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Abstract. The constellation concept is recalled (geometrical description of a ray
in a vector space). The groups PO(rc + l, (C) or P S p ( n + l , (C) are shown to
preserve "harmonic conjugation" between two constellations. The action of the
Lorentz subgroup and its rotation subgroup is described. Finally, a theorem
concerning Clebsch-Gordan product of constellations is proved.

Introduction

The concept of constellation has been introduced a few years ago [1] as a
convenient geometrical tool to classify orbits1 of the rotation group SO(3) acting

n
on states of spin -, i.e. on rays of the (n+l)-dimensional Hubert space or the

projective space Pn((C). Each state of spin - can be represented by a constellation of

order n on the sphere S2, that is by a set of n points - not necessarily distinct - on
S2 (this generalizes the well known property valid for n = l).

Constellations2 on S2 have many applications [1-6], the sphere S2 having
various interpretations, namely PX(C) or Riemann sphere, the Poincare sphere [7,
2] (set of polarization states of an electromagnetic plane wave), the set of
polarization states of the electron, the Bloch sphere [8, 2, 6] or the celestial sphere
itself for which the word constellation is self justified.

According to the Klein Eήangen programm [9], the geometry of con-
stellations must involve some group. Obviously for the spin states the group is the
rotation group SO(3). [The action of SO(3) on S2 is the trivial action.] For the

1 A mistake has been found in this classification by Michel (private communication). The results of
reference 1 must be modified as follows: the orbit SO(3)/T is present in all representations of integral
spin except spins 0, 1, and 3. The mistake was due to the fact that I forgot to take into account the
possibility of interlacing octahedrons and tetrahedrons having T as a symmetry group

2 The word constellation has been suggested by A. Grossmann and appeared for the first time in [2]
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celestial sphere, the group is the Lorentz group: when we are looking at the sky
from the Earth, the celestial sphere is submitted to rotations (rotation of 2π radians
in 23 h 56min) and infinitesimal consecutive boosts (responsible of the so-called
phenomenon of aberration of fixed stars). Due to the well-known isomorphism
between the Lorentz group and the Mobius group (made of homographic and
antihomographic transformations on the Riemann sphere), if four stars are
cocyclic in the sky they will be cocyclic at any time3.

To be complete about the bibliographical applications of constellations, we
must mention the works by Shaw on Petrov classification of space-time [11] and
on Wigner 3/-symbols [12].

When this work was completed, I became aware of a paper by Majorana [13]
who introduced the constellation description of spin and used it for Stern-Gerlach
experiment. It is surprising that the Majorana work has not been explored
furthermore.

1. Definition of Constellations

Consider a real manifold Γ (carrier space) and denote by (z1? z2,..., zn) an element
of the Cartesian product V=ΓxΓx...xΓ of nΓ-copies. Two elements
(z1? z2, ., zn) and (z'v z'2,..., z'n) will be said to be equivalent if they are identical up
to a permutation σ, i.e. if

The quotient of V by this equivalence relation defines the sky %(Γ) of con-
stellations of order n. If the z 's are not all distinct, the constellation is said to be
degenerate. Then, its apparent order is less than n it is the number of distinct z .

An equivalent definition is as follows: a constellation of order n is a set of n
elements of Γ, not necessarily distinct4.

Now, an interacting property is the following one: for %(Γ) to be a manifold, it
is necessary for Γ to be of dimension two [14]. Up to now, we found some interest
in considering as carrier spaces the real plane R 2 (or complex line (C), the real
sphere S2 or extended complex line P^C) and P2(IR), t n e r e a ^ projective plane.

Examples
1. The set of complex polynomials of degree n can be mapped on the set of
constellations or order n when the carrier space is the complex line (C (Newton
projection of a given polynomial on the constellation of its roots).
2. The set of complex polynomials of degree rgrc can be mapped on the set of
constellations of order n when the carrier space is the extended complex line P^).
For this, we complete the Newton projection by adding the root z = oo as many
times as we need to obtain a constellation of order n.

In the following, all constellations are on C or P^C). Constellations on P2(R)
will appear as real constellations on P :(C).

