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Abstract. Necessary and sufficient conditions are given for a certain class of
homogeneous multicomponent Gaussian generalized stochastic fields to pos-
sess a Markov property equivalent to Nelson's. The class of Markov fields so
characterized has as a subclass the class of Markov fields which lead by
Nelson's Reconstruction Theorem to some covariant (free) quantum fields.

Introduction

In 1948, Levy [1] defined a Brownian motion indexed by the d-dimensional
Euclidean space Rd. With this Brownian motion in mind, he introduced [2] the
notion of Markov property of finite order for (ordinary) stochastic fields, and
conjectured [2] that the Brownian motion indexed by IR2v + 1, v = a nonnegative
integer, is Markovian of order v+1. It was left to McKean [3] to establish the
veracity of Levy's conjecture. Recently, Molchan [4] has furnished an alternative
proof of Levy's conjecture while Pitt [5] has extended McKean's proof to
arbitrary Gaussian stochastic fields which are Markovian of some finite order. In
his proof, Molchan employs aspects of the theory of elliptic partial differential
equations and the notion of the reproducing kernel Hubert space [6] associated
with a stochastic field. By a blending of the preceding ideas with those of McKean
[3] and by applying Peetre's characterization [7] of differential operators, Pitt
characterized a finite order Markovian Gaussian stochastic field, under some
assumptions, by identifying the inner product of its reproducing kernel Hubert
space with the Dirichlet form [8] of a strongly elliptic partial differential operator.

Results, of the above type are, of course, certainly of relevance at the initial
stages of development of a theory of Markov stochastic fields. But stochastic fields
which are Markovian of finite order are clearly only a special class of Markovian
fields. Indeed, McKean employs a generalization of Levy's notion of Markov
property in [3] and his extended definition thus accommodates Markov stochastic
fields which are not necessarily of finite order. In [9] and [10], necessary and
sufficient conditions for a homogeneous scalar Gaussian stochastic field to be
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Markovian in McKean's sense are proffered under some assumptions on the
spectral measure of the stochastic field.

In this paper, we consider a class of multicomponent Gaussian generalized
stochastic fields subjected to minimal covariance constraints and we study a
notion of Markov property, which implies and is implied by Nelson's [11] notion
of Markov property, for this class of fields. Our results generalize the results of [9]
and [10]. In Constructive Quantum Field Theory, Nelson has developed a scheme
[11, 12] for generating quantum fields from a certain class of Markov fields which
have more restrictive covariance properties than we impose here. Given the central
role now being played by Markov fields in contemporary Quantum Field Theory
[13,14], a characterization of the above mentioned quantum-field-yielding class,
or even a wider class such as we study here, of Markov fields is evidently desirable.
Such a characterization immediately also leads to a characterization of the
associated class of quantum fields (by Nelson's Reconstruction Theorem [11]). On
the other hand, a study of this nature is clearly also of independent interest in
abstract Probability Theory.

1. Ultradistributions and a Paley- Wiener Theorem

In this section, we undertake a cursory review of some of the mathematical
structures employed in the sequel.

We begin with the ultradifferentiable functions. In describing the space of
ultradifferentiable functions, one assumes given a fixed infinite sequence

of positive numbers distinguished by the following properties :

(1.1) Ml^Mk_ιMk+l9 for fc^l

k=ί 1V1k

(1.3) there are constants A and H such that

(1.4) there is a constant C such that

fc!
~-\Mk_jMj^CMk, for all k and; with O^j^fc.

(1.5) Remark. The need for the conditions (1.1) through (1.4) on the infinite
sequence M = (Mfc)0^fc^00 of positive numbers will transpire below.

Let M be defined on (0, oo) as follows:

(1.2)* λe(0,oo),
k

where N is the set of all natural numbers.



Markovian Gaussian Fields 65

Then (1.2) is equivalent [15] to

We shall be employing the equivalence of (1.2) and (1.2)** in the sequel in this
connection, wherever the function M appears below, it shall be assumed, without
further comments, to be defined by (1.2)* and to satisfy (1.2)**.

