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The Boltzmann Equation with a Soft Potential
I. Linear, Spatially-Homogeneous

Russel E. Caflisch*
Department of Mathematics, Stanford University, Stanford, CA 94305, USA

Abstract. The initial value problem for the linearized spatially-homogeneous
0 . . .
Boltzmann equation has the form a—]; + Lf=0 with f(&, t=0) given. The linear

operator L operates only on the ¢ variable and is non-negative, but, for the soft
potentials considered here, its continuous spectrum extends to the origin. Thus
one cannot expect exponential decay for f, but in this paper it is shown that f
decays like e~ *” with § < 1. This result will be used in Part IT to show existence
of solutions of the initial value problem for the full nonlinear, spatially
dependent problem for initial data that is close to equilibrium.

1. Introduction

The initial value problem for the Boltzmann equation of kinetic theory is

oF oF

a +§& +Q(F,F)=0, F(t=0)=F, L.y
in which

F=F(Etx), (1.2)

teR*, EcR3, xelR3. (1.3)

Throughout this paper a boldface letter will represent a vector in IR3, while the
non-boldface letter signifies its magnitude. The quadratically nonlinear operator
Q vanishes if F is a Maxwellian:
=@ - |&-ul/2T
Fu= gy = (14)
where ¢,u, T can be any functions of x and ¢. If they are constants, F,, is an

equilibrium solution of (1.1). We will study solutions of (1.1) which are close to
such an equilibrium and which are independent of space.
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Write F in the form

FE, )=+ [/ w() f& 1), (1.5)
in which
)= e (L6)

Note that we have removed the g,u, and T by scaling and translating. The
equation for f'is

of

5 TN =0, (1.7)
with

Lf=20""2Q(w,0'?f), (1.8)

vI(f,f)=0 2 Q' fo'?f). (1.9)
In this paper we consider only the linearized equation with given initial data, i.e.

of

hC = 1.1

S Lf=0, (110)

f&,0)=£,(§)e N(L)*, (1.11)

where N(L)* is the orthogonal complement of the null space of L. This last
condition (1.11) on f, means that we have chosen the right Maxwellian to perturb
around; i.e. all the mass, momentum and energy is in the Maxwellian distribution
.

The linear operator L was analyzed extensively by Grad [5], and we take our
notation as well as the general outline of our procedure from there. Grad showed
that

(L) ©) =) (&) +(KS)(E), (1.12)

where K is a compact integral operator and v(¢) is a function which is essentially of
the form

v =(1+¢). (1.13)
The operator L is self-adjoint and non-negative, i.e.
(L£.))=z0, (1.14)

and has 0 as an eigenvalue of multiplicity 5. Since a compact perturbation does not
disturb the continuous spectrum of a self-adjoint operator [12], the decom-
position (1.12) shows that

Ocond L)={A : 2=1(&) for some &} . (1.15)

If the force law between two particles is a power of their distance apart, i.e.

F(r)y=r~°, (1.16)
then the exponent vy is found as

=573 (1.17)

s—1°
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The mathematical theory is sensitive to the sign of y. A hard potential is a
collision law for which y =0 or s = 5. The values of v go from 1 to oo and so o,,(L)
does likewise. All that is left in o(L) is discrete eigenvalues, and there is a lowest
non-zero eigenvalue A,, which is positive. This shows that the part of f in the range
of L decays like e”**". Using this decay various authors [6, 11, 13] have shown
existence for all time for the linear and nonlinear problems with spatial homo-
geneity or inhomogeneity, if the initial data is close to Maxwellian, i.e. if f,(§, x) is
small. For the nonlinear spatially homogeneous problem, Arkeryd [1] has shown
the global existence for a broad class of initial data.

On the other hand for a soft potential, with 3 <s<5, the function v has the
expression

vE)=01+¢7, (1.18)
with
v=—jj >0. (1.19)

(We have switched the sign of y to emphasis the negativity of the exponent.) Now
the values of v range from 0 to 1, and so the spectrum of L goes all the way down to
0. Thus we cannot expect exponential decay in (1.10), and none of the existence
results mentioned above are applicable. Nonetheless we show in this paper that

2
the part of f in the range of L does decay at the rate e~ *’, with f= Py and A>0.

This is our main result and is stated precisely in Sect. 3. The reason for this decay is
that the small values of A in (L) correspond to small values of v(¢) and to large
velocities ¢. But we will assume that f,, looks approximately like e~** i.e. that it is
comparable to a Maxwellian, so that these large velocities are relatively
unimportant.

