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Abstract. We give a meaning to the direct integral decomposition of un-
bounded operators and Op*-algebras on a metrizable dense domain of a
Hubert space, by considering them as bounded operators between several
other Hubert spaces.

Introduction

The decomposition of representations and states of *-algebras into irreducible
representations and extremal states has been considered by Borchers and Yngvason
[1] and Hegerfeldt [2] in the important case of nuclear *-algebras. The method
of [2] consists in restricting the state to a dense subalgebra which is the finite linear
span of countably many elements. Since the algebraic dual of such a subalgebra
has a proper, metrizable and weakly complete positive cone, Choquet decomposi-
tion theory [3] can be applied to it. The restriction of the state is thus decomposed
into extremal states of the subalgebra and these are continuous states (because the
initial algebra is nuclear) and so can be extended to the whole algebra.

In this paper we want to consider non nuclear * -algebras and if we try the
method of [2] we are not able to extend the extremal states of the subalgebra to the
whole algebra (unless our algebra is such that every state on it is continuous;
sufficient conditions for that are given in [4] p. 228). For that reason, we prefer to
adopt the point of view of Borchers and Yngvason and to decompose first certain
families of unbounded operators on a Hubert space, the so-called Op*-algebras [5].

As usual for unbounded operators we have to distinguish between two different
notions of commutant, the strong and the weak. A state is extremal if and only if
the corresponding GNS-representation has a trivial weak commutant [6]. In the
first part of [1] Borchers and Yngvason developed an extension theory for
*-invariant families of unbounded operators. They showed that any such family
stf always has an extension j/ such that its strong commutant ̂  contains an
Abelian von Neumann algebra Jt which is at the same time maximal Abelian
in the weak commutant jtf'w (in order to get the irreducibility of the decomposition
which will be performed with respect to Jί\ This extension theory is valid for any
Op*-algebra (the nuclearity assumption comes only in the second part of [1])
so we are going to use it as well in our framework.
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Beginning thus with an Op*-algebra si defined on a dense domain ^ of a
separable Hubert space ffl and with an Abelian von Neumann algebra Jί <= ̂
such that Jί' n s/'w = Jί we decompose Jf in a direct integral with respect to ̂ .
In Sect. II, we associate to each Aestf a Hubert space 3Ί?A which is the domain of its
closure Ά, provided with the graph-norm. To the whole algebra si is then associat-
ed in a natural way a lattice of Hubert spaces. The intersection 3) of these Hubert
spaces is the completion of 2 for the j/-graph topology and is the domain of the
"closure" «*/= {4fj|4e«β/}. Considering the elements of Jί, we prove that they
are bounded operators in 3tfA, for every AeJt and that the restrictions of Jί to
the different fflA give unitarily equivalent representations JίA of Jί in each 3tf A.
This fact allows us in Sect. Ill to decompose each of the J f As individually into a
direct integral with respect to the measure μ on the compact space A occurring in
the decomposition of 2tf. In order to get a coherent decomposition of the different
J f/s we have to introduce and additional hypothesis on (si,2): we assume that
the j/-graph topology of 2 is actually given by a countable number of graph-
norms, i.e. that 2 is metrizable. This assumption is not really very restrictive
because in most concrete cases the algebra si is either countable itself or dominated
by a countable subset as introduced in [6] (i.e. there exists a countable subset
^0 c= stf such that for every Aesi, there exists Be&Q and a constant K such that
V/e^ we have: || Af \\ ̂  K \\ Bf \\). With that hypothesis §= f) j«fA is a separable

Ae@0

Frechet space. We then just consider the decomposition of these Jtf*A with Aeέ%0

and we get for almost every λeA a lattice {Jf A(λ)\ Ae &0} of Hubert spaces embed-
ded into each other in exactly the same way as the JJ?AS. (The restriction to coun-
tably many Hubert spaces avoids problems with union of null sets and yields the
lattice for almost every λ). We can then define @(λ) = Q J4fA(λ) and show that it

Ae^o
is a dense domain in Jf (λ) for almost every λeA.

