)

o

^bo + b^). (6.13)

c) To estimate 1/(011, we go back and redo the linear estimate. As in (2.19) we
estimate

|vΓ|| f l4(x)(5,ξ))ds. (6.14)
0

Using the argument in Sect. 12 of Part I, we find that

for any ξ0. Choose ξ0 large enough and use (6.13) to obtain

0 ξ
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The last term in (6.14) is split into two parts using Γ = Γί +Γ 2 [cf. (5.1)]. The
reason for going back to the linear equation was to estimate the term containing
Γ2:

Sy
1->t2b1b2, (6.17)

where we used Lemma 112.1 and (6.11) in the last step. Since this is integrable over
time.

} sup{^2

e-( t-^ω||vΓ2 | | f l 4 ( j e )(S )ξ)}ds^C&1ft2. (6.18)
0 ξ

The term containing Γλ is easily estimated

l t , (6.19)
0

because of (6.10).
The three terms estimated in (6.16), (6.18), and (6.19) plus the initial term in

(6.14) are just what appear on the right side of (6.14) after multiplying by eaξ2 and
taking sup over ξ. The result is that

||/(0llα^(&o + W + i sup ||/(s)||α, (6.20)

from which it follows that

wmWa^Φo+hbi)' (6 2 1 )

This concludes the proof of the Proposition.

7. Proof of Theorem 4.1

The nonlinear Boltzmann equation (1.8) and (1.9) is solved by an iteration starting
with

Mt) = e-^f0 (7.1)

and proceeding by

γtfn+i+ξ -^fn+i+Lfn+1=vΓ(fn,fn), /n + 1(ί = 0) = / 0 . (7.2)

First we show the boundedness and decay of fn+ v Denote ||/ollα = ̂ o a n d suppose
that

max{\\fn\\a,e
λtβ\\fnle

λtβ\\fn\\JSb. (7.3)
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We need in addition that b ^ b0 in order to get the induction started. According to
Proposition (6.1), the estimate (7.3) will also be true for fn+1 if b^>c(bo + b2). This
can be fulfilled as long as b0 is small enough, and we can even make b as small as
desired.

Next we estimate the difference hn+1==fn+ί — fn. For hn+1 we have the
equation

Λ = vΓ{hn,/„ + /„_! ) , Λπ+1(ί = O) = O. (7.4)

Denote PI = sup{|WOL^MII,^'Wt)IL} τ h e n IM^2fe from (7.3), and
ί

using Proposition 6.1 again, p π + 1 ( ί) | | | :g2cί?pj . After choosing b<—-, we find

00

that Σ p n + 1 ( ί ) i < 0 0 > a n d it follows that

/„-/ (7-5)

in the norm ||| |||. Moreover / solves Eqs. (1.8) and (1.9). This concludes the proof of
Theorem 4.1.
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