Hereafter, U denotes an arbitrary, non-void open subset of IRd, de N, and we
shall write Comp(L/) for the collection of all compact convex subsets of U.
Furthermore, C^(U) will denote the linear space of all complex-valued C°°
functions with compact support in U. In the sequel, we shall be working with the
Cartesian product Comp((7) x (0, oo). In this connection, if (K, Γ) and (Kf, ΐ) belong
to Comp(LO x (0, oo ), we shall write

(1.6) (KJ)^(K'Jf) whenever KcK'J^ΐ.

The fundamental function spaces which are employed below will now be
introduced.

(1.7) Definition. The Space @M(U)

Let (K, I) belong to Comp(E7) x (0, oo). Then ^M(L7, K, I) will denote the set of all
functions / in C™(U), with support in K, such that

We note that with the norm given by (1.8), @M(U,KJ) is in fact a Banach space.
Furthermore, for (KJ) and (Kf, I') belonging to Comp(£7) x(0, oo), with
(K, l)^(K'JΊ we have

and the injection of @M(U,KJ) into ®M(17, £',/') is compact [15].
We denote by @M(U) the inductive limit

)- indlim^
/-* + 00

of @M(U,KJ) as K and / increase monotonically to U and + oo, respectively.

The Space @M(K, I). This is the Banach space of all functions / in C°°(IRd) with
support in KcIRd such that

(1.9) ||/||M= sup [-
xeK [

\(D*f)(x)\
PMk

< +00.
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We remark that @M(K, I) C @™(K, I') whenever /</', and the imbedding of
^M(X, 0 in @M(K, I') is compact. Denote by @M(K), K compact and convex, the
following inductive limit

of Q>m(K, ϊ) as I increases monotonically to + oo.

The Space <fM(C7). Finally, we define $M(U) as the space of all functions / in
C°°(C7) such that for every KeComp(U\ the restriction f\κ of / to K belongs to

From the above definitions, it is clear that the spaces ££M(Ϊ7), ^M(K, /), and
^M((7) are all nuclear.

(1.10) Remark
(i) We call @M(U) the space of ultradίfferentίable functions on U of Roumίeu

type [16, 17], so as to distinguish it from the space &M(U) of ultradifferentiable
functions on U oϊBeurling type [18], which we do not define here. However, all the
results we obtain below remain valid when ^M([/) is substituted for @M(U).

(ii) The space &M(U) has the following attributes:
(a) it admits an approximate identity, i.e. for every sphere S(ε) of radius ε > 0

contained in U9 there exists an /( ,ε) in &M(U) with the properties:

supp /( - , ε) C S(ε), f(x, ε) > 0 for all x e S(ε) ,

and J dxf(x, ε) = 1, ε > 0
u

(b) for every open covering of 17, there is a partition of unity by elements of
@M(U);

(c) differentiation is a bounded operator on £^M(L7);
(d) @M(U) is an algebra under pointwise multiplication;
(e) @M(U) is a dense subset of the Schwartz space @}(U) of compex- valued C°°

functions with compact support in U.
We note that properties (a), (b), and (e) follow from (1.1) and (1.2) while (c)

follows from (1.3) and (d) from (1.4). This remark underlines the need for the
conditions (1.1) through (1.4).

(iii) Under the operation of pointwise multiplication, @M(U) is an ideal of

(1.11) Definition. The space of ultradistributions of Roumieu type, with support
contained in [7, is defined as the dual &M(U), with strong dual topology, of @M(U).

(1.12) Remark. Let <•,•> denote the duality pairing of elements of &M(U) and
@M(U). The operations of differentiation in ^/M(L7) and pointwise multiplication of
elements of @'M(U) by functions in ^(U) are defined thus: with Fe@'M(U) and
ge<ίM(lO, then gF and D*F are the ultradistributions which satisfy

(i) <0F,/> = </,0/>,
(ii) <DαF,/> = (-l) |α|<F,Dα/>, for all
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(1.13) Remark
(i) In the above review, we have followed closely the survey in Lions and

Magenes [19].
(ii) The next result, which generalizes Theorem 4 in [15], gives a characteri-

zation of &M(U) by means of its Fourier-Laplace image.