3 For a pedagogical description of that question, see [10]

4 See [2] for another definition
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2. Harmonic Conjugate Constellations

Let Z = \_zvz2, ..., zn] and Z' = [z'1? z'2,..., z'n7\ two constellations of order n where
the z and z' are ordinary complex numbers. Let us define their permanent product:

(Z ' ,Z)=—Perm(z .-z ), (2.1a)
n\ J

where Perm(zί — zV) denotes the permanent5 of the matrix

(2.2)

Equation (2.1) can also be written

permut

where the summation extends to all permutations of the z[.
It is clear that the permanent product is symmetric in the zt variables and

symmetric in the z\ variables (a property which is needed for the permanent
product to deal with constellations). Therefore, if we denote by

Sk(zvz2, ...,zπ)= Σz^..^ (2.3)

the usual symmetric functions of order fe(/c ̂  ή), we see that (Z\ Z) can be written in
the form

n

V ? / == Λ_J fc fc\ 1? Z2"> ' ' *' Zrv n~k\Zl^ Z2"> ' ' "> Zrv ' \ /

fc=O

where the coefficients λk are constants to be determined. They are easily obtained
in supposing all z{ equal to z and all z\ equal to z'. Then from (2.2)

fc=O

Moreover
ίn\ .

(2.6)

-K (2.7)

Putting (2.5)-(2.7) into (2.4) we obtain by identification

Therefore

(Z',Z)=Σ \(-
Ljt=o

Sk(z'1,Z'2,...9z'n)Sn_k(Zl9z2,...9zn). (2.9)

Now, we propose the

5 We recall that the permanent is computed as a determinant but by using only plus signs
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Definition. Two constellations of order n will be said to be harmonic conjugate (h.c.)
if their permanent product is zero.

Our definition is justified by the fact that it generalizes harmonic conjugation
of constellations of order 2, since if

Z = [ Z l , z 2 ] ; Z' = lz\,z'2-] (2.10)

one has

2(Z',Z) = (z'1-z1)(z'2-z2) + (z'1-z2)(z'2-z1) (2.11)

and

(Z',Z) = 0 o ^ ^ - : ^ = - l . (2.12)
zx-z2 z2-z2

Remarks. 1. Equation (2.12) shows that harmonic conjugation concerns a pair of
constellations of order 2 rather than a constellation of order four6.

2. Two constellations of order n which have more than - stars in common are

trivially h.c. (This readily follows from the fact that more than a quarter of the
matrix \z. — zfj\ would be composed of zeroes.

3. Two constellations of order 1 are h.c. if and only if they are identical.
4. Any constellation of odd order is self h.c. This property follows from the fact

that any antisymmetric matrix of odd dimension has a null permanent.
5. Harmonic conjugation can be given a meaning on PX((C) where the point at

infinity is included. Suppose, for instance, that z1 is infinite. Then the permanent of
the matrix (2.2) could be written

z1 Perm

l-z'Jz, 1-z'Jz, ... X-z'Jz,

z2-z\ z2-z'2 ... z2-z'n (2.14)

and harmonic conjugation would be associated with the vanishing of this new
permanent where z1 goes to infinity (the first row is made of Γs).

6. Missing star property. Given two constellations Z = \_zvz2,..., zn] of order n
and Z'' = [z'l5 z'2, ...,z'n_^\ of order n— 1, there exists a unique star z' such that

([z'1,z'2,...,z'π_1,z/]9Z) = 0. (2.15)

This follows from the fact that (2.15) is an equation of degree one in z' (the
permanent is of degree one in each z or z'j).

6 A constellation of order 4, say [α, b, c, d] has six distinct cross ratios x, 1 — x, 1/x, 1 — 1/x, 1/1 — x,

1 — 1/1 —x. These values are distinct except if x= — 1, 2 or — 1/2 (harmonic constellation) or if x = (— 1

± i j/3)/2 (antiharmonic constellation). Therefore the cross ratio is not the invariant function suitable

for such constellations. Rather we take

( α ' ' C ' j ~ l(a-b)(a-c)(a-d)(b-c)(b-d)(c-d)Y
( X χ + 1^ (2.13)

which is = 7r — i if x denotes any cross ratio of numbers, a, b, c, d
2Ίx2{x—ί)2
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3. Pn(C) and Constellations of Order n on PjίC)

Let A be an element of Pn((C) represented by a non zero complex column of (Cn+ *

(3.1)

We associate with A the constellation Z=[_zuz2, .., z^\ where the z{ are the
roots of the polynomial

(3.2)

(If ao = a1 = ... = ak = 0 and ak+1 φ 0, k + 1 of these roots will be infinite.) It is clear
that we have thus defined a bijection between Pn(C) and the sky (βn of constellations
of order n on P^C). We have

Pn(([:) = Ήn(P1((Π)). (3.3)

It is natural to try to interpret the harmonic conjugation in Pn(C). For this
purpose, we introduce the antidiagonal matrix (n+1) x (n+1) matrix g

(3.4)

and the bilinear form A'gA associated with it, where A1 denotes the transposed of
A.