Section IV is devoted to the decomposition of unbounded operators. In [7],
Nussbaum gives a method of reduction for closed operators in Hubert space and
relates the decomposabillty of an unbounded operator to the decomposabillty
of its characteristic matrix (which is constructed from the projection in Jf x Jf
onto the graph of the operator). Here, our method will consist in the identification
of each unbounded operator with a family of bounded operators between pairs of
Hubert spaces. Since each element Aes? is a continuous operator from 2 into
itself (with the ^0-graph topology), A [̂  can be extended to bounded operators
between various pairs of spaces (2tfB, Jf c), B, Ce J*0. We then use the well-known
result of [8] for bounded operators between two direct integrals of Hubert spaces :
a bounded operator is decomposable iff it permutes with the diagonalizable
operators. For a pair (3Ί?B, 3ί?c) the diagonalizable operators are JίE, Jic respec-
tively, which are both restrictions of Jί. Since A is bounded between the two spaces
and permutes with Jί(Jί <= ĵ ), it follows that there exists measurable fields
A——+Ά(λ)e3β(tfB(λ\ tfc(λ)) between the corresponding pairs (tfB(λ\ Jtfc(λ)\
Since B,Ce&0 there is only a countable number of such pairs so that the various
decompositions of A can be made coherent and it makes sense to consider ^4(λ)[^(λ)

which are continuous operators on 2(λ). With this definition of the decomposition
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of an unbounded operator, it is easily shown that the algebraic relations (sum,
product, adjoint) are preserved almost everywhere in the decomposition. So if
we begin with a countable algebra si we decompose it in (si(X), <2>(λ)} which are
countable Op*-algebras almost everywhere. Because of the assumptions on J( we
have considered, the (s/(λ)9 3)(λ}) obtained in the decomposition are irreducible.

The extension of this decomposition to uncountable Op*-algebras defined
on a metrizable 2, can be made but it involves a different kind of techniques (a
judicious choice of topology on si will be necessary) and for that reason, it will be
presented in a separate paper together with the application to the decomposition
of representations and states of * -algebras.

I. Definitions and Elementary Properties

1 . 1 Let 2 be a prehilbert space and $C its completion. Let 5£ + (Sf) denote the set of
all linear operators A such that :
(a) The domain D(A) = & and A@^@
(b) The adjoint operator A* is such that D(A*) 2 Sf and A*$) c Q)

&+(@) is a *-algebra with the involution A -> A+ = A* [s

A *-subalgebra si of & + (2) is called an Op*-algebra [5]. In this paper we shall
always assume that si contains a unit element (the restriction to <3) of the identity
operator on 2f?\ Sometimes if confusion is possible, the Op*-algebra si will be
denoted by (si, 2f).

If we equip 3) with the graph topology which is given by the set of semi-norms :

{pA(f)=\\Af\\\A€.s/} (1)

then all the elements of si are continuous from 2 into itself.
1.2. Since si consists of unbounded operators we have to distinguish between
the weak and the strong commutant [1]. Let B(J^) denote the set of all bounded
operators on ffl .

The Weak Commutant

(2)

is a weakly closed linear subspace ofBffi), containing the identity and * -in variant
but is not an algebra in general.

The Strong Commutant

j*'s = (CeB(^}\C9 ς= ®, CAf = ACf, VAetf, V/e^} (3)

is an algebra but is not * -in variant nor weakly closed in general.
If si consists of bounded operators only and 2 — 2tf , the weak and the strong

commutant coincide with the usual commutant. For unbounded operators
si' c jtf' . To avoid confusion we shall sometimes denote these commutants
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1.3. By definition, every element Aejtf is a closable operator. We shall denote by
A its closure as an operator in Jf .

Consider the completion 3t oϊ 2 with respect to the graph topology (1). Because
«β/ possesses a unit element we get

®=(}D(Ά) (4)
Aerf

Remark. This is not true in general for any family of operators possessing a
common domain. The proof ([9] Theorem 1) is based on the fact that since
1|^6Λ/, for any two A,Be*/93C = (l + A*A + B*B)[S in d such that

Pc(/) = £*(/)» PB(/)> Y/e^ i e the system of semi-norms defining the graph topo-
logy is directed.

Each Aes/ extends to a continuous operator A \$ from & into itself and the set

is an Op*-algebra called the "closure" of j/._The involution in <stf is given by
A\j -— M* [j; - Iτ f^. When 0 - J, .a/ = j<7 is called a "closed" Op*-algebra.