(1.14) A Paley-Wiener Theorem. An ultradίstributίon F belongs to Q)'™(U) if and
only if there are positive numbers b and c such that the Fourier-Laplace transform

of F satisfies

(1.15) iFίz

where

(1.16) Hϋ(z)=suplm(x z)
xeU

(Hυ is called the support function of the open set U).

(1.17) Remark
(i) The open set U occuring in the preceding theorem may be replaced with any
convex set K without prejudice to its validity.

(ii) Let U be an open subset of Rd. In the sequel, we shall have cause to employ
certain pseudo-differential operators. The general definition of the latter is as
follows :

Let P( , •) be any member of CCO(L7 x Rd) with the property that there are real
numbers m, ρ, and δ, with ρ > 0 and (5^0, such that for every compact subset K C U
and for all α = (αl5 ...,αd), β = (βl9 ...,βd) in Nd, we have

for all (x, ξ)eK x IRd, where Cα β κ is some positive constant and |α| =αx + . .. + |αd|.
Then P( , ) is called a symbol and the integral

is absolutely convergent for every MeCJ(C/), where ύ here denotes the Fourier
transform of M. The operator P(χ9 D\ xe K, which maps Co(U) into C°°((/), defined
as follows:

is called a pseudo-differential operator of order m and type (ρ, δ}.
We remark that the pseudo-differential operators employed by us below do not

depend on x, i.e. for such pseudo-differential operators, the symbol (x, ξ)\-*P(x, ξ) is
independent of x.

(iii) To us, Theorem (1.14) is an important result which we employ below. It
leads rapidly to the following equally important result which may also be found in
[15].
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(1.18) Theorem. Let

(1.19) z^J(z)= £ ααz
α

|α| = 0

zβ = zβ

1^...z«-,z</eC, 7 = 1,2,. ..,d

αα = complex constants, αe Nd ,

fee arc entire function which satisfies the growth condition that for any b >0, £/zere is α
positive number c>Q such that

(1.20)

TTzen /or any open subset U of IRd, ί/ze pseudo-differential operator

(1.21)
|«| = 0

w/πc/i is rigorously defined as in Remark (1.17) (ii), maps ^M((7) continuously into
itself. Furthermore, the sequence

*„(/) = Σ ««£α/, n = 0,l,2,...
|α| = 0

o/ partial sums is absolutely convergent in the topology of ^M((7) for any f in
@M(U).

(1.22) Definition. An entire function J which satisfies inequality (1.20) will be
called a multiplier for the Fourier-Laplace image of @M(U).

(1.23) Remark
(i) Obviously, if J is a multiplier for the Fourier-Laplace image of ^M((7), then
J(D) is a local operator on @M(U\ i.e. ̂ M(L7) is invariant under J(D):

(ii) We note here that the spaces {^M([7): U is open in Rd, M = (
fixed} satisfy the next property :

if Uί and U2 are open subsets of IRd such that

U22U19 then

and this imbedding is compact.

(1.24) Definition
(i) We denote by ^M(IRd) the following inductive limit

d

of @M(U) as U increases monotocially to IRd.
(ii) The strong dual of ^M(]Rd) will be denoted by ^/M(lRd).

(1.25) Remark. With the foregoing preliminaries, we may now introduce the class
of generalized stochastic fields considered in this paper.
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2. Homogeneous Multicomponent Generalized Stochastic Fields
and Markov Property

Let (Ω, 3$, μ) be a complete probability space. We denote by L°(Ω, ̂ , μ) the space of
all complex-valued random variables on (Ω, J*,μ); we make L°(Ω,^,μ) into a
topological space by endowing it with the topology of convergence in measure.

(2.1) Definition. A continuous linear map from ^M(Rd) into the topological space
L°(Ω, ̂ , μ) is called a generalized random variable on (Ω, ̂ , μ). And, by an N-
component generalized stochastic field on (Ω, 3$, μ), we mean a collection

of iV-tuples of generalized random variables on (Ω, &, μ).