It is a simple matter to show that

0
0
0
0

0
0
0

-( — )'•
0

0 ...
0 ...
0

1 0 ...
0 ...

0
- 1

0
0
0

1
0
0
0
0

= X {-)kaoa'oSk(z'vz'2, ...,z'n)Sn_k(zvz2, ...,zj (3.5)

by use of the relationship between the coefficients of the polynomial (3.2) and the
symmetric functions of its roots. If we compare now (3.5) with (2.9) we readily see
that

) = af

oao(Z\Z). (3.6)

It follows that orthogonality in the sense of (3.4) is equivalent to harmonic
conjugation. Moreover, the linear group which preserves the harmonic conjugation
in Pn((L) is identical with the linear group on (C"+1 which preserves the bilinear
form g. This group is isomorphic to PO(n + 1 , C) if n is even, to P Sp(n + 1, (C) if n is
odd. They are the projective complex orthogonal group and the projective
complex symplectic group, respectively.
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4. The Mebius (Lorentz) Group as a Subgroup
of PO(« + 1 , <C) or P Sp(n + 1 , (C)

The connected Mobius group is the group of homographic transformations

cz + d

that is the projective linear group PGL(2,(C) acting on P^).

The full MΘHUS group is two-sheeted. It contains homographic and anti-
homographic transformations:

(4 2)

where z is the complex conjugate of z. It is the group of all holomorphic and
antiholomorphic mappings which map circles and straightlines into themselves.

It is easy to show7 that the Lorentz group including parity or time-reversal is
geometrically related to the full Mobius group and that they are isomorphic.

Any Mobius transformation can be considered as a sequence of transfor-
mations of the following kinds

translations: zi->z + α

dilations: z\->λz W + 0)
(4.3)

inversion: ZH>1/Z

complex conjugation: z\->z.

It is now a very simple matter to verify that such transformations on
constellations preserve the harmonic conjugation. Moreover, it follows from
results of the last section that, the homographic transformations - i.e. the
connected Lorentz group - act linearly on Pn(<E) as a subgroup of PO(n+ 1,C) or
PSp(rc+l,(C). The representation is irreducible as it follows from the classical
work [15] on the rotation group and polynomials. This representation is often
denoted by Dj0 with n = 2j.

Clearly the antihomographic transformations act antilinearly on Pn(<E).
Therefore Dj0 can be considered as a corepresentation8.

Remark. For lower values of n, we have the following isomorphisms

P Sp(2, <C) - PO(3, (C) - Lorentz, (4.4)

PSp(4,C)~PO(5,(C). (4.5)

7 The Lorentz group acts linearly on space-time and preserves the light-cone x2 + y2 + z2 — t2 = 0. Its
action goes to the projective space-time. If we setX = x/t, Y=y/t, Z = z/t, we can restrict its action to the
sphere X2 +Y2 + Z 2 = 1. The linear character of the group has as a consequence that circles are
transformed into circles. If we make a stereographic projection on the complex line, we arrive at the full
Mobius group. The isomorphism follows

8 A corepresentation is a representation where some elements of the group are represented
antilinearly and the other ones linearly
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5. The Projective Unitary Group PU(w + l)
and the Rotation Group SO(3)

Let us consider a Hubert space ffl of dimension n +1. The pure states associated
with it are rays. They form the projective space P(JΊ?) isomorphic to PΠ(C). The
canonical transformations of Jf are the unitary operators; they form a group
(7(Jf) isomorphic to U(n+1). It is the group of linear transformations which
preserves the Hermitian scalar product (\px \ψ2}

 UP to a phase or, in other words,
which preserves the expression Kψ1\ψ2}\ or, equivalently, the quantity

The group action of U(J^) on j f (or of U(n+1) on C"+ : ) induces an action on
Pn(C). The group which acts on Pn(<E) is usually denoted PU(n+l). It can be
defined either in saying that it preserves (5.1) or in saying that it preserves the
orthogonality of states9.

It is therefore necessary to know how the orthogonality of states is described in
the constellation language. For this purpose, we first define the notion of antipodal
constellation.

Definition 1. The antipodal constellation of [z l 5 z 2 , . . .,zj is the constellation

If we make the stereographic projection relating P^C) and S2, the definition is
simple: two constellations are antipodal if they are symmetric with respect to the
center of the sphere.

We will need another definition.

Definition 2. A constellation will be said to be real10 if it is equal to its antipodal.

It readily follows that a real constellation is necessarily of even order.