The exact form of L and a modification to remove its null space are presented
in Sect. 2. After the main result is stated in Sect. 3, an outline of the proofis given in
Sect. 4. Sections 5 and 6 are devoted to estimates on the compact operator K. Then
the spectrum of L restricted to Z2(& : & <w) is analyzed in Sect. 7. In Sect. 8 we pick
the constants A,, f, w, 1 which appear in previous sections. Finally in Sect.9 the
iteration equation is solved and in Sects. 10 and 11 it is shown that the iteration
procedure converges for all time and that the decay is maintained for the %2
norm. In Sect. 12 we find that the a-norm is preserved and the sup norm decays.

In Part 1T we will show the global existence of solutions of the spatially periodic
initial value problem for the linear spatially dependent equation and for the full
nonlinear Eq. (1.1) with small initial data.

Inverse power repulsive forces are often used as first approximations to more
realistic but complicated forces [7]. The power s is usually chosen to give
agreement with the coefficient of viscosity or heat flow or some other measurable
quantity of the gas. For most gases hard forces, with s between 9 and 15, are most
realistic while for a few gases soft forces, with s below but close to 5, are relevant
[2]. Many authors [10,2,4] have also used the Maxwellian force s=35 because of
its computational simplicity. Of course there is interest in the very soft Coulomb
force with s=2, which our treatment of 3 <s<5 does not include.
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Short-time existence theorems for the full nonlinear, spatially dependent
problem (1.1) were proved by Glikson [3], Kaniel and Shinbrot [8], and Lanford
[9]. Their work included hard as well as soft potentials. Glikson solved the
equation by direct iteration. Kaniel and Shinbrot used decreasing and increasing
sequences of functions which squeezed down on the solution. Both allow a very
general class of initial data. Our results are more restrictive since we consider only
small perturbations from equilibrium, but are stronger since we obtain existence
and decay for all time.

Throughout the paper there are estimates with constant coefficients. It is not
necessary to keep careful account of these constants, and so we will use ¢ as a
generic constant replacing any other constant (such as c?) by c.

I am very grateful to Harold Grad, who suggested this problem and found the
improved estimates for soft potentials which are basic to its solution. He also
pointed out the decay of the eigenfunctions which is crucial in the analysis of ¢(L)
in Sect. 7. In addition I had a number of helpful and stimulating discussions with
Percy Deift and George Papanicolaou. This work was performed at the Courant
Institute and at the Mathematics Research Center; I am happy to acknowledge
their support.

2. The Linearized Collision Operator

The Boltzmann collision operator has the form

Q(F,F) (&)= [ (F'Fy — FF)B(6,V)d0dedg, , 2.1)
where

V=g, —-§, 2.2)

F'=FE) F,=FEg) F,=FGE,), (23)

g=E+a(a V), 2

& =§1—a(a-V),

and a is the unit vector in the direction of the apse line. The angle 0 range from 0 to
2 with n— 20 being the angle of deflection in center of mass coordinates, and ¢ is
the angular coordinate in the impact parameter plane.

Grad [5] has found exact and convenient forms for the function v and the
compact operator K in (1.12). These are

v(&)=2n [ B(6, v)oo(y)dOdn, (2.5)
Kf(&)= [ k(& mn)f()dn, (2.6)
=—k, +k,, @7

k(&) =2nw'*(&)w'*(n) | B(O,v)do, (2.8)

2 1
k2(€5 “)= W v—zexp[_%UZ —%Cf]
[ expl — 4w+, 210, w)dw, 2.9)
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in which
v=n—&=a(a-V) v=Vcosl, (2.10)
w=V—ag(aV) w="Vsinf, (2.11)
g +8,=0=3E+m), (2.12)

with §, parallel to v and {, perpendicular to v. Note that w is perpendicular to v
and the integral in (2.9) is over that 2-dimensional plane with v held constant. We
define

o(v,w) [B6,V)+B(5—0,V)] (2.13)

~ 2Jsin0)

and w is defined in (1.6).
We modify L to eliminate its null space, which is spanned by the five functions

Wo> W1, - P, defined by
wo(§)=w'?(¢)
p@)=Cw'(&)  i=1,23 (2.14)
Wa(§)=L0'(¢).

