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Abstract. We consider generators Q of symmetry transformations acting
additively on asymptotic particle states according to (1.1). [This equation can be
derived for Q defined as integral over a conserved local current!]. For
simplicity, we consider only the case that all asymptotic fields are scalar.
Assuming that elastic scattering occurs at least in an open subset of the
scattering manifold we show that Q is at most a linear combination of
generators of the Poincare group and internal symmetries.

1. Introduction

A couple of investigations led to the conclusion that in a quantum field theory
with sufficient interaction, there are no other symmetries apart from internal ones
and those of the Poincare group. Important contributions were [1] and [2]. In [1]
the conclusion was obtained by assuming in particular the S-matrix to be analytic
in the whole physical region and the symmetry generators to be self-adjoint. In [2],
the conclusion was proven for a subclass of translation invariant generators.

In the present paper we take up this problem within the Wightman framework
augmented by rather modest additional assumptions. Clearly, some kind of
interaction assumption is necessary : It is known from examples that in theories
without interaction there are many more generators than those mentioned above,
see e.g. [5]. Furthermore, if generators are defined as integrals over conserved
local hermitian current densities, there is an example showing that such a
generator need not have self-adjoint extensions [5]. Hence, a hypothesis of self-
adjoin tness should be avoided.

Considering a generator Q as an integral over a conserved local not necessarily
co variant current density, we proved in [3, 4] that

ilQ,ψT(x)~]=Pκλ(x,d)ΨT(x) (1.1)

(Summation convention!). Here, ψ^κ(x) ("ex" stands for "in" or "out") are free

asymptotic fields, Pκλ are polynomials in xelR4 and derivatives d= 1^-7)5
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vanishing for unequal masses Mκή=Mλ. Note that Pκλ does not depend on the
index "ex" so that Q commutes with the S-matrix. This was obtained by assuming

(i) existence of a mass gap above the vacuum,
(ii) isolated one-particle hyperboloids of finite multiplicity,

(iii) in variance of the vacuum,
(iv) asymptotic completeness,
(v) existence of a local interpolating field for every particle.

Starting from (1.1), we showed in [5] that Q on one-particle states with positive
mass, i.e. {Pκλ}κλ, is a polynomial in generators of the Poincare group with
matrices as coefficients operating within the different mass multiplets. Therefore,
in case all asymptotic fields are scalar fields Φ£x, (1.1) can be written as

f[β, <TO]=JU* A - * A> 3β)ΦΓM (1-2)
with polynomials Rκλ vanishing for Mκ Φ Mλ.

It is our aim to show that Pκλ is at most a linear combination of the generators
of the Poincare group and internal symmetries. Concerning the interaction, we
assume within every mass multiplet:

i) For each particle there is another particle such that elastic scattering occurs
on some open subset V of the set of momenta allowed by energy and momentum
conservation.

ii) The mass multiplet does not decompose into subsets of particles with no
interaction between members of different subsets.

The open subset V may depend on the pair of particles.
In the following, we present a proof for the case that all asymptotic fields are

scalar, i.e., we prove the corresponding statement for Rκλ. Since Rκλ vanishes for
MKΦMA, we need only Consider one mass multiplet.

2. Case of Translation Invariant Generators

In the present section, we consider the case of translationally invariant generators
for which (1.2) reads

i[<2,Φf(x)] = RκΛ(δ)Φf(x). (2.1)

The general case will be proved by reduction to this case in Sect. 3. To illustrate
part of the method, we treat first the simplest case:

2.1. One Scalar Field

We consider a theory with only one incoming and one outgoing real field Φex(x) for
the mass multiplet under consideration. Two such particles may give rise to elastic
scattering. The set of momenta allowed by energy and momentum conservation
will be called scattering manifold Jί,
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Lemma 2.1. Let Q be a generator with
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x). (2.2)

Assume that there is scattering (i.e. Sφ \) on some open subset V of the scattering
manifold Jt. Then one obtains

R(d) = avdv, α ve<C.