(*&,£&) is the minimal closed extension of (&&,&) in the sense of [1]. The weak and
the strong commutant of s3 have the following properties :

a) ̂  is weakly closed [1]

b)< = <[l]

C) SU'^d's

Proof, c) Let CejaΓ and/e^, there exists a Cauchy net {/α} c ̂  converging to
/ in the graph topology i.e. / = lim/α and Άf = lim AfΛ, VAejtf (lim = strong

limit in Jtf).
Because C is a bounded operator in Jf , {C/α} is also a Cauchy net and

C/ = limC/α. Moreover the set {ACf*} which is equal to {CA/α} since Ce^,
α

is a Cauchy net as well, for every Ae stf .
Since the A are closed operators, it follows that CfeD(Ά) and ACf = lim ACfa,

= lim CAf* = C lim X/α = CAf, VAejtf, Vfe®. Since 2 = f| D(I) it " follows
α _ α yle^

that

II. The Natural Structure Associated to an Op* -algebra

2.1. The Hubert Spaces 3tf A

For each Aεstf, A is a closed operator in J ,̂ so its domain D(Ά) provided with the
graph norm

is a Hubert space that we shall denote by 2tf A . By the represent ationj heorem [10]
applied to the (closed symmetric) quadratic form α(/,/) = (/,/) + (Άf, Άf) defined
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V/eJ f^ we have that 2tf A is also the domain of the self-adjoint operator
(1 + A*Ά)1/2 associated to that form. So the graph norm can be rewritten as:

\\f\\A = \\(\ + A*Άynf\\ (6)

By construction 2 and 2 are cores for A and (1 + A* A)112.
The inverse operator (1 + A*Ά)~ί/2 is a bounded self-adjoint operator in Jf

and (1 + A*Ά)±ί/2 are reciprocal unitary isomorphisms between Jf and J^A. So
the norm of every element ge ffl can be written as:

\\g\\ = \\(l + A*AΓ1'2g\\A (7)

Repeating the same construction for every Be s$ we get a family of Hubert spaces
{j f B}9 each of them continuously embedded in Jf and unitarily isomorphic to Jf .
That family possesses a lattice structure: given J4?A and Jfβ, there exists

+ A*A+B*B)[s in d such that tfc<^3tf Ar\tfE. So any Op*-algebra
is associated to the following structure :

(8)

where each space is dense and continuously embedded in the next ones. Let us now
study the behaviour of the elements of the commutants with respect to that
structure.

2.2. Lemma 2.2.1. Let Ce j</^. Then for every AES^, C is a bounded operator from
J^A into itself.

Proof. By definition Cej/; means C@ ̂  & and CAf = ACf, VAej/, V/e®.
Consider /e^ and compute the norm of Cf in JΊfA :

which shows that C is bounded because Q) is dense in 2tf A.

Remark. The relation CAf = ACf can then be extended to every feJΊ?A.
We have seen before that the strong commutant is in general not *- invariant.

Nevertheless if we consider subsets of the strong commutant which are ^-invariant
we can prove the following lemma.

Lemma 2.2.2. Let Jt be a ^-invariant subset of stf's. If Ce^, C leaves, D(A*)
invariant and commutes with A*,for every A e j t f .

Proof. Since Jί is * -invariant, C^Ji implies C*e^ c j^Γ. Thus by Lemma 2.2.1.
C* leaves each ̂  invariant. Let/e D(A*\ For every h e ϊtf A we have | (/, AC*h) \ ^
K || C*/z I ^K'\\h II for some constant K, Kf = \\ C* \\ K. The left hand side of this
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inequality equals | (/, C*Ah) \ = | (C/, Ah) | . So | (C/, XΛ) | ̂  K' || h \\ _for some constant
K' and for every /zeD(,4) which means that CfεD(A*) and (C/, 4Λ) = U*C/, Λ).