(2.2)
(i) We assume throughout this paper that H°(Ω) is of second order i.e.

ξ(/)eH°(fi) implies ξj(f)eL2(Ω,a,μ), /e^M(Rd), j=l,2, ...,

Let M(/) and £(/(2), /(1)) denote the matrices whose entries are

M//) = < 1,

and

fe= 1,2, respectively, where < , }L2(β ̂  μ) is the inner product of L2(Ω, ̂ , μ). It is
clear that M(/) is the column vector of expectation functional of components of
ξ(f)eH°(Ω) while β(/(2),/(1)) is the matrix of their correlation functionals.

(ii) Throughout the rest of this paper, we assume that H°(Ω) is Gaussian, i.e.
finite collections of members of H°(Ω) have Gaussian probability distribution.

(iii) In addition to the assumption in (ii), we are interested in this paper only in
N-component generalized stochastic fields which have the transformation pro-
perty mentioned in the next definition.

(2.3) Definition. Let απ>τα be the representation of IRd in Aut(^M(Rd)) defined as
follows :

Then H°(Ω) is called a homogeneous TV-component generalized stochastic field
if it is such that the column vector M(/) of expectation functionals and the
matrix B(f(2\ /(1)) of correlation functionals of an arbitrary member
ξ(f) = ( ξ j ( f i : j = ί , 2 , . . . 9 N ) 9 /e^M(]Rd), in H°(β) satisfy

(i) M(τα/) =

(ii) B(τJ<

for all αeIRd and all /,/(1),/(2) in

(2.4) Remark. In connection with homogeneous N-component generalized stochas-
tic fields, there is the following result.
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(2.5) Theorem. The N -component generalized stochastic field H°(Ω) is homo-
geneous if and only if the matrices M(/) and B(f(2\ /(1)) have the following
representations :

(ii)

for all f9 /(1), /(2) in ^M(IRd), where: m is an arbitrary constant N-component
column vector, and

A = Borel subset of IRd, is a positive-definite matrix of complex measures, on the σ-
algebra generated by the Borel subsets of IRd, which satisfy the following condi-
tion :

| exp( - M(φ(\p\)) + Hκ(p)) < oo ,

for all compact convex subsets K of JRd and all increasing functions φ such that

(2.6) Remark. Since the proof of Theorem (2.5) is straight-forward, we shall omit
it.

There is no loss of generality in assuming that the arbitrary constant column
vector occurring in (2.5)(i) is indeed the zero column vector. Hence, in what follows,
we set m = 0, the zero column vector.

Additionally, we shall assume in the sequel that the complex measures
Λt-*Wij(Λ)9 ij=l,2, ...9N, are given by complex- valued densities pt-^Fj/p), i.e.

(2.7) W.j(Λ) = J dp Wtj(p) , A = Borel subset of Rd ,
A

which satisfy :

det F(p) = det(IF./p)) Φ 0, for almost all p in Rd ,

with respect to ^-dimensional Lebesgue measure.
For convenience, we list below all the assumptions we have imposed thus for

onH°(Ω):

(i) H°(Ω) is of second order and is Gaussian
(ii) H°(Ω) is a mean zero, homogeneous N-component generalized sto-

chastic field
(2.8) <j (iii) the matrix A\->W(A) of spectral measures of members of H°(Ω) has

entries which may be represented as in (2.7); furthermore, the matrix
pH>IF(p) = Fί7 (p)) of densities occurring in (2.7) is pointwise invertible
for almost every peIRd, with respect to ^-dimensional Lebesgue
measure.

