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Abstract. The compressible and heat-conductive Navier-Stokes equation
obtained as the second approximation of the formal Chapman-Enskog
expansion is investigated on its relations to the original nonlinear Boltzmann
equation and also to the incompressible Navier-Stokes equation. The solutions
of the Boltzmann equation and the incompressible Navier-Stokes equation for
small initial data are proved to be asymptotically equivalent (mod decay rate
t75/%) as t— + oo to that of the compressible Navier-Stokes equation for the
corresponding initial data.

1. Introduction

The nonlinear Boltzmann equation for a rarefied simple gas is given in the form
. 1
F,+vaxj=gQ(F,F) (1.1)

where t=0: time, xe R®: physical space, ve R*: velocity space, ¢: mean free path,
F=F( x,v) is the mass density distribution function and Q represents the
quadratic collision operator. Here and in what follows, we use the summation
convention when we are not confused. Let us introduce the fluid-dynamical
quantities as follows:

mass density : o= [F(t,x,v)dv,
. . 1,
fluid flow velocity : u'==[v'F(t,x,v)dv,
Q
momentum: m'=ou’,
pressure tensor: Pii= fc’:ch (t,x,v)dv,
pressure : p=3P¥%
viscous term : pi=PY—psi,

heat flow vector: q'= 3 [ el F(t, x,v)dv,
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. . 1.1
internal energy per unit mass: e= _ji lc|2F(t, x,v)dv,
Q

2
ture: 0= —
absolute temperature IR e,
total energy: E=ge+ Lolul?,

= [31*F(t,x,v)dv,

where c'=v'—u', R: gas constant and 6”: Kronecker’s delta. Then the con-
servation laws derived from (1.1) are given in the form:

o, +(ew),,=0,
(ou), + (eu'v’ + pd¥ +p), =0, (1.2)
(o(e+ 3 [ul®), +(ew(e + 3 |ul*) + pw) +u*p* + ), =0,

where the equation of state is that of “ideal and polytropic gas”, i.e.,
p=Ro0=3ge.

In order to enclose the system (1.2) in the fluid-dynamical variables ¢, u and 0,
the formal Chapman-Enskog expansion

F= Y ¢"F®
n=0

has been adopted where the functions F™ can be uniquely computed in turn as the
functions of v, (g, u, 8) and their partial derivatives with respect to x (cf. [1,4]). In
fact, the first approximation F(® is given by the locally Maxwellian, i.e.,

(0) Q _|“—'U|2
F7= Grrapr exP( 2RO )’ (1.3)

for which the system (1.2) comes to be the compressible Euler equation

0+ (Quj)xj =0,
(ou), +(ou'v! + pd¥), =0,
(ole+ 3 ul?), +(eu(e+ 5 ul?) + pu)), =0,
p=Rg0, e=3R0.
Furthermore, as we show the precise derivation in the later section (Sect. 3), the

system (1.2) corresponding to the second approximation F(© +¢F(® is given by the
compressible Navier-Stokes equation

(1.4)

0 +(ew),, =0,

(ou'),+ (u'’ + pdY), =e(u(us +ul ) — § puf 69, ,

(ole+3ul?), +(euile+ 3 [u)*) +uip), (1.5)
= (il +ul ) — 3 i, +x0, ).,

J

p=Rgb, e=3R0,
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where u=u(f) and k=1w(0) represent the coefficient of viscosity and that of heat
conduction respectively.

Assuming the cut-off hard potentials in the sense of Grad [5] for the collision,
we consider the initial value problem to the nonlinear Boltzmann equation (1.1) in
a small neighbourhood of the absolute Maxwellian state

_ -3/2 lof?
M@)=Q2r)~¥ exp(—7>. (1.6)

Ukai [15] and Nishida-Imai [13] succeeded to solve the initial value problem
globally in time and to show that its solution decays to the absolute Maxwellian
state as t— + co. Their arguments also include the result not mentioned explicitly
that the solutions of the nonlinear and linearized Boltzmann equations are
“asymptotically equivalent modt~ 4 as t— +00” to each other which means,
throughout this paper, that the difference of them decays to zero in L? at the rate
of (1+1t)~%* as t— + oo. We summarize all these results in Sect. 7.