Proof, i) We need only consider hermitian Q. Then .R on the mass shell is real. It is
odd there since from the Jacobi identity

ιm
R(dx)Δ(x-y)=-R(-dx)A(x-y).

(2.3)

ii) We denote the Fourier transformed fields by Φex(p) and the vacuum by Ω.
From

one gets using (2.1) and i)

(iPl) + R(ip2) - R(ipJ - R(ip4))

• (Φin(p JΦin( (p3)Φ°ut(p4)Ω) = 0 .

The second factor is a distribution with support in
distribution is non-zero in V. Putting

K(ip,iω(p))=:/(p)

we get

ϊ. By assumption, this

~/(P3)~/(P4) = 0> ( P l > P 2 > P 3 > P 4 ) G ^ (2-4)

iii) Now consider (2.4) in the lab system, p2=0. We want to show that (2.4)
extends to the whole scattering manifold in the lab system ML. /(p) is real
analytic. For given p1? the allowed p3, p4=pl — p3 lie on the ellipsoid (Fig. 1)

Fig. 1. Scattering manifold
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with half-axes [6]

We parametri/e the ellipsoid by p3 = p3(p1; β, φ);θ5Ξβ<co;0^φ<2πas follows:

(p3)»=^*-1+j82»

= ρ(]S)cosφ, ρ(β) =

For Piφo, 0</?<oo, 0^<2π, p3 is real analytic in p1? /?, φ.
For p2=0, the left hand side of (2.4) is analytic on ^L\{p1=0} and hence

vanishes there. By continuity, (2.4) holds on all of J(L.
iv) The validity of (2.4) on JIL would imply by a known theorem [7] that / and

thus R is a linear combination of p and ω(p). The constant term vanishes by (2.3).
This would finish the proof. In fact, a simplified version of the quoted theorem will
suffice here, a short proof of which will be reported in the appendix. Π

2.2. Several Scalar Fields

Extending a result of Lopuszanski [2], we now consider the general case of (2.1). In
momentum space, (2.1) reads

). (2-5)

A Jacobi identity similar to (2.3) yields on the mass shell

Rκλ(ip)=-Rλκ(-ίp). (2.6)

We again may assume that Q is real. In case Rκλ is a homogeneous polynomial it
follows that Rκλ is symmetric or antisymmetric in the indices and can be
diagonalized by a unitary transformation of one-particle states which, however, is
p-dependent in general and then useless. For special cases, this complication does
not occur :

2.2. Lemma. Let Q be a generator -with

p), (2.7)

where the p-ίndependent rκλ is symmetric or antisymmetric and R is a polynomial.
Assume that there is elastic scattering, for the mass multiplet considered, in the
following sense: For each particle Q there is another particle τ such that elastic
scattering occurs on some open subset VQτ of the scattering manifold. Then on the
mass shell
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// furthermore the mass multiplet does not decompose into subsets of particles with
no interaction between members of different subsets, then

rκλR(ip) = δκλ(ap + α°ω(p)) + cκλ .

Remarks, i) The interaction assumption is strong in the sense that it must hold for
every basis of one particle states.

ii) The assumption is weak in the sense that VQτ may vary with the pair of
particles considered.

Proof, i) We diagonalize rκλ by a basis transformation mapping {Φ^x} onto {Φ^x}
so that

(no summation in λ\). Considering now

and proceeding as in the proof of Lemma 2.1, we arrive at an equation
corresponding to (2.4)

with

/fi(p):=rβΛ(ip,iω(p)).

In the lab system, e.g. for particle τ (p2 =0), we can as before analytically continue
(2.8) to all of jftv By the appendix,

ft(p) = a# + α?ω(p) + cf , i = ρ, τ ,

with

where aί? α?5 c are numbers. Returning to the original basis, one gets the first
statement.

ii) With the stronger interaction assumption, choosing a suitable sequence of
index pairs one gets that af, α? now do not depend on the index i. Π

The aim is next to reduce the case of general Q to the previous lemma. The idea
is to separate the terms in R of highest degree and show that they are linear by
using Lemma 2.2.