We shall not waive any of the assumptions in (2.8) throughout the discussion.
(2.9) Remark. To conclude this section, we introduce next the notion of Markov
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property studied by us in the following section. In this connection, let ^MjN(IRd)
denote the TV-fold Cartesian product of ^M(Rd) with itself, and set

(2.10)

*(IRd), fc=l,2.
Clearly, B( , •) is a continuous Hermitean functional on @M>N(R*) x ®M»N(Rd)

which is antilinear in its first argument and linear in the second argument.
Furthermore, in view of the positive-definiteness of the matrix

for every Borel /!cIRd, it follows that B(f,f)^0, for all fe^M'N(Rd), i.e. the
functional IB( , ) is itself positive-definite. This fact enables us to make the next
definition.

(2.11) Definition. Let J-f(IRd) denote the uniquely determined Hubert space of
Λf-component vectors which possesses IB( , •) as its reproducing functional (for this
notion, which generalizes the notion of a reproducing kernel introduced by
Aronszajn [6], see [20], for example), and let < , -y^(^d} denote the inner product
of

(2.12) Remark. We note the following properties which connect the reproducing
functional IB( , -) of 2tf (Rd) with the inner product < , -y^(]Rd} of

(i) for each ge^M!JV(IRd), the vector- valued ultradistribution

Bg( ) : ̂ M' N(IRd)ί->(C , the complex numbers

fH>Bg(f)=]B(g,f)

belongs to
(ii) the Hubert space Jf (Rd) is generated by

(iii) for all (f,g)e^M'N(IRd) x ^M']V(IRd), there is the equality:

<Bf,Bg>jr(Rd)=B(f,g).

In the sequel, we employ the foregoing properties without further comments.

(2.13) Definition. Let U be any open subset of IRd and K be any closed subset or an
arbitrary convex subset of Rd. Then, we denote by ffl (U) the sub-Hubert space of
2te (Rd) generated by

JV(IRd), suppfgl/},

and we define J^(K) by

where the intersection is taken over all open subsets 0 of IRd which contain K.
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In the sequel, Pκ will denote the projection of Jf (Rd) onto J^(K), where K is an
open, a closed or an arbitrary convex subset of Rd.

The Hubert space Jf (Rd) is isometrically isomorphic to the Hubert space
#(Rd) which is the completion of ^M'N(Rd) in the topology afforded by the norm
derived from the inner product

(f, g)^<f, g W) =B(f, g), f, ge ̂ M'*>(Rd) .

From property (i) of (2.12), it follows that each h in ^f(Rd) has a representation of
the form

(2.14a) h = F*(D)f, for some fe#(Rd),

where F*(p) denotes the matrix which is adjoint (i.e. the transposed complex
conjugate) to F(p), peRd, and p^F.^p) are the spectral functions occurring in (2.7).

For any open U in Rd, H(17) is the sub-Hilbert space of ίf(Rd) generated by
{fe^^OR*): suppfg U} for K closed or convex, the sub-Hilbert space H(K) is
now defined as for 34? (K). We note too that H(K) and J^(K) are isometrically
isometric, with each h in jtf*(K) admitting a representation of the form

(2.14b) h = F*(D)f, for some f e H ( K ) .

From (iii) above, we deduce that if u, v belong to ^(Rd), then

(2.15) <u,v>^(Rd)

where u* is the transposed conjugate of the column vector u. Since < , > (̂Rd) is an
inner product, and hence separately continuous in each of its two arguments, and
by the nuclearity of Jtf* (Rd), it follows from the Abstract Kernel Theorem ([21],
p. 73-79) that the inverse Fourier transforms of the entries of the matrix
p^F"1^), peRd are (translation-invariant) ultradistributions on ^M(RdxRd),
which are clearly not identically zero.

We make use of (2.14) and (2.15) below.
It is now opportune to introduce the notion of Markow property discussed in

the next section.

(2.16) Definition. Let U be an arbitrary open subset of Rd with complement U',
closure U and boundary dU. Then

H°(0) = (ξ(f) = (ξj(f) :j=l,2,...9N) :fε ^M(

is said to have the Markov property if and only if

(2.17) Pv,PΌ = PdUPΌ

or, equivalently, if and only if

(2.18) Pv,PΌ = Pdυ.