Proposition. Two constellations Z and Z' of order n are associated with orthogonal
states if and only if Z' is harmonic conjugate of Z, where Z denotes the antipodal of
Z (or, equivalently, if Z is h.c. of Z').

Proof. Let \ψ} be a representative of Z in C n + 1 and \ψ'} a representative of Z'.

\Ψ> = \ψ'> = (5.2)

According to (3.2) we have

fc=O
(5.3)

9 PU(rc +1) is isomorphic to SU(w + 1)/Zn + ί

10 This denomination follows from the following property: if we identify antipodal points on S2, we
get the projective space P2(R). Then, any real constellation of order 2n will appear as a constellation of
order n on P2(R). This means that P2 κ(R) = <ί
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Now,

Zn )ZlZ2'"Zn'

Therefore, (5.3) reads

fc=O

Our proposition readily follows.

Remark 1. In the case n = l, to be h.c. means to be equal. Therefore the
orthogonality coincides with antipodality (as it is well known for spin^ states as
well as for polarization states of the photon on the Poincare sphere).

Remark 2. Orthogonality relation can also be written in the permanent form :

<Z', Z> = 0 o P e r m [ l + z/

ίzj] =0. (5.6)

Remark 3. The group which preserves both harmonic conjugation and orthogo-
nality is the intersection of PU(«+1) with PO(n+l,C) or PSp(n+l,(C). It is
isomorphic to PO(n+l,IR) or PSp(w+l).

Let us now examine the SO(3) subgroup of the Lorentz group. It is the group of
homographic transformations of the form

(5.7)

By making this transformation on Z and Z', it is readily seen that Perm [1 -f z^Zj] is
multiplied by a factor. Therefore, SO(3) preserves the orthogonality property. It
follows that Dj0 is a unitary representation of SO(3).

Geometrically, the action of SO(3) has been described in previous papers [1,2].
It consists of rotating the sphere S2. It is also clear that SO(3) preserves
antipodality.

Remark 4. If n is even (states are those of integral spins), the representation of
SO(3) is real since SO(3) cPO(π + 1 , IR). Note that real constellations only appear in
those representations.

Remark 5. Two real constellations of order 2 are harmonic conjugate if and only if
their corresponding diameters on S2 are perpendicular.

6. Clebsch-Gordan Products of Constellations

Given two constellations Z and Z' of order n = 2/ and n' — 2/, respectively, we want
to know which constellations are associated with the decomposition of their tensor
product. We have already treated the case n = n' = 2 [5]. Let us recall the results.
We know the Clebsch-Gordan series

D1xD1=D0 + Dί+D2.
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This means that by multiplying a vector by a vector, we can get a scalar, a vector
and a tensor of rank 2. In the constellation language, we say that by multiplying
two constellations Z, Z' both of order 2, we get a constellation or order zero, one of
order 2, one of order 4. The constellation of order zero is trivial the constellation
of order 4 is the union of Z and Z'. The constellation of order 2 corresponds to the
"vector product" or the "Lie bracket" of Z and Z'. It is the (unique) constellation of
order 2 which is h.c. to both Z and Z' (see proof in [5]).

The harmonic conjugation plays an important role in the general case:

Proposition. Let Z and Z' be two constellations

Z = [z 1 ?z 2, ...,zj order n
(6.1)

Zf = lzf

vz
f

2, ...,<,] order n'

and let us consider the following constellations obtained from Z and Z' by adding
n" — n times the star z to Z and n" — ή times the same star z to Z'.

They become

Z * = [ z 1 ) 2 2 , . . . , W . . . , z ]

Z'*=[z' 1,/ 2,...,<,,Z,...,r].

Let us make their permanent product. It is a polynomial in z of degree In" — n — ή.
It is clear that we have

n — ή.

On the other hand, if In" — n — ή>n + n\ the permanent will be zero whatever is z
because there are too many zeroes in it. Then, we have for a nontrivial permanent

\n-ή\^2n" -n-ή ^n + ή. (6.3)

For a given n" satisfying those conditions, there exists In" — n — ή roots of the
permanent polynomial. These roots form a constellation which is the Clebsch-
Gordan product of order 2n" — n — ή of Z and Z'.

Proof (see Appendix).

Remark. It could happen that the product of two constellations is undefined. As
an example, let us consider the C.-G. series

If the states associated with Dί are identical, it is clear that on the right hand side
there is no state corresponding to D1 since the vector product of a 3-vector by itself
is zero and the null vector is not a representative of a state.

7. Conclusion

In the present paper, we have presented none physical application. Nevertheless
we would like to show the physical interest of the constellation description of
polarization states when we compare a photon beam with an atom beam.
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Photon

(i) A polarization state is a constellation

of order one (on the Poincare sphere)

[7].