2.3. Theorem. Let Q be a translation invariant generator

with polynomials Rκλ vanishing for Mκ φ Mλ. Consider one mass multiplet (mass M)
and assume that there is scattering in the following sense :

i) For each particle ρ there is another particle τ such that elastic scattering
occurs on some open subset Vρτ of the scattering manifold.
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ii) The mass multiplet does not decompose into subsets of particles with no
interaction between members of different subsets. Then

Kκ,(φ) = <Uap + α°ω(p)) + cKA (2.9)

fa, a° may depend on the mass multiplet).
(Concerning the interaction assumptions, note also the remarks following

Lemma 2.2.)

Remark. If contrary to assumption ii) there are subsets with no interaction between
particles of different subsets, assumption i) implies (2.9) only on the subsets (a, α°
may be different on different subsets).

Proof, i) We rewrite (2.5)

Define the set of coefficients

A : - K0/11"2"3 Φ 0|MK - Mλ = M}

and three subsets

A. : = Kf lΛ2l l3e A|n0 + nt maximal} , i = 1, 2, 3 .

The maximal value nQ + nt occurring in Ai will be called d{. Choose a set Ak with
highest dk. By a choice of coordinates, let fe = 1. For d± = 0, (2.9) follows. So suppose
d^l. Then ̂  has elements bN

K^n\ c^1"1'"2'"3 with n 2 ,n 3 ^JV l 5 N^\=d^.
ii) We want to separate the terms of highest degree in (2.5) by boosts. Apply to

(2.5) a Lorentz transformation

to get for the Lorentz transformed generator

i[_U(Λ)QV- \Λ\ Φ?(p}-\=Rκλ(iΛ

For a boost A^(<y) along the praxis,

)o=Po chα + /?! shα

we consider

In the corresponding polynomials

ΛJλ(ψ) = (chα)-JVlΛIcλ(MΓ1(Φ),

for α-> oo only the highest-order terms will survive, more precisely the terms with
coefficients in Aί :

RϊJip) = lim RIM = (b»Γ"3 + <Zi -l'n2n3)(Po+Pι)
α— >• co

with summation over n2, π3 only.
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iii) Just as Q is defined by Rκλ, the polynomials R™λ define an operator g°° with

iCβ , ΦΓ(ί>)]=R^(ip)ΦT(p) (2-10)
To prove (2.10), define operators i(QxY* by

VF^vw2ω(p)

with canonical creation and annihilation operators belonging to the asymptotic
fields. Then

i[[Q™)ex,.a*x\q)']=R™σ(iqί, iω(q))α£χt(q)

From (2.6) we have for the limit polynomial also that

Hence,

Now Q commutes with 5 as does L/(/l) and therefore Qa. As a form, βα

converges to (β°°)ex. Therefore, also Q00 commutes with S, hence
(g°o)in = (goo)out=: β00 and (2.10) holds.

iv) <2°° needs further decomposition. As a first step, we successively apply
boosts Λ2(α2), v43(α3) in the p2,p3-directions. In the polynomials R™λ, call AΓ2 the
highest degree in p2 and consider

which in the limit α2^ oo, by repeating the arguments of (ii), (iii), yields an operator
Q00'2 with

where the sum is only over n3.
Call N3 the highest degree of the remaining polynomial, and consider

In the limit, this defines an operator Q00'3 with

^κ^ I2'11)

with no summation over Nί9 N2, N3.
Applying (2.6) to the polynomials in (2.11), it follows that b^

is either symmetric or antisymmetric in κ;, λ. By Lemma 2.2 (N1 ^ 1 by assumption,
see above !)