(2.19) Remark.
(i) It is fashionable [11] to formulate the notion of Markov property in terms of
σ-algebras of fields and conditional expectations rather than in terms of Hubert
spaces of vector-valued ultradistributions and orthogonal projections, as we do
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here. Since we deal only with Gaussian fields throughout this paper, the two
formulations are equivalent.

(ii) In the next section, we give a complete characterization of fields which have
the Markov property.

3. Necessary and Sufficient Conditions for Markovicity

We shall now state and prove the main result of this communication. In this
regard, we need the following notation.

Let F = (IP y) denote the N x N matrix whose entries IP fj. belong to ^/M(IRd) and
are related to the entries (F"1).^-) of the matrix F~1( ) whose adjoint occurs in
Eq. (2.15) as follows:

(3.1) <P0J> = <(IF-%,/>, for every /e^M(IRd),

where < , •> is the duality pairing of members of ^/M(]Rd) and ^M(IRd). Thus P is
the matrix of inverse Fourier transforms of the entries of the matrix F~ 1( ), which
itself exists pointwise almost everywhere in IRd (with respect to d-dimensional
Lebesgue measure).

Equation (3.1) gives the definition of the ultradistributional Fourier transform
IP = (Pί;.) of the matrix P = (Pί;.) of ultradistributions and it says simply that

(3.2) P(p) = F- \p) , for almost every pelRd .

We employ (3.2) in the formulation and proof of our theorem, which we now give.

(3.3) Theorem. Let (Ω,3$,μ) be a complete probability space and let H°(Ω)

= {ξ(f) = (ξjj):j=l929 ...,ΛO:/e^M(IRd)} be an N -component generalized stochas-
tic field over (Ω,^,μ) which satisfies all the assumptions of (2.8). Then a necessary
and sufficient condition for H°(Ω) to have the Markov property is that each of the
functions

pH>p./p), iJ=l,2, . . . ,ΛΓ, peRd,

is, almost everywhere (with respect to d-dimensional Lebesgue measure), the
restriction to IRd of an entire function which satisfies an estimate of the form (1.20).

Proof. The condition of the theorem is necessary. For, if H°(Ω) is indeed
Markovian, then

PV>PU = Pdu ' f°r everY °Pen subset U of IRd.

Hence, Pv,f belongs to jf(dU) for every f belonging to jf(U). This implies that

(3.4) <g,P^f>Jr(R-) = 0,

for every g in jjf(U'°) and for all f i n Jf(£7), where U'° denotes the interior of V.
Since P^g = g, for every ge^(£/'°), then using Eq. (2.14), Eq. (3.4) becomes:

(3.5) 0 = <g, f>^(Rd) = j Λcg*(x)(IP**f)(x) ,
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for every ge ffl(l/'°) and very fe JΊf (U), where P**f denotes the convolution of P*
and f. In particular Eq. (3.5) remains valid if

0

fj
0

w
), j arbitrary,

and

,gke2>M(U'°), k arbitrary,

W
where the non-vanishing components of f and g are fj and gk, respectively. Then
(3.5) takes the form:

We shall suppose in the following that the open set U is an arbitrary
neighbourhood of the origin of Rd.

Let S(ε)cU be a sphere of radius ε>0, centred at the origin of Rd, and let
f( ,e), supp/( ,ε)c£(ε), be an approximate identity for ^M(Rd), and set

/,.=/(-,ε), ε>0

in Eq. (3.6). ΐhen we have

(3.7) 0 = ί d x g J k ( X ) ( V J k * f ( . 9 ε ) ) ( x ) .

In the limit as ε tends to zero, Eq. (3.7) now yields

(3.8) 0 = ;

Next, since
(i) gk is an arbitrary member of ^M(l//0),

(ίi) the open set U is an arbitrary neighbourhood of the origin of Rd which may
be made as small as we please, and

(iii) Wjke ^/M(IRd),7, k = 1,2,..., N9 is not the identically zero ultradistribution, it
follows from Eq. (3.8) that

(3.9) suppF,fc = {0}, for all j,fc=l,2, . . . ,ΛΓ.
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But the support function of the singleton {0} is the function which is identically
zero. Hence, by Theorem (1.14), Wkj, £,7 = 1,2, ...,ΛΓ, is almost everywhere (with
respect to d-dimensional Lebesgue measure) the restriction to IRd of an entire
function which satisfies an estimate of the form (1.20), where the function £->M(ί),
ίe(0, oo), occurring in (1.20) is defined by (1.2)* and satisfies (1.2)**. Hence the
condition of the theorem is indeed necessary.