(ii) A beam which arrives on a plane
parallel plate, cut in a uniaxial crystal,
will be unchanged if its polarization
state is invariant under a rotation
around a diameter of the Poincare
sphere. There are two such polarization
states (they are orthogonal). One cor-
responds to a polarization along the
optical axis, the other to a polarization
perpendicular to it.

(iii) In the general case, the constel-
lation has a regular precession motion
around the privileged diameter. The
total rotation is proportional to the
thickness of the plate.

(iv) As a consequence, the polarization
will be unchanged if the thickness of the
plate is a multiple of the wave length.

(v) If we have a prism instead of a plate,
we get two beams (birefringence).

Atom of spin j

(i) A polarization state is a constellation
of order 2j.

(ii) A beam which arrives in a homo-
geneous magnetic field H will be un-
changed if its polarization state is in-
variant under rotations around H (i.e. it
is a state of the form \jm) in H direc-
tion). All these states form an ortho-
gonal basis.

(iii) In the general case, the constel-
lation has a regular precession motion
around the homogeneous field H. The
total rotation is proportional to the
spread of the magnetic field.

(iv) As a consequence, the polarization
will be unchanged if the spread of the
field is a multiple of some sonstant.

(v) If the field is inhomogeneous we get
2/ + 1 beams (Stern-Gerlach).

In my knowledge, property (iii) of the photon, discovered by Poincare seems to
be unknown. It was natural to emphasize the similarity of this property with the
spin precession in a magnetic field.

Appendix

First we will denote by

Λ(zί9z29 . . . , z Λ )

one of the vectors of (Cπ + 1 associated with the constellation [z1,z2, . . . ,z j . In
particular for n= 1 and z φ oo, a possible choice is

Λ(z)=

and the permanent product reads

Perm([z], [z']) = z'-z = εijΛ
i(z)Λ\zf), (Al)

where ε 1 1 = ε 2 2 = 0 , ε 1 2 = — ε 2 1 = 1. Therefore the permanent product corresponds
to the symplectic product of spinors (ε-contracted product of spinors).
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If we want to multiply A = A(zvz2, ...,zn) by A'= A(z\,z'29 ...,z'n), we first
consider them as symmetrized products of spinors, i.e.

(A2)

and similarly for A'. Then we take the ε-contracted tensor product of A and A' if k
is the number of contracted indices, we have necessarily

0^fc^|w-n' | . (A3)

Let us denote by A" = A(z'[,z2, ...,z"n + n,_2k) the result. It is a vector associated with
the representation Dj+j,_k where n = 2j, n' = 2f. We have

A =A(z1,z2, ...,zn + n,_2k) = A(z1,z29 ...,zn) x A (zί9z2, ...,zn.)

= Σ Perm(z ; i ,z i 2 , . . . ,z i k , z ' h , . . . , z ' j k )A(z i k ^, . . . , z i n , z ' j k + ί , . . . ,z 'J (A4)
permut

up to an irrelevant factor.
Now, we have for the symmetric function S# of the constellation product

[ Z 1 ? >>;Zn + n , _ 2 k ]

St(z'[,...,z:+n,_2k)= X Perm(z/i...z k,z; i...z;k)S, (other z and z'). (A5)
permut

Therefore, the z'[ are the roots of a polynomial equation of degree n" = n + ή — 2k,
of the form

Z π " - α 1 Z n " - 1 + α 2 Z " " - 2 - . . . = 0, (A6)

where the term of degree zero is, up to a sign,

Σ Perm([z ιV ..., z J , [z} lS..., z}J)z i fc+1?..., zinz'h+ χ,..., z)n,. (A7)
permut

It is in fact the only term we need. We know that if we translate zi5 zj, and z" the
relation between them is unchanged. This means that the polynomial is only a
function of z — Z and z\ — Z. Therefore let us set zf = (t + Z, z\ = C + Z in Eq. (A6).
Since this equation does no longer depend on Z, we are left with the expression
(A7) where z and z\ are replaced by ζ£ = z£ — Z and ζ'^z^ — Z, respectively.
Moreover the permanent product is invariant under translation. Then Eq. (A6)
becomes

Perm([z,, ..,ziklVh, . ..,z;.J)(z i k + i-Z), . . . , (/ Λ -Z) = 0, (A8)

which is nothing else than

Perm([z1,...,zn,Z,...,Z],[z'1,...,<,...,Z,Z,...,Z]) = O, (A9)

which proves our theorem.
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