α

Hence, N2 = N3 = 0, Nί = 1, and b™° + c™° is independent of K, A.
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v) By applying a rotation with p±-*—pι to the original Q and following the
steps i) to iv), we see that — b^° + c®®° *s independent of κ,λ. Thus, both
coefficients are independent of K, λ separately.

From iv), ΐ=N1=d1. By definition, dί^d2^d3^Q. Hence the original
polynomial Rκλ is at most linear. To see that the remaining coefficients fc^°, b™1

are independent of κ,λ, take different sequences of boosts and proceed as
above. Π

3. General Case

In [5] it was shown that for a general generator β, the polynomials Pκλ(x9 dx) can
be written as polynomials in the generators Mμv, PQ of the Poincare group. For this
result, we explicitly used M2 >0 thereby excluding the generators of the conformal
group (M2>0, of course, was also used in deriving (1.1) in [3] by application of
Haag-Ruelle scattering theory). This M2 >0 assumption will again be used in the
following. The simplest non-translation invariant generators are :

3.1. Generators of First Order in Mμv

In this case,

*[β, <TO] = «* A - * A)« + dκλ(d)}Φf(x) (3.1)
with polynomials dκλ, dμv

λ = — dv

κ

μ

λ. Application of an infinitesimal translation leads
to a translation invariant generator QQ\ = i\_PQ, Q] and

Theorem 2.3 leads to

«ip)Pμ = ̂ aρ|£Pμ + ̂  (3.2)

on the mass shell. We now need an auxiliary lemma :

3.1. Lemma. For polynomials dvμ(ip) with dvμ= -dμv and

on p2 = M2 it follows that aρμ=-aμQ and bρ = 0.

Proof. Since dβμ is antisymmetric,

a^p^ + b'p^Q

on p2 = M2. Explicitly, with Latin indices running from 1 to 3,

+ {(aίk + akί)piPk + bl

Pi + α°°(p2 + M2)} - 0 .

The curly brackets have to vanish since otherwise ω(p) would be a rational

function, however ω(p)== |/p2 + M2. Since M2>0, equating equal powers yields
the statement. Π
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Application to (3.2) gives ̂  = 0, and

(d^λ(ip)-δκλa^pρ = 0 (3.3)

on p2 = M2, where both terms in the bracket are antisymmetric in ρ, μ. Inserting
(3.3) into (3.1), we get

i[β, ΦΓM] = {(* A - xμdv)δκλa
μ* + <Uδ)}Φf M. (3.4)

Since Mμv clearly is a symmetry generator, Q - aμvMμv is a generator too, with

and hence is translationally invariant. Theorem 2.3 leads to

We have proven :

3.2. Lemma. Let Qbea generator fulfilling (3.1). With the interaction assumptions i),
ii) of Theorem 2.3, owe /zαs

3.2. Generators of Arbitrary Order in Mμv

In [5] it was shown that an arbitrary generator can be put into the form

i[β, <W] = Σ xvίdμι xVnd,nd^ ^»\d)ΦT(x) (3.6)
7 7 ^ 0

with polynomials d antisymmetric under the exchange of v t with μ for the same ί,
and symmetric under permutation of (vί5 μt) with (vk, μk).

We show that terms with N^2 do not occur. Assume JV^2. Then (3.6) can be
rewritten

m ΦΓW] - K, - - -^Λi 3^47μ 1) "(vwμN) + - )ΦΓW? (3-7)
where the dots denote terms of order less than N in x. Consider

for which

where the dots now denote polynomials in d only. Lemma 3.2 implies

P 3̂ ^4Tl)(ρ2^ (3-8)

We apply Lemma 3.1 to pμ3...pμNd(,^μύ(Q2μ2} '(QNμN) which is antisymmetric in μ2,
ρ2 to get a

Vιμιρ2-ρN = Q. Reinserting (3.8) with α = 0 into (3.7) shows that the term of
order N vanishes.
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Repeating the process, one sees that only terms of order 1 may occur. Hence we
have shown