On the other hand we have (/, AC*h) = (CM*/, h) and comparing these two last
equalities we get: (A*Cf,h) = (CA*f,h) for every heJtfA. Since JfA is dense in Jtf
we have finally CA*f = A*Cf for every/6D(^4*) which means that C commutes
with A*. This can be done for every

2.3. In the next section we are going to decompose the Hubert space ffl in a direct
integral (of Hubert spaces). That decomposition will be associated to an Abelian
von Neumann algebra M c j^. It follows thus from Lemmas 2.2.1. and 2.2.2.
that each Me Jt is a bounded operator in every 3? A and commutes with each A*.

In particular, every MeJt commutes with the two self-adjoint operators
(1 + A*Ά)±ί/2, for every Aεd .

Denoting by JtA = {M\^Λ\MeJί} c B(Jf A) we get a family { J f A \ A e j t f }

of unitarily equivalent representations of the von Neumann algebra Ji in the
different 3ff A . The equivalence is given by the unitary operators {(1 + A*Ά}± 1/2}.

Remark. At this point, we would like to mention that the kind of natural structure
introduced in 2.1. is a "nested Hubert space" if with the J f A we consider also their
dual spaces with respect to the scalar product of 3tf. That type of structure has
been studied in [11] and in a more general framework in [12]. In [13], several
algebras of operators on nested Hubert spaces are introduced. The connection with
the present situation is the following: s&'s belongs to the algebra called d in [13]
and the above Jί belongs to the von Neumann algebra #. Theorem 3.2. of [13]
provides an alternative proof of the fact that the Jt ' A are all unitarily equivalent
representations of Jί.

III. Integral Decomposition of the Different Hubert Spaces

3.1. Decomposition of ffl

From now on we shall assume that Jf is separable. Let (j/,^) be an Op*-algebra
in ̂  and (^,2) its closure. Let us assume that we can find an Abelian von
Neumann algebra Jt c ̂  , containing 1 and maximal in the sense that

(This hypothesis is justified by the extension theory developed in [1]. Any
(^/, &) admits an extension (j<?5 ί§) for which such a Ji exists.

Let us notice that because of the properties mentioned in 1.3b) and c), we have
also Jt c rf's and Ji = Jt'c\stf'^.

Since Ji is an Abelian von Neumann algebra in a separable Hubert space,
there exists [8] a compact metrizable space A, a positive regular Borel measure
μ on Λ, and a μ-measurable field λ ̂ ^^^(λ) of Hubert spaces such that

tf~l&(λ)dμ(X) (9)
Λ

and such that M consists in the diagonalized operators in that decomposition
(Jί ~ L°°(A9 μ)). The set of bounded operators in 2tf which are decomposed in that
direct integral consists exactly of the elements of Ji' [8].
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3.2. Decomposition ofJ^A,

Consider the natural structure associated to (j/, 2) introduced in Section II.
In each 3? A we get a representation Jt ' A of the von Neumann algebra Jt. Since all
those representations are unitarily equivalent as we saw in 2.3, we may expect to
be able to decompose each J f A in direct integral with respect to the same measure
μ on the same Λ, such that each Jt ' A is diagonalized in the decomposition. Due to
the fact that the unitary operators between the different Hubert spaces are functions
of elements of sί and that,_pn the other hand, the von Neumann algebra we want
to be diagonalized lies in jtf's, we can effectively decompose all the J l f A s . This can
be done explicitely as follows :

3.2.1. For each A e j t f , (1 + A*Ά)~1/2 is a bounded operator on 3Ί? and commutes
with all the elements of Jί (2.3) i.e. belongs to Jt' and is thus a decomposable
operator. That means that there exists a measurable field λ ~-̂ - >(1 + A*A)~ l/2(λ)e
B(J4?(λ)) essentially bounded such that:

(1 + A*AΓί/2 = J(l + A*AΓ1/2(λ)dμ(λ) (10)
A

and [I (1 + A* Ay ll2 \ = ess- sup || (1 + A*A)~ 1/2(λ) \\
Since (1 4- A*A)~ll2(λ)eB(J4f(λ)) a.e. we may define for almost every λeA:

^A(λ] = Range [(1 + A* A

= {f(λ)Eje(λ)\3g(λ)e^(λ) such that f(λ) = (1 + A*AyV2(λ)g(λ)} (11)