Recently, we [9, 10] solved the initial value problem to the general compres-
sible Navier-Stokes equations including (1.5) in a small neighbourhood of the
constant state (@,0,0) and then we showed that its solution decays to the constant
state. In Sect. 4, we summarize these results and also establish the asymptotic
equivalence modt~>/* as t— + oo between the nonlinear and linearized solutions.
Furthermore in Sect. 5, we consider the following incompressible Navier-Stokes
equation as an approximation to the compressible Navier-Stokes equation (1.5)
around the constant state (2,0, 0):

1
v'-i—va _gﬁ(_) xx+:px-=0
e oo™

. 1.7
vy, =0. .7

The global solutions in time are known in Leray [8]. In the present paper, for
appropriately small initial data, we show that the solution of (1.7) is asymptotically
equivalent modt~3* as t— + oo to that of the heat equation

)
Bioe HO) o,

0 xeJ

Q

¥ =0. (1.8)

On the other hand, in Sect. 6, we show that if the initial data for (1.5) satisfy
(0(0), E(0)) =const and u(O)J =0, the solution of (1.5) is asymptotically equivalent
modt~5/* as t— + oo to that of (1.8) and (o, E) = const. Thus, we may assert that the
incompressible Navier-Stokes equation (1.7) makes sense as an approximation to
the compressible Navier-Stokes equation (1.5) when not only the density but also
the total energy can be regarded as identically constant.

The asymptotic problem of the Boltzmann equation as the mean free path ¢
tends to zero and the relations to the hydrodynamical equations determined by the
Chapman-Enskog expansion at the Euler and Navier-Stokes levels have been
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considered by Grad [6] for the “semilinear” Boltzmann equation locally in time
and by McLennan [11], Ellis and Pinsky [2,3], and Pinsky [14] for the linear
Boltzmann equation. As to the full nonlinear Boltzmann equation, Nishida [12]
obtained the results at the level of the compressible Euler equation that if the
initial deviation from the absolute Maxwellian state is small and analytic in the
space variables, the solution of the Boltzmann equation exists in a finite time
interval independent of ¢ and it converges there, as ¢—0, to the local Maxwellian
distribution whose fluid-dynamical quantities satisfy the compressible Euler
equation (1.4). In the present paper, we consider the nonlinear Boltzmann
equation (1.1) in a small neighbourhood of the absolute Maxwellian state at the
level of the compressible Navier-Stokes equation with a fixed e. Then it is shown in
Sect. 8 that the solution of the nonlinear Boltzmann equation (1.1) is asymptoti-
cally equivalent mod¢™>4 as — + oo to the solution of the compressible Navier-
Stokes equation (1.5) with the corresponding initial data. Here we note that the
difference of the solution of (1.1) from the absolute Maxwellian state has decay
rate (141¢) 7 at least for some restricted initial data which are classified later.
Thus, the second approximation of the Chapman-Enskog expansion is proved to
be valid in a sense.

Finally, an analogous asymptotic problem is considered in Kawashima [7] for
one-dimensional Broadwell model of the Boltzmann equation for a simple discrete
velocity gas. In comparison with this paper, the interesting fact in [7] is that the
solutions of nonlinear and semilinear (not linear) problems are asymptotically
equivalent as t— + oo to each other.

2. Some Notations

Letters x,veR® are the space- and velocity-variables and letter £eR? is the
variable for the Fourier-transform in x. L?(-) (- =x, v, or £) denotes the Lebesgue
space of measurable functions whose p-th powers (1 <p < + o0) are summable in
R? with the norm | f || .. H'(x), =0 denotes the Sobolev space of L*(x)-functions
together with the I-th derivatives, H(¢) is the Fourier transform of H'(x) with the
norm

1/ Wiy = 1A+ 1EN TN e =11 s -
Definition 2.1. L3,(v) is the Hilbert space defined by
Ly@)={f :fM"*eL*v)},

where M is the absolute Maxwellian (2r) ~*? exp(— % [v|?). The inner product for
f,ge L} (v) is defined by

Sfrgp=[f-gMdv.