Replace L by L with

4
Lf=Lf+ } wv,f). (2.15)
i=0
This amounts to replacing k, by k, where
4
ky=ky— 3, wil&win). (2.16)
i=0
With this modification, L is positive, i.e.
(Ef.1)>0. 2.17)
Furthermore the problem
of -
Y - 2.18
a +Lf=0, (2.18)
F(t=0)=f,e N(L)* (2.19)

is equivalent to the problem (1.10) and (1.11). From now on we will drop the bar
and L and k, will mean the modification in (2.15) and (2.16). The reason for the
modification is that, although it does not change the problem, it does affect the
proof. We will be performing a velocity cutoff, multiplying L by y,, defined in (4.8)
and applying x,L to functions y,f But N(L)* is not invariant under this
multiplication. To get rid of this nuisance we have removed the null space by
modifying L.
We study only soft potentials, i.e. v must satisfy

ol +¢)7=ud)=c, (14977, (2.20)
where ¢, ¢; and 0 <y <1 are positive constants.
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In addition we assume an angular cutoff to the collision process, which means
that
B(6,V)<cV ™ ?|sinf cos¥). (2.21)

In other words B must approach zero linearly at =0 and =%, and it, as well as
the total collisional cross section v, must decay algebraically for large ¥ and have
restricted growth for small V. The angular cutoff assumption was first suggested by
Grad [5] and used in many subsequent works (e.g. [1,3, 6, 8, 11, 13]).

The formulas above are more explicit if the intermolecular force is an inverse
power, & =4 "/r’, with 3<s<S5. Then

B(0,V)=V""p(0), (2.22)

y= :_Lf (2.23)
Furthermore

W(&)=Bo fIn—&~" exp(—3n*)dn, (2.24)

Bo=(2m)~ 112 nf B(6)do, (2.25)

which satisfies (2.20). The angular cut-off assumption (2.21) is a restriction on S(6).

3. Main Result

Before stating the main theorem we first define a few useful norms. The notation is
not confusing, although it is not entirely consistent.

Definition.
If1l= ]g;f(é)zd&-
1 Nor= sup (148 e @)l

L= 1 Mo -
(AP VAPYS

The subscript o will always signify exponential decay and r algebraic decay. If y
ever appears in a subscript it is in the algebraic part. The algebraic decay is used in
the proofs but not in the results.

The following theorem establishes existence, uniqueness, and decay for the
spatially-homogeneous linearized Boltzman equation with a soft cut-off potential.

Theorem 3.1. Let 0<a <. Let fye N(L)* with | f,|| <oo. Then there is a unique
solution of (1.10) and (1.11). Its decay in time is given by

IO el foll e, (3.1)
1f @) Zcll foll,e™**, (3.2)
/@l =cll folly (3.3)
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in which
2
I
a=(1 -2e)a1—ﬂ<%°) : (3.5)

for any £>0. The constants ¢ depend on .

Remarks. 1) The constant ff comes from the following simpler problem which can
be solved exactly. Let

%f(t,§)+g—Vf(z,§)=o, for ¢>1, (3.6)

£(0,8) =22, (3.7)
Then

ft.&)=e "7, (3.8)

/(D) =ce™ ", (3.9

in which f is given by (3.4).

2) Notice that in both (3.1) and (3.2), the norm on the right is different from
that on the left. This will cause complications later (in Part II) when we solve the
nonlinear problem for small initial data, but it seems to be necessary.

3) There is a simple existence and uniqueness theorem which does not
guarantee decay:

Theorem 3.2. The Egs. (1.10) and (1.11) with f,e £*(&) has a unique solution f(t,)
in L&), and it satisfies

IF@I eI foll, (3.10)
where x is a bound on L, i.e.
L] =x. (3.11)

This simple result proves the uniqueness and existence in Theorem 3.1. The
real problem is to obtain the decay, which will be needed for subsequent work on
the nonlinear problem.

4. Outline of the Proof of Theorem 3.1

First we give a very rough indication of the proof. Split the velocity space into two
parts A and A with

A={8 C<w}
A={g ¢>w}.

In A4 the solution f of the Boltzmann equation is of size e"®’. Choose w so that
2_ 9B ;
oaw?*=At’, ie.