By that definition we get J f A(λ) as a subset of J f (λ). (In the null set Jf ' A where
(1 + A*Άyll2(λ)φB(3f(λ}) we put JtfA(λ) = 0). #A(λ) becomes a Hubert space if
we equip it with the scalar product (f(λ)\f'(λ})Atλ = (g(λ)\g'(λ)) where f\λ) =
(1 + A*A.yll2(λW\λ) and (1 + A*Άyll2(λ) is a unitary isomorphism from 3P(λ)
onto JΊfA(λ). Repeating the same construction for almost every λeA we get a
measurable field of Hubert spaces λ ^^^^^A(λ). Taking the direct integral of that
family we reconstruct Jf A :

l^A(λ)dμ(λ) = f (1 + A*A)-V2(λ)jr(λ)dμ(λ)

- (1 + A*AΓ1/2 J 3?(λ)dμ(λ) = (1 + A*AY
Λ

3.2.2. Because the measurable field λ ~^»*(1 + A*Ά)~ί/2(λ) actually consists
of isomorphisms (hence bijections) from J^f(λ) onto J^A(λ)9 the field
λ '•v/N^N^Qi + A*A)~ί/2(λ)']~ί is also measurable and

(1 + A*A)112 = f [(1 + A*Ay 1/2(1)] ~ ldμ(λ) (12)

So the unbounded operator (in 3?) (1 + A*Ά)1/2 is also decomposed. Defining
(1 + A*Άγl2(λ) = [(1 + A*A)~1/2(λ)'] ~1 we can reexpress the norm of the elements
of Jf^μ)as:

II m L,λ = II oW II = I I (i + A*Άγi2(λ)f(λ) I (13)
where/(A) = (1 + A*Ay ί/2(λ)g(λ) with g(λ)εJV(λ).
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3.3.1. Assumption of Metriz ability o

The decomposition of the Hubert spaces <%?As by the method presented in this
paragraph is a coherent decomposition. Indeed, a vector / belonging to, say,
Jί? B π 34? c , will have a unique representation/ = \f(λ}dμ(λ) namely its decomposi-

Λ

tion as an element ofjjf. The difference will appear in the expressions of || f(λ) \\B λ

and || f ( λ ) \ \ C t λ given by formulae analogous to (13).
However in order to be sure that there exists for almost every λeΛ sufficiently

many 3ί?A(λ) different from zero we shall restrict ourselves to a countable number
of 3ί?As. (Then the union of the null sets Jf A for which JfA(λ) = 0, will be a null
set again). This leads us to impose an additional hypothesis on 3).

From now on, we shall consider dense subsets ̂  of J f for which the j/-graph-
topology is a metrizable one, i.e. is given by a countable set of graph norms
{| |/| |2 = ||/||2 + | |4/Ί| 2 |Λe# 0,Λ 0c j/,# countable}. #0 can be considered
as a * -subalgebra of ̂  on the complex rational field by adding rational linear
combinations, products and adjoints if necessary. In that way we have still that
the system of norms || \\A,Ae&0 is directed. The <£/-graph-topology and the
^0-graph-topology are equivalent and & is the completion of ® with respect to
those topologies.

® = Γ\*Λ= Π ^B0

Aesf Boe&o

2 is a separable Frechet space (because ffl and 2tf A are separable).

3.3.2. We can now define for almost every λεΛ

which is a Frechet space with the topology given by the set of norms (13) where
A runs over ̂ 0 .

Let us notice that the map £% -> @(λ) '.f^^*f(λ) is not a continuous map in
general, contrarily to what occurs in [1] where ̂  is a nuclear space. Nevertheless,
for almost every λeΛwe have a structure similar to (8)

(16)

where each space is continuously embedded in the next ones and dense in the next
ones in virtue of the following lemma.

Lemma 3.3.3. :®(λ) is dense in jf (A) a.e.

Proof. See the explicit decomposition of J f in direct integral ([8] p. 208 theorem
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1). Because 2? is separable we can begin with a sequence (eί9e2...) everywhere
dense in it. The Jjf (λ) are then constructed as the completion of the rational vector
space X generated by the {et} with respect to some sesquilinear form he. e (λ)
ij =1,2... which comes from the Riesz-Markov theorem (after having taken the
quotient by the kernel of that form).