Definition 2.2. L*(v; L*(x)) [resp. L?(v; L'(x))] is the Hilbert (resp. Banach) space
which consists of L*(x) [resp. L*(x)] valued Lj-functions in ve R® with the norm

A= 1S o)l M (v)du)' 2
[resp. | 2o =( 1L 0l 1M @)dv) 2]
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Definition 2.3. B,, (m,1=0) is the Banach space which consists of H'(x)-valued
continuous functions in v with the property

A+ )" MY £, 0) =0 as Jol—>+ 00,
The norm for feB, ; is defined by

Sl = sup (o) M2 (- 0) i

= sup(L+[o)"M " (- 0) ey
Definition 2.4. Let B be a Banach space. CX0, T; B) (k=0, T>0) is the Banach
space which consists of B-valued k-times continuously differentiable functions in

te[0, T]. L*0, T; B) is the Banach space which consists of B-valued L2-functions
in te[0, T1. :

Definition 2.5. Let f=(f(x), f4(x), ..., f"(x)). D*f (k=0) is defined by

D"f:((%)af", o] =Kk, i=1,2,...,n),

which is a vector composed of all k-th partial derivatives with respect to x.

3. Second Fluid-Dynamical Approximation

We consider the Chapman-Enskog expansion
FFO 4 eFO 4 g2F@ 4 (3.1)
and the corresponding expansion for the fluid dynamical quantities

P p iy gpii (3.2)
G g igegig (3.3)

where {p™-i}®_ and {q™}2_, are determined by

p™ = [ (c'e) = Fc|? 6 F™dv, (34
g™ =3[ ccPF™dv. (3.5)

It is well known that the first approximation F© is the locally Maxwellian (1.3)
and p@-=¢g(®=0, In this section, following the procedure in [1], we determine
FO, p1ii and g™ precisely. To start, we make some preparations. The quadratic
collision operator Q in (1.1) can be written in the form (cf. [1,5])

QF.G)=4% [ (FG+F\G'—FG,—F,G)ClpIv, —vl)dedo, (3.6)

S2x R3

Here v' and v} are the velocities after the interaction of the molecules whose
velocities were v, v, before the interaction and  represents the unit vector in the
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direction of the apse line such that

w=(cosy,siny cosy,sinysiny),

do=sinypdypdy,

, (3.7)

v =v+(w,v, — Vo,

vy =v, —(w,v; —v)w.
Also F,=F(t,x,v,), F'=F(, x,v), F;=F(x,v}) and G, G, G| are defined
analogously. Throughout this paper, we assume the cut-off hard potentials (cf. [5])
ie., the function C(y,|v, —v|) satisfies

0=Clp, Jv, — ) <C, [eosyl (v, — vl +v; —v] ), (3.8)

[ Cp, v, —vl)sinp dp = C,lv, —v|(1+ v, —v)) 71,
0

where C,, C,, and § <1 are some positive constants. Two important spacial cases
which satisfy (3.8) are the hard sphere for which

C(, lv, —v)=C;lv; —v|cosy (3.9

and the cut-off inverse power forces r~° (s=5), for which

Cly,lo, —vh)=lv, —v"Bw),
_s=5
y_ S—]. s

(3.10)

where C, and f(y) are some positive constant and function of  only respectively.
Define the summational invariants

iy o= 23 311
{w},=0—{1,v, . } (3.11)

which satisfy
[YQ(F,G)dv=0 for j=0,1,...,4. (3.12)

Also, introduce the Burnett functions (cf. [2])

ol
Yo7y

(3.13)

- ((D/, U)Z )

where o' is any fixed unit vector. It is easy to see

Vi1, W0 =¥ =(Yon D=0 (i=0,...,4). (3.14)
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For ®e L2,(v), define the linear operator L by

L(®)=2M"'Q(M,M®). (3.15)
By the arguments in [5], the integral equation in L2(v)

L(®)=YeL(v) (3.16)
is solvable if and only if

(Pp'Hy=0 for i=0,1,...,4. (3.17)

So, from (3.14), L™ *('¥,,) and L™}(¥,,) exist in L} (v). Then our assertion in this
section is the following.