W= ‘ﬁzm. 42)
o

(4.1)
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In A we consider the operator L=y ,L=v+y,K defined on #*(4), where y, is
the characteristic function of 4. Since rgn;l V(&) =v(w)zc, w7, the continuous

spectrum of L, has the lower bound v(w). The crucial fact, stated in Theorem 7.1, is
that also there are no eigenvalues below uv(w) for any 1> u>0. Thus (we omit the
u in this rough statement)

—v/2
[eLD|| e " " =exp {— Co (g) t“”’/z} 4.3)

|

and
p) —y/2t

§exp{—c0(&) fS“”’/ZdS}

t
ej L(S)dS

SR (4.4)

= —_ — -7

e"p{ ‘0 (oc) 9B }

Now to get decay like e~ *’ inside 4, we ask that

P EA RN SR (4.5)
T 0y 1—7B/2 ’ )
and are led to
2
= m (4.6)
s—1(Co /

A=o F s 4.7)

which is approximately the choice of constants in Theorem 3.1.
The actual proof requires a little more care. We make the splitting velocity w
constant in the interval [T, T+ 1]. Define the characteristic functions

1 Eed
w@={) o5
_ 4.8)
Xw™ 1- Xw -
The Boltzmann equation (1.10) can be rewritten as
N+ xLaf=—xKif, (4.9)
G +vif=—xK(f+71f). (4.10)

Solve these equations in the time period [T, T+ 1] using the following iterative
scheme

(s et 1Lty s 1= — xK¥fs (4.11)
(s VIl 1 = — KO+ 110 - (4.12)

We show in Sect.9 that f,, decays if f, is decaying, and in Sect. 10 that f,—f,
which solves (1.10) and (1.11) and has the same decay rate. But in each interval we
pick up a factor of (14 ¢ T~ 1/3). This results in a small loss in the coefficient in the
exponential decay, as shown in Sect. 11.

The above argument provides the decay for || f{. We show the decay of | f] .
and the preservation of || /[, in Sect. 12.
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5. Estimates on the Integral Kernels

The integral operator K is better behaved for a soft potential than for a hard
potential. Grad [5] briefly pointed this out, by noting that his estimate (60) could
be improved if the potential was soft. The following estimates on the kernel k are
the main results of this section.

Proposition 5.1. For any 0<e<1, and any EeR® and neR3,

KM Se 1+ E+n) 0" Vexp{~1-8) (o + 30D}, 6.1
[ kEndn<Sc(1+8)70"2, (5.2)
[ e dnc(1+8~ 272, (5.3)

For a soft potential the kernel k is Hilbert-Schmidt, since the right hand side of (5.3)
is integrable in &,

Note. In (5.1) the constant ¢ may depend on ¢. But this does not matter since we

only use several choices of e. The vectors v and { are defined by (2.10) and (2.12).

These estimates are valid for —1 <y <1, i.e. for hard as well as soft potentials.
These estimates will be proved using the next two propositions.

Propositions 5.2. For any ve R?, {,eR® and weR®, we have

O(v,w) S co(v® + wz)—y_;i, (5.4)
3 JeXP(— 4G O mdw (1 L, +0) 0, 5.5)

in which Q={weR3:w.Llv}.
The inequality (5.5) is an improved version of Grad’s estimate (60) in [5].

Proposition 5.3. For any 9> —3 and any a>0, b>0, there is a constant ¢
(depending on g, a, b) so that

[ veexp{—av’— b3 dn<c(l+&) ! (5.6)
IR3

for any E. The vectors §, and v are defined as in (2.10) and (2.12).
These propositions are proved in reverse order.

Proof of Proposition 5.3. Denote the integral by I and change its variable of
integration to v=n—_&. Write §-v=x¢v and change to polar coordinates around &,
so that dv=v?dvdxdg. We can rewrite {, as
2¢-v+v%)?
{3 =i% =4(2xE+v)?. (5.7)
Since the integrand is independent of ¢, the integral in (5.6) is

© 1
I=2n [ v 2e " |  PU4@xE*02dx . (5.8)
0 1
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The inner integral is estimated by

1 b1/42xE ) 1 2¢+v
e” XA g = e MM gy < 5.9
—j1 25—2§§+v T 1+& )
Therefore
I<2n g vQ”e_“"zi—j_—édv
c
= 1+ (5.10)

Proof of Proposition 5.2. a) According to the angular cutoff hypothesis (2.21) and
the definition (2.13), (2.10), and (2.11),