Let {e^λ)} be the set of images of {e^ by the canonical surjection X->jΊf(λ)
for every λ. Then {et(λ)} is total in Jίf(λ) a.e. [8]. In our case, since 3) and 2 are
dense in ffl, we may choose the set {et} contained in 2 or even in 2. Then
{eJ(λ)} c Qf(λ) a.e. implies that &(λ) is dense in Jf(λ) a.e.

IV. Decomposition of Unbounded Operators

4.1. An unbounded operator is equivalent to a family of bounded operators

When we provide 2 with the graph-topology given by the set of norms (5)
{ || f \\B\Bejtf}9 every element A[@E<$/ is a continuous operator from § into itself.
That means that V£e jtf, there exists Ce jtf such that

\\Af\\B^K\\f\\c, V/E^, for some constant K (17)

In fact, a suitable choice of C is C = 1 + A* A 4- (BA)*BA. Since 2 is dense in each
one of the Hubert spaces, (17) means that A can be extended to a bounded operator
from 3f? c into 3tfE. So given Aej/, for every 3tfE there exists a 3tf c such that A is
bounded from Jtf c in 34fB. We identify in that way the unbounded operator A
with an infinite family of bounded operators between the various ffl Bs and we
shall see that these bounded operators are in fact decomposable.

Since we have assumed that the ̂ /-graph topology is equivalent to the ̂ 0-graph
topology each element Aestf is also continuous from 2 into itself considered this
time with the ̂ 0-graph topology. That means that V£e J*0 there exists Ce^0 such
that (17) holds. So A is in fact identified with a countable family of bounded
operators between pairs of JΊ?Bs, BG&O.

(Let us notice that to consider unbounded operators as a family of bounded
ones is exactly the point of view of [11]. The operators we meet here are exactly
well-defined operators in nested Hubert spaces — see remark at the end of Sect. II).

4.2. As we mentioned in 3.1, when ffl is decomposed in a direct integral
diagonalizing Jt, the decomposable operators are exactly the elements
of Jt' . Here we want to apply a result slightly more general ([8] p. 164 theorem 1)
which concerns bounded operators between two different Hubert spaces ffl and
ffl' both decomposed in a direct integral with respect to the same measure on the
same compact space. A function ra(l)eL°°(/l,μ) determines a diagonalizable
operator Me£(Jf) and another one M'eB(3tf ').

Then Dixmier's result says that any bounded operator A : ffl -> Jf ' such that
M Ά = AM for every m(λ)eLX)(A,μ), is decomposable. In our case, we have
decomposed all the spaces Jf B with respect to the same measure μ on the same
compact space A. A function meLCG(A,μ) corresponds to a diagonal operator

in each J(?B. Because all the J/Bs are unitarily equivalent
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representations of Ji, \iMBeJίB and MceJtc correspond to the same meLco(A, μ)9

they are in fact the restrictions to J^B and ffl c respectively of the same Me Jt.
Take now Aesί : for every ffl E, there exists some Jfc such that A is bounded

from 2tfc into 3tfB. Moreover AMcf = MBAfϊor every/e 3tfc because Jί c j^.
By Dixmier's result, A is thus decomposable i.e. there exists a measurable,

essentially bounded field λ - +Ά(λ)eB(tf c(λ\ tf B(λ)) such that

A = μ(A)φ(A) (18)

and || A \\ BC = ess sup || A(λ) \\BC.
Doing the same thing for any pair pfc, J β̂), B, Ce &Q between which A is

bounded, we get a countable set of measurable fields λ^^ — ̂ A(λ)(B C) . As the
various bounded operators representing A are coherent (i.e. if JfD c jf?c then

ABc\je = ABD) we have almost everywhere A(λ)BCl(λ)CD = A(λ)BD (where l(λ)CD

is the operator occurring in the decomposition of the inclusion of 3?D(λ) into
2tf C(A)). Since there is only a countable number of such relations, we get a coherent
decomposition of A. The notation (18) is unambiguous and it makes sense to
consider almost everywhere the restriction of A(λ) to 2(λ\

4.3. Lemma 4.3.1. For every Aε<$/ and a.e. λeA, A(λ) leaves @(λ) invariant.

Proof. Let/(A)e0(A) = f) Jf c(λ) and A = j A(λ)dμ(λ)
Ce@o

For every 5e^0, 3CeJ^0 such that

II A(λtf(λ) \\B>λ ^ K I I /(A) ||CjA for some constant K.