Proposition 3.1. p*" and " are given in the form

i j k
. (3.18)
4= —K(0)0,
such that
1 3 ‘1
H E =_Z<q]02aL (T02)> (>O)a
(3.19)

1 3R
K<§)=_7<T117L_1(T11)> (>0).

Furthermore, for the special case (3.9) and (3.10), w(0) and «(0) are given explicitly
~ as follows; for the hard sphere

mm=mmmuG)

R
) (3.20)
_ 12 [+
k(6) =(R0) K(R),
and for the cut-off inverse power potentials (s =5)
s+3 1
WO = (RO ).
(3.21)

x@=mwa;%%‘

Remark. If we take pY=ep™¥ and ¢/=eq*/ in (1.2), then by virtue of this
proposition, we immediately obtain the compressible Navier-Stokes equation (1.5)
corresponding to the second approximation F(® +¢F®,
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Proof. Following [1],
O= @ oyp(— fu—ol®
(27RO 2RO )’
and F" is determined by the integral equation
F(
20(F©, F(l))_ . +UJF(0) (3.22)

where

F® OF® 930  OF© dqui  OF©® 0,0

o ~ o0 o T od o tae o (3.23)
aOQ _ J
L — (), (3.24)
Ot |
o _ i — ~(Rof), , (3.25)
t 70 !
000 . 2,
W =—U ij— §9uxJ . (326)
Substituting (3.23)—(3.26) into (3.22), we have
20(F©, FV)=F©{4¥(log0),, + B }, (3.27)
where
. v—ul> 5\, . .
()= — 2\ (pf—
A') ( Ro. 2) V)
W' —u)(W —w)  o—ul?6Y
i1y} — _
B*o) ( RO 3RO )
Set Vi=(RO)™ (v’ —u'). Then F© is written by the absolute Maxwellian M(v) as
FO@)=0(RO)™32M(V) (3.28)
so that
2M(V)~ 1 QM(V), F(RO) 2V +u)
=(RO)'24%(V)(logh),, + BV, , (3.29)
where
~ V> 5
J| - Jj
Ai(V)= ( 55"
2
Bi(V)=ViVi— ”;'
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Define the linear operator L, from Li/(V) to L;,(V) by

L(®)(V)=2M(V)"" [ (M'®,+M,& —Md, —M,d)

S§2xR3

-C(p, (ROV2|V, = V])dwdV, , (3.30)
where we note that L, =L. Then noting that
(Al yky =0,
(BUyy=0 (0=k<d),
we have
FO(u+(RO)Y2V)=M(V){(RO)™ (logh), L, *(A%)
+(RO)™ 2l Ly *(BY)} . (3.31)
Hence (3.4) and (3.5) give
pV-i=(RO)>? [ VIVIFO(u +(RO)Y?V)AV,

W2 (3.32)
g =(R0O)* jT VIFD(u+(RO)M2V)dV.
Substituting (3.31) into the above, we arrive at after computation
~. ., ~.. i J k .
pi= R?GjMB”LG‘ Y(BY)dV x (ﬁ% —~ (“_;25”),
(3.33)

gVi= RT%) [MAIL; Y (A)dV <0,
Here we use the fact that L, ‘(A% and L; '(BY) are given in the form (cf. [1])
Ly N A)=a"(V) A,
Ly (B)=b"(VI)BY,

where a® and b° are some functions depending only on |V|. Thus we have (3.18) by
setting

RO /(. * N ool O
=— pd LS L pipd — 22§t
wo)= 00 <<vv 3 0 ),L6 (vv 3 o )>,

a5 - ).