Qv,w)=c|cosO| V"
Sc(1+tH) V2 +w?) 2, (5.11)

where 7 =tanf=w/v. Therefore

%Qgc(vz+w2)’(“”/2. (5.12)
as in (5.4).
b) Using the bound (5.12), we estimate
1 _ytt
o JERP{— 30V L 00 Wdw = [ exp{ = 5w+ L)) (2w 2 dw
_rt1
Sfe 224 (w—0C,) 2 dw. (5.13)
Q2

Denote this integral by I, and split it into two parts: I, with w>1{,, and I,, with
w<3(,. Estimate these two separately. First

1t
L= [ e '™ +w—(,)?% 2 aw
w>1/2¢
Sc(v+{,) 0. (5.14)
In the domain {w<%3{,} we have
v+ (wW—E,)? >0+ 20, (5.15)
So the integral I, is bounded by
_yt1
L= [ e/ +w=()) 2 dw
w<1/20;
_rt1
Scwr+ i) 2. (5.16)

Furthermore since y<1, the integrand in I is integrable even for v={,=0.
Combining this with (5.14) and (5.16), it follows that

I<c(14v+¢,) 0%, (5.17)
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Proof of Proposition 5.1. First we prove (5.1) for k, and k, separately [recall that
k, has been modified as in (2.16)].
a) According to (2.16), (2.8), and (2.21), we know that

k(& m)=e Y4 VAT On [ B(0,v)d0+1+& -+ %07}, (5.18)
in which
B(0,v) <v ™~ Y|cosfsind)|. (5.19)

Therefore (making very crude estimates)

kl(é’ n)écv”e‘ 1/4(1—¢/2)(&2+n?)
Scev W (L4E4y) 0 Ve AU -0 @)

Scv T 1+E+n) O Vexp{—(1—¢) v+ 30D}, (5.20)

since (& +n?) = (Fv*+503).
b) According to (2.9), we know that

2 1
k,(&m)= W FCXP{ —g0® =31} fexp{ — 3w+ 17Oy, wydw. (5.21)
Proposition 5.2 provides an estimate for the integral on the right, so that

1
kZ(é’n)éc;eXp{‘évz—%Cf}(1+v+§2)‘(v+1)

Se (140404070 Dexpl—(1—0)(bo? 3D} (522)

Recall that v=m—&| and {=3|&+1y|, and thus

T+v+{,+2cl+E47). (5.23)
Finally
1
koG m)=c (1 +&+n) T Vexp{~(1—¢)(Gv* — (D)} (5.24)

¢) Now that (5.1) has been established the remaining estimates are easy. We
will prove (5.2); the proof of (5.3) is similar. We set ¢ =% and integrate (5.1) with the
result that

[ kEmdn=C [ v (14+E+n) "0 Y exp{—{sv* — 13} dn
R3 R3
S+ [ o7 texp{ —Fv2— 13} dy
]R3

Sc(1+6)~0+2) (5.25)

using Proposition 5.3.
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6. Estimates on K

In this section we present a number of estimates on the compact integral operator
K. These show that the application of K to f results in extra algebraic decay in &.
These estimates are valid for hard, as well as soft, potentials.

Proposition 6.1. For any 0<a <7} and r 20,

IKSllo,y+32=clfIls (6.1)
IKS sy 2 =€l f Nl (6.2)
IKAI= el Sl (6.3)

In the sequel we also need estimates on K with a cutoff. Define the
characteristic functions y,, and ¥, as in (4.8). The product ¥, K has a simple
estimate.

Proposition 6.2. For any 0<a <% and any w>0,

17K o S Nl 5+ 3/2§C€aw2”f”- (6.4)

Before proving these we state an elementary lemma.

Lemma 6.3.

vV +403-282420%>0, (6.5)
for all & and m with v and §,, as in (2.10) and (2.12). For any w>0,

V2 +40324+2w? -2 >0 (6.6)
if E>w>n.

Proof of Proposition 6.1. a) First we prove (6.1). Using the Schwartz inequality
and (5.3), we find that

IKfEIZ IS | k(& n)?dn'?
el £l L+, 67
Then

IKS Mo,y +32=cllf1l- (6.8)
b) Next we prove (6.2). From the estimate (5.1), we get
IKf(f)lécni %(1 +&+n) """ Vexp{—(1—¢) Gv> + 3D} S ) dn
Sce™ | fll,, (1+&~0*
| yexp(— (1= (0 + 5D+ —an}-(1+0) ",

Sce 1+ V| 1,

1
- 5(1+f7)"eXp{—9(v2+4Cf)}dn, (6.9)

R3