Since/(A)e^(A), the r.h.s. of this inequality is finite for every Ce J*0 so the l.h.s.
is finite for every Be^0 which means ,4(A)/(A)e^(A).

Corollary 4.3.2. For every Aestf ', ^4(A)f^(λ) is a continuous map from @(λ) into itself
for the graph topology given by the set of norms (13) where A runs over έ%0 .

Corollary 4.3.3. For every Aes/, and every /e®, Af = §Ά(λ)f(λ)dμ(λ) in the sense
that for every BG&O there exists Ce^0 such that

II Af \\2

B = f || A(λ)f(λ) \\ldμ(λ) ^Kl\\ f(λ) \\*dμ(λ) = K \ \ f \\2

C with K=\\A\\BC

As a summary, we say that A is "decomposable" if A = §A(λ)dμ(λ) where A(λ)
is a.e. the restriction to ^(A) of a countable coherent family {A(λ)BC}, whose
elements come from the decomposition of the countable coherent family of bound-
ed operators {ABC} whose restrictions to 2 gives A. So we just showed that every
At si is decomposable. (We shall not write the bar on A(λ) any more).

Lemma 4.3.4. Let A,A'esi. Then A + A.AA and A+ are decomposable and
we have almost everywhere (A + A')(λ) = A(λ) + A'(λ\(AA)(λ) = A(λ)A'(λ) and

Proof. The only thing which is not obvious is the last statement about the adjoint.
Let/, #e^, AEJ$ and MeJί corresponding to meL°°(/L,μ). Since Me<$/'w we have
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A(λ)g(λ)) - (A + (λ)f(λ\ g(λ)^dμ(λ) = 0

Since this is true for every meLco(A,μ) it follows that:

(f(λ\ A(λ)g(λ)) = (A + (λ)f(λ\ g(λ)) a.e. (19)

and thus \(f(λ\A(λ)g(λ))\^\\A + (λ)f(λ)\\\\g(λ)\\ for every g(λ)e®(λ), hence

f(λ)eD(A(λ)*). Since this is true for every f(λ)e@(λ) it follows that 2(λ) c D(A(λ)*)
i.e. the Hilbertian adjoint of A(λ) is densely defined. If we put now A(λ)+ = A(λ)*^(λ} ,
(19) shows that A(λ)+ = A + (λ) almost everywhere.

4.3.5. An immediate consequence of this lemma is that any countable Op*-
algebra jtf and its closure j</ are decomposed in sets j/(/l) which are themselves
countable Op*-algebras almost everywhere. The Op*-algebras (j/(λ)9@(λ))
obtained in this way are irreducible a.e., i.e. (s#(λ\ £&(λ))'w is trivial a.e. The proof
of the irreducibility follows essentially from the hypotheses Jί c sί's and
Jt' r\ s$'^ = M and is a repetition of [1] lemma 3.4. and Theorem 3.3 (V). adapted
to our case. Since by [1] again we know that any Op*-algebra (&t,2) admits an
extension (j/, 2) for which such a Jt exists, we have proved the following theorem :

Theorem. Let (««/, 2) be a countable Op*-algebra in a separable Hubert space 3f.
There exists a Hubert space $ containing ffl as closed subspace and a direct
integral decomposition $ = J Jί?(λ)dμ(λ) where μ is a regular Borel measure on a

A
compact space A.

For almost every λeΛ, there exists a countable Op*-algebra s/(λ) on a dense
domain ^μ) of 34? (λ) such that V/e0,

Af=\A(λ)f(λ)dμ(λ)

where >4(λ)ej2/(λ) and f(λ)ε2(λ). The decomposition is irreducible, i.e.
(si(λ\ ®(λ))'w is trivial a.e.

The extention of this decomposition to uncountable, separable Op*-algebras
on a metrizable, dense domain is a non trivial step which can be done by consider-
ing some particular topologies on j/. This is more technical and will be the matter
of a forthcoming paper.
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