3.3. Theorem. Let Q be an arbitrary generator (fulfilling (1.2),), and assume the
interaction hypotheses i) and ii) of Theorem 2.3. Then

«[β, <TO]=RAH* A - v

4. Concluding Remarks

i) No specific assumption of local quantum field theory has been used in showing
that a Q obeying (1.1) can only be a linear combination of generators of the
Poincare group and internal symmetries in its action on a mass multiplet of scalar
particles with M >0 if there is elastic scattering in the sense of i), ii) of Theorem 2.3.
In [3,4] we derived (1.1) within the Wightman framework of field theory. One
could alternatively take the point of view that every observable commuting with
the S-matrix and acting additively on asymptotic states fulfils (1.2) in any local
quantum field theory, and follow our line of reasoning. An assumption like (1.2)
was the starting point of [8] who applied the method of [1] including
supersymmetries. To avoid complications in the present paper, we did not
consider the case of particles with spin nor supersymmetries.

ii) The present investigation shows that the example of a generator with no self-
adjoint extension given in [5] does not occur in a theory with elastic scattering.

iii) In classical mechanics of mass points (relativistic or Newtonian) the
quantities corresponding to Q are additive conservation laws. The analogue of
Theorem 2.3 is (A4) of the appendix. A classical analogue of Theorem 3.3 may
also be proven.

Appendix

Consider two functions /f(p), 1 = 1,2, pelR3 fulfilling the functional equation

whenever

Pl=P3+?4 (A2)

and

= :/ι(p2) (A3)

i.e. on the scattering manifold JίL in the lab system of particle 2. For a rather
general class of functions /f it follows that [7]

/.(p) = ap + α°ω(p) + bi9 i = 1, 2 ( A4)

with constants α, α°, bt.
The following simple proof for continuously differentiable functions we learned

from D. Maison. [The proof, in fact, uses (Al) only on a small subset of Jίj~\ :
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Inserting (A2) into (Al) and (A3),

whenever

h(vl) + M = h(9

2

3) + h((pl-v3)
2). (A3')

Varying p3-»p3 + <5(p3) on the manifold given by (A3'), we get from (A3')

0 = %3Hp3fc'(P2)-(Pi-P3M(Pi-P3)2)]- (A3")

For variations <5(p3) allowed by (A3"),

0 = δ(p3) (V/1(p3)-V/2(p1-p3)). (Al")

For a variation around forward scattering, P 3=p l 5 (A3") implies

0 = <S(p3) p3.

Replacing f{ by X (p)=X (p)-pV/2(0) for which (Al) to (A3) still hold, we get

0 = δ(p3) V/1(p3)

for all (5(p3) orthogonal to p3. Hence /1(P)=6fι(P2)'

Λ(P)=PV/2(0)+^1(P2) (A5)

and

VΛ(θ)=v/2(θ).
Similarly, by considering a variation P4— Φ4 + <5(p4) around backward scattering

=

p2). (A6)

We have to show that g1=g2 = a°h. (Al") holds for fi replaced by /f. Inserting
fi = gί we get

0 = δ(p3) P30Ί(pt) - δ(p3)(Pι ~ P3K((Pι ~ P3)
2) -

Multiplying with h'(pl) and using (A3/;), we arrive at

Since for p 3 Φpi one may choose <5(p3) such that δ(p3) (pί — P 3)ΦO (see e.g. Fig. 1),

Choosing P3=P! resp. p3=0 [for which (A7) holds by continuity!], one gets

For p = 0, #Ί(0) = 0'2(0) follows. Integrating, we get (A4). Π
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Remarks, i) The proof above works also if the two particles have different masses.

[Then, of course, /f(p) = ap + α° |/p2 + M? + c .]
ii) In case of space dimension two, (A4) holds too as well as the proof above. In

case of space dimension one, however, (A4) does not follow. The scattering
manifold reduces to two points, and any function /(p) = /!(p) = /2(p) then fulfils
(Al).
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