The condition of the theorem also suffices. To see this, we need to establish
that, under the condition of the theorem, for every open subset U of Rd, the vector

(3.10) h^P^f

belongs to Jίf(dU) for every f mj^(U).
Now, since f belongs to J^(U), there is a φ in H(U) such that

(3.11) f=F*(D)φ, by(2.14b).

Similarly, since h belongs to tf (IRd), there is a ψ in #(IRd) such that

(3.12) h = F*(D)ψ, by(2.14a).

The onus is now to prove that ψ does in fact belong to H(SU\ under the condition
of the theorem.

From (3.10), we have

(3.13) <g, h>^(Rd) = <g, P^fXtfOR*) = <& f>^(iRd) ,

for every g belonging to Jf(t/'°), where 17'° is the interior of V. By (3.11) and
(3.12), Eq. (3. 13) becomes:

(3.14) <F*(D)η, F*(D)ψ>^(πld) - <F*(Z))η,

for every ge^(l/'°) with g = F*'D)η, for some ηe#(t//0). In particular, Eq. (3.14)
holds for every ge^f(t//0) with g = F*(D)η, for some r\e@M N(U'°). Thus, by the
isometric isomorphism of J f (IRd) and #(IRd), we have from (3.14) that

for every
Hence

(3.15) F(D)x|/-F(D)φ,

as vector-valued ultradistributions on U'°.
Since the condition of the theorem implies that F(D)"1 is a matrix of local

pseudo-differential operators, Eq. (3.15) is equivalent to v|/ = φ, as vector- valued
ultra-distributions on U'°. But φ has support in U=UvdU and φ is the zero
vector-valued ultradistribution on U'°.
Hence

supp\|/Cd£7
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and, consequently, ψeH(dD). This now implies that

belongs to tf(dD\ for every
This concludes the proof.

Remark
(i) The foregoing Theorem extends the work of [9] and [10] which only consider
scalar ordinary Gaussian stochastic fields.

(ii) The Markovian fields characterized in Theorem (3.3) form a substantially
wide class.

(iii) The conditions of Theorem (3.3) imply that H°(Ω) is Markovian if and
only if the Fourier-Laplace transform of the entries 1Pij9 ij=l,2, ...,JV of the
matrix IP are multipliers for the Fourier-Laplace image of &M(K) for every
KeComp^). In Theorem (1.18), we supplied a characterization of the multipliers
for the Fourier-Laplace image of @M(K), Ke Comp(IRd). For the purpose of
applications (or for the sake of furnishing examples of multipliers) the following
result which characterizes the set of entire functions which are multipliers for the
Fourier-Laplace image of each of the spaces ^M(K), KeComp(lR1) is evidently
useful :

An entire function ζ-*E(ζ), (eC, of one complex variable is a multiplier for the
Fourier-Laplace image of 2>M(K\ Ke Comp^) if and only if

(a) it has Hadamard's factorization :

E(ζ) = ζπ° Π 1 - ~ » no = a positive integer,
j = ι \ cjl

and

(b) for any b>0 there is c>0 such that the junction

o

satisfies the estimate

ρe(0,oo).

where n(λ) is the number of Cj such that \c \^λ, and M is as usual defined by (1.2)*
and satisfies (1.2)**.

The result just quoted features as Proposition 7 of [15]. Using this result, one
may now readily construct numerous examples of the functions pι-»IrV(p), pelRd,
i,j=l,2, ...,N, occurring in Theorem (3.3), which are the restrictions to lRd of
multipliers for the Fourier-Laplace image of each of the spaces 3^(K\
KE CompOR").
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