Then, using the fact that the right hand side of (3.19) is independent of o’ and (3.34)
again, we have

1 1/ .. W,
)= — { i — =l L pipi — 22§l
,u(R) 1O<vv 3 oY, L (vu 3 0

=- %<1P02, L~ l(lpoz)> s

(3.34)

(3.35)

1 3R _
K(E) = 7<T11’L l(lpl 1)> >
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that imply (3.19). Finally (3.20) and (3.21) are the consequence of
L,=(RO)'*L for hard sphere,

s—5
L,=(R0)*s-VL for power force,

which are proved easily by (3.9), (3.10) and (3.30). This completes the proof of
Proposition 3.1.

4. Solutions of the Compressible Navier-Stokes Equation

We consider the initial value problem to the compressible Navier-Stokes equation
(1.5) with a fixed ¢, so that we may set ¢ =1 without loss of generality. Writing (1.5)
in the variables g, u and 6, we consider

0, +(ew),,=0,

) . 1 1 ; . 2 .
U+ + é(Rge)x, = 5(#(9)(% +uy)— gﬂ(a)u'fcﬁ”)xj, (4.1)
. 2 . 2 2¥
J S0 =2 il
6, +u ij + 3 Ouxj 3Re (K(@)ij)xj + 3Ry’
with the initial data
(0(0, x), (0, x), 6(0, x)) = ((x), ty(x), O(x)) , 4.2)

where
. S )
W:%w;+@ﬂ@ﬁmg—§m@y.
Applying our arguments in [10] to (4.1)~(4.2), we obtain the solution in a small

neighbourhood of the constant state (1,0, R~ !) which corresponds to the absolute
Maxwellian (1.6).

Theorem 4.1. Suppose the initial data
(00— 1,uy,0,— R Y)e H3(x)nL(x)
and set
Mo=llgo— 1,10, 00— R™ M gay + lleo— 1,110, 06— R™ gy -

Then there exists a positive constant €, such that if M, <e,, the initial value problem
(4.1)~(4.2) has a unique solution globally in time such as

0—1eC%0, + oo ; H3(x))nCY(0, + o0 ; H*(x))NL*(0, 4+ o0 ; H3(x)),
(u,0— R~ H)eC%0, + 0o ; H3(x))nCY0, + oo ; H(x))nL3(0, 4+ o0 ; H*(x)).
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Furthermore the solution is classical for ¢t >0 and has the estimates
t
sgp{u(e— Lt 0= RO 2+ | 10— DOl3ece
0

+ 1, 06— R (@) Fray dr} <constMZ, (4.3)
l(@—1,u,0 —R™1)(1)] g2y Scomst(1+1)3*M,, .

In order to study the further asymptotic property, we rewrite (4.1)-(4.2) in the
variables ¢, m and E as

o +my =0,

. (mim? 2 lm|2) y
i - L 511
my +{ 0 + 3 (E 70 .

2 (m* y
7]+ (7))
@ b (4.4)
E,+<5 —'mlzmj)
Q x,
um m 2 um? 2x (E  |m)?
[7{(—) (Q)xk}‘ﬁ—g’( ) *m(e*‘z?)xjx;
3 2
((0), m(0), E(0)) = (Qo’ QoUos Qo <7R 0o+ %))
=(0¢, Mo Eo)» 4.5)

where

2 (E  |mP?
- “(m( -5}

2 (E  |m)?
3R 20%/)°
Corresponding to (1,0,R™'), we consider (¢,m, E) around the constant state

(1,0,2). Getting together the linearized parts of (4.4) at (1,0,3) in left-hand side, we
rewrite (4.4)-(4.5) again as

o +ml =0,
m;+ %E _ﬁmi X, 3:“ x,xJ_ chi (46)
5 2k .
E+2m g =g
+ 2m RQJC]XJ 3R XjXj gJCj’

(0(0), m(0), E(0)) =(g¢, Mo Eo) (4.7)
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where i=u(R™1), k=x(R™1),

O mE L
,\,C”IIA:\_:\:&]@%N&V+At|mv,ﬂ§w\+§%h

0
|w?lSiW%l:?@l:iv +A€|C§V V

3 0 0
2 (e—1m"\
- Ai|@ v 5
= — (! — $ul?Y) + (u— ) (ul,, +ul )
— 3 (u— s, 09— i{((e— D), + (e — D)), .}

21 .
+ 50— i), 8, 48)
. 5 3 o |m)Pm
J= __J_ — J -
I T@ Am N@vs 3¢ W

e ) -5
o Ne/y, \o/s 30 \o/,
2 _ 3
..TWMQAINAQAMIM@VR&
|N|JE 3N, mP

3R\ o 2°) " 207,

Jul*u’
2

, 5R .
= IQAIIQI%lv:I‘
2
+ (A ul)— -y

2 3R 1
+ WMQAleAMAQINNI»V+M_2_Nv

Xy

- Srfemn(Fo-rn g} - R, ®9)
Setting N
N=1(n°, n',n%)
='o—1,m, 2E- |/30), (4.10)
Fi=Y0, {4, ~\wm3u (4.11)
0 —id,, 0
P A m@m} -V3a,,| “4.12)

0 ~/%a,, R4
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(4.6)~4.7) is written in the form
N,=AN+F],

_ (4.13)
N(0)=No=40o—L,mi, |/2Es— /3 00)
or the Fourier transform of (4.13)
N, = AN +i&,F, .
N©)=N,, '
where
0 i, 0
. . —_ zéjk E . . l .
4@ =— | FEPO™ + 288, iy/2¢ , @15

. 2k
T
Let us review the results of spectral analysis for A(£) that was precisely investigated
in [10]. The characteristic equation for A(¢) is
det(AI — A(&) = (A+ HE*)* f(4) =0, (4.16)
where
4 2ic 8 5 2K
3 (T MV g292 [0 moigia T x2 AT
10y =2+ (370+ S+ (g miee+ 516 s St
Set 45(é)= —nl¢]>. Denote the roots of f(A)=0 by {1/¢)}7_, and the spectral

resolution for ¢4® by

3
24©) .;O e P9, (4.17)

J
where P (¢) is the corresponding projection matrix.

Lemma 4.2. 1) 1(0)=0 and Re4,({)<0 for any |£]>0 (0<j<3).

i) Rank(A5(E)I — A(€))=3 for any |&| >0 except at most one point of |&|.

iii) There exists a positive constant ry such that for any || <r;, A(&) has the
Taylor series expansion

o= ¥ Ay, 0si<y) @18)

and more concretely

.
2ol&)= = S IER+02P),

5 2/_ K
Mé)=z%ié|— 5(#+ g’%)muoaém,
A& =1,(),

A5(&)=—Hlé.
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iv) There exist positive constants B, and B, such that for any |&|<r;, —f|¢)

SReA (9= —p,lEP 0=j=3).
V) There exists a positive constant 8, such that for any |¢|>r, Rei (&)< —p,

(0=j=3).
vi) The representation (4.17) makes sense for any |£|=0 and for |&|>r,

|e4O) S ClL+ 17,

where || - || represents matrix norm, and for |{|<r,, P(C) has the Taylor series

expansion
PO= Y (PP, o=t
n=0

where {P\"(w)}3_, are orthogonal projections and are given by

0o -313

2
5
PO@=| 0 0o |,

(T[N

o O

PP)=

W= D=
= < ok <
W] »njw N
£
=
kS
S
|
[N
(TN i
wo] Njw
RS

0 0 0
PP(w)=10 6—ww; O
0 0 0

Lemma 4.3. Define ¢“G for Ge L*(x) by
e1G=(2m) 7302 [ et M OG(E)de .

Then for Ge L*(x)nL*(x),
1e4Gl 2 S (1 +1) (1G] oy + 1G | L1y

and for Ge HY(x)nL(x),
IDHE G gy S (L + 1) (G| gage + 16l 11y -

By virtue of Lemmas 4.2 and 4.3, we can show the asymptotic equivalence
modt~ %% as t— + oo between the nonlinear solution N(f) and the solution of the

linearized equation which is defined by

W(t)="(w°,w', w*)
=e“N,, (4.19)






