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Generalized Axisymmetric Spacetimes^

Franco Bampi and Roberto Cianci
Istituto Matematico dell 'Universita 1-16132 Genova, Italy

Abstract. Properties of space-times admitting a two parameter abelian sym-
metry group acting on a null two-surface are investigated. Within this frame-
work, a class of new solutions of Einstein's vacuum equations are found. Some
analogies with the theory of black hole are pointed out.

1. Introduction

One of the most useful techniques for finding new solutions of Einstein's gravi-
tational equations is surely to require that the space-time admits an assigned
group of symmetry, namely a suitable set of Killing vector fields. This kind of
procedure has given excellent results even if the space-time admits a group of
symmetry depending on two parameters only. The Lewis line element [1]

ds2 = e^dx1)2 + e\dx2)2 + Xdφ2 + IWdφdt - Vdt2, (1.1)

where F, W9 X, μ, v are functions of x1, x2 only, is undoubtedly the most celebrated
example: indeed, under very weak and general assumptions, the final state of a
stationary rotating black hole can be exhibited in the previous form (see prop.
9.3.6. of [2]).

The line element (1.1) is uniquely determined by the following properties:
(αj there exists a two parameter abelian symmetry group;
(a2) the generators of the group kι and mί satisfy the circularity condition

^[a bkcmd] ~ " '

(α3) the two-surfaces of transitivity V2 of the group are non-null.
From a geometrical viewpoint, the previous properties are the conditions that
there exists a family of two-surfaces everywhere orthogonal to the surfaces of
transitivity of the group (orthogonal transitivity condition [3]). Notice that
orthogonal transitivity does not hold when the surface V2 becomes null: this is

* This work was carried out under the auspices of the National Group of Mathematical Physics
ofCN.R.
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tantamount to require that VX + W2 = 0, which, in turn, makes Lewis' line
element singular. This is the actual behaviour of the metric (1.1) on the horizon
of an axisymmetric black hole.

In this paper we analyse the class of metrics satisfying (aι),(a2) and the
following:

(α3)' the two-surfaces of transitivity F* of the group are null.
The most general line element which satisfies conditions (ax\ (a2), (α3)' may be
found in Petrov's book [4]. By straightforward transformations, the metrics (29.2)
and (29.4) of [4] can be exhibited in the form

ds2 = 2(S(r, z)du + P(r, z)dv + X(r, z)dr)dr + V2(r, z){R{r)du + dv)2 + dz2/q2{z)

(1.3)

d/du9 d/dv being the Killing vector fields. Notice that, in the case R = 0, the field
d/du is null and d/dv is spacelike; on the contrary, when R^O, the fields d/du, d/dv
are both spacelike, besides no generality is lost by choosing R(r) = r.

Section 2 is devoted to solving Einstein's vacuum equations assuming the line
element in the form (1.3). The solutions of type II, all of which have complex
dilatation p = 0, are believed to be new. It is worth remarking that the solutions
which can be obtained from the Ernst theory [5, 6] (VX + W2 = variable), the
Hoffman solutions [7] (VX + W2 — const, ψ 0), and the solutions found here
(VX + W2 = 0)1 exhaust the class of metrics satisfying (aj, (a2). In section 3 we
investigate the possibility of interpreting the metric (1.3) as a space-time filled
by "horizons" with zero surface gravity. Finally, for the convenience of the reader,
we give, in Appendix, the expression for the curvature two-forms and for the
Newman-Penrose components of the vacuum Riemann tensor.

2. Vacuum Metrics

In this section we solve Einstein's vacuum equations for the metric (1.3). The
differential system (A.7) -=- (A. 12), we are dealing with, is listed in Appendix.

Case R = 0.
Choosing q = l, equation (A.8) is trivially satisfied if Sz = 0. This assumption

immediately leads to type N metrices with p = τ = 0 (i.e. pp-waves). They were
studied exhaustively by Kundt in [9] (see also [10]).

Let us consider the case 52 Φ 0. Equations (A.8), (A.9), (A. 10) may be solved
straightforwardly. Comparison with (A.ll) yields:

13 (2.1)
4'3 (2.2)

where β is an arbitrary constant and δ(r), ε(r) are arbitrary functions. Now, equation
(A.7) gives:

P = (z + δf'\λ(r) + μ(r)(z + δ)~2] (2.3)

1 Although the form (1.1) is not available for the metric at hand, the obvious definitions [8] V = - kfC,
X = m.m1 W = k^rt are retained also in the present case.
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λ{r), μ{r) being arbitrary functions. Finally, by means of (A. 12), we have:

X = a(r)(z + δf'3 - y(r)(z + δf'3 In |z + δ \ + 3(z + δ)(δrr - δrer/ε)

+ δ)-2'3-δf/2. (2.4)

Once more α(r), y(r) are arbitrary functions. In general, the resulting metrics are
of type II with p = 0; particular choice of the arbitrary functions specialize the
metric to type D only.

Case R = r.
In the present case we limit our analysis to the choice P = 0 in the line element

(1.3)2. Using equations (A.7), (A.8), (A. 10) we obtain:

V3=p3(r)q(z)Sz/S (2.5)

+ m(r)] (2.6)

where w(z), m(r\ p(r) are arbitrary functions. Now, inserting (2.5), (2.6) in (A.8),
a straightforward but tedious calculation shows that m and p are constant. This
implies that V and S are functions of z only: hence equations (A.7), (A.ll) are
trivially satisfied.

It is worth noticing that an attempt to solve the differential system (A. 8),
(A.9), (A. 10), choosing quite naturally q = ί9 gives the quantity SJS in terms of
elliptic integrals. To avoid this difficulty, we choose S to be the coordinate z.
In this way, sostitution of (2.5) in (A.8) gives a first order equation for q(z) only:
the integration is now straightforward. Explicitly we obtain:

q = z-1/2(cz-pψ4, (2.7)

c being an arbitrary constant. In view of this result, equation (A.9) is identically
satisfied and equation (2.5) yields:

V=pz-1/2(cz-p2)1/4. (2.8)

Finally, due to the previous results, equation (A. 12) yields:

X = z[a{r) + ε(r) