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The Ground State Energy per Particle
for Infinite Particle Quantum Systems*

D. Isaacson

Rutgers University, New Brunswick, New Jersey, USA

Abstract. We give a simple proof that the ground state energy per particle for
several interacting particle systems is monotone and bounded as the number of
particles increases. Some of the systems for which the proof holds are
anharmonic oscillator approximations to |φ|* quantum fields, many body
Schrodinger operators with nearest and next to nearest neighbor couplings,
and systems whose energy is given by operators which are not restricted to
being differential operators.

It is well known that if we pinch a vibrating system of particles, or clamp a
vibrating membrane the fundamental frequencies increase. Similarly if we tear a
vibrating membrane its fundamental frequency decreases. Some of the ma-
thematical consequences of these observations, in classical physics, are that
imposing Dirichlet or Neumann boundary conditions on — A, (or finite difference
approximations to —A) along a curve in the interior of some bounded region,
raises or lowers its eigenvalues [1].

Some of the mathematical consequences of these observations in quantum
physics are described in this paper. We show in particular that the ground state
energy per particle, for the sequence of coupled anharmonic oscillator Schrodinger
operators with Dirichlet boundary conditions used in the "doubling algorithm" in
[2] to numerically approximate the φ* quantum field theory, is monotone
decreasing.

We next show that the ground state energy per particle, for the sequence of
coupled anharmonic oscillator Schrodinger operators with Neumann Boundary
conditions used in [2] to approximate the φ\ theory, is monotone increasing.

We also show that the energy per particle is bounded from above and below in
both of the preceding cases and hence it converges to a limit as the number of
particles becomes infinite.
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We remark that our method of proof works for a larger class of coupled
systems which includes spherically symmetric anharmonic oscillator approxi-
mations to |φ|£ quantum field theories. The method of proof also works for
couplings between the oscillators which are not "nearest neighbors". In fact, as is
easily seen, the proof will work for a much larger class of interacting systems where
the energy operator for each individual particle need not even be a differential
operator.

We illustrate the proof in the simplest case, the rc-oscillator approximation
(with Dirichlet boundary conditions) to the φ* quantum field theory [2]. Let HN

denote the Λf-oscillator Schrodinger operator

j=ι j = i

where for α, b, c, and d real numbers with α>0

The operators HN have a complete orthonormal set of eigenfunctions

&* = ΩW(ql9q2,...9qN) (3)

whose eigenvalues we denote by Ej(N)9 where

.. (4)

Theorem I. // E0(N) denotes the lowest eigenvalue of the N-oscillator "Dirichlet"
operator (1) then,

(i) p(ή) = E0(2n)/2n, is monotone decreasing as n increases.
(ii) p(n) is bounded above and below for all n.

(iii) The limit as n-^cc of p(ή) exists.

The proof of (i) would be trivial if the system was not interacting, i.e. if the
"coupling" term Σq^qj+^ was not present in (1) because then E0(JV) = JVE0(1).

In the interacting or coupled case we use a variational calculation to prove
monotonicity by showing that "pinching the system in the middle" raises its
energy. We have that

2NΩ>, (5)

where we take

Observe that H2N may be written as

H2N = H^ + Hζ — qNqN+l9 (7)

where

J = l
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and
2N 21V- 1

H$= Σ AΓ Σ wJ+1. (9)
j=N+l j = N+l

Thus from (5) and (6)

E0(2N)£2E0(N)-QNQN+19 (10)

where

= Ω W . . . Ω < » . . .

We now use the facts that E(Q} is non-degenerate, and HN commutes with the
unitary map R given by

Rψ(qί...qN) = ψ(qN. q ί ) (12)

to conclude that QN = QN+ί.
Therefore

E0(2N) ^ 2E0(N) -Q2^ 2E0(N) . (13)

This inequality illustrates the fact that the "pinched" system [whose ground
state energy is 2E0(N)~] has higher energy than the original system. It follows from
(13) that

ίl4)

2N = N l '

and therefore the function p(N) = E0(2N)/2N is monotone decreasing as N increases.
We remark that the proof just given would hold if the q. were replaced by

vectors

Hj = (qj,qj,...,<ϊj) and

d2 m

-τ-^ replaced by Laplacians V

(the HN

9s would then be approximations to the Iφβ theory). It is also clear that the
proof would work if we took Aj= — d2/dq2 + V(q^ for a large class of functions V.
In fact the Aj need not even be differential operators for the above proof to work.

We now prove that p(n) is a bounded function of n by showing that E0(N)/N is
bounded. As quadratic forms we have that

=^*-*Λ+1*& (15)

and hence

(16)
j=2
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which implies that

ΣAj-q^H^ΣAj + qj. (17)
7=1 7=1

If we denote the lowest eigenvalues of Aj±q* by Ej (1) then we have that

l) (18)

from which it follows that

(19)

proving the boundedness of p(n). Part (iii) follows from (i) and (ii).
If instead of the "Dirichlet operators" we had used "Neumann operators" [2]

ff-i (A -n2\ IA -a2\ N~1

κ»* Σ ΛJ+ ̂  + ̂  - Σ «Λ+1 - (20)
j=2 \ Z / \ Z / j=l

We have that

where

7= (22)

2N-1 / j —/72 \ / j _ 2 \ 2JV-1 v '

jί= Σ ^+P+1

 2

g ί v + 1

\ 2 /

Hence as quadratic forms

(23)

which implies that the lowest eigenvalue E^N) of K2N is larger than the lowest
eigenvalue 2E^(N} of the system "torn in the middle". Thus

Eξ(2N) > EK

0(N)

2N = N

which implies that pκ(ή) == El(2n)/2n is an increasing function of n. The fact that
pκ(n) is bounded is proved as in the "Dirichlet" case. We have therefore proven

Theorem II. // E^(N) denotes the lowest eigenvalue of the N-oscillator Neumann
operator KN (20) then

(i) pκ(n) = E0(2n)/2n is monotone increasing as n increases.
(ii) pκ(n) is bounded in n.

(iii) The limit as n-*co of pκ(n) exists.

To illustrate the method of proof when the system has more than nearest
neighbor interactions, we prove monotonicity of the ground state energy per
particle for a system of oscillators with nearest and next nearest neighbor coupling
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whose energy operator is

GN= Σ Bj+NΣ\Λ+2-NΣ\Λ+^ (25)
j = ι j=ι j=ι

where, for example, we could take, for a > 0,

Bj=-^-2+ aq* + bq] + cq] + cosfe.) + a . (26)

Denote the lowest eigenvalue of GN by E$(N) and its eigenfunction by
Φ(^\q1 . . .##). As in the proof of Theorem I we have that

Eg(2ΛO^<β,G2NΩ>, (27)

where

Ω = &*(q , . . .qN) Φ^(qN +1...q2N) (28)

and

G 2 J V = G N + G N - ^ J V ^ N + l + f e - l ^ N + l - » - « N ^ N + 2 J (29)

where
N J V - l J V - 2

GN= Σ BJ~ Σ ^j+l+ Σ 4 / 4 j + 2
J'=1 j=1 j=1 (30)

2JV 2JV-1 2N-2 V ;

G^= Σ Bj- Σ ^Λ+ι+ Σ ΊΛ+2
j = N+l j = N+l j = J V + l

From (27) and (29) it follows that

£^(2]Y)^2£^(]V)-β]Vβ]V+1+βN_1β]V+1+ρ]Vβ]V+2, (31)

where

QN = <ΦH«ι - - U 4NΦ(oN)(4ι - - -«N)>

(32)

However β^^βjv+i ^2^+2=^ nere because GN commutes with the unitary
operator S which acts by

Sψ(qί...qN) = 'ψ(-qί...-qN). (33)

We have therefore shown that pG(n) = E% (2π)/2n is monotone decreasing as n
increases.

The last system that we illustrate this method of proving monotonicity of the
energy per particle is a Dirichlet anharmonic oscillator approximation to the φ*
field theory, were for simplicity we choose d = 3.

Let #(M,IV)be given by
M N M-l N

H(M,N)= Σ Σ AJιk- Σ Σ qjjtqj+ljl
j=l k=l j=l k=l

M N-l

~ Σ Σ ί;f̂ M
7=1 fc=l
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where for α>0

> (35)
(ίj,k

If we let E0(M,N) denote the lowest eigenvalue of H(M,N) then we have

Theorem III
(i) p(n) = EQ(2n, 2n)/22n is monotone decreasing as n increases.

(ii) p(n) is bounded.
(iii) The limit as n-^co of p(ή) exists.

We prove (i) by showing that

E0(2N, 27V) g 2E0(N, 2N) (36)

and

E0(N,2N)^2E0(N,N) (37)

thus

E0(2N,2N)^4E0(N,N) (38)

which yields (i).
We prove (36) by comparing the ground state energy of H(2N, 2N) to that of a

system "pinched down the middle" i.e. we write
2N

H(2N, 2N) = HL(N, 2N) + HR(N, 2N) - £ qN,kqN + M , (39)
k=ί

N 2N N-l 2N N 2N-1

HL(N,2N)= X X Ajjt- Σ Σ 9jJtqJ+ίJt- Σ Σ M,*+: (40)
j = l Λ = l j = l f c = l 7 = 1 Λ = l

2N 2N 2N-1 2N

HR(N,2N)= Σ Σ^.*- Σ Σ^ +i,* (4°)
j = N + l fc=l j=N+l fc=l

2ΛΓ 22V -1

~ Σ Σ 4/,*4/,fc+ι
fe=l

As in the proof of Theorem I we have that

£0(2N,2Λ0^2E0(ΛΓ,2ΛO. (41)

The inequality (37) is proven similarly by "pinching" HL(N,2N) and
HR(N, 2N) across their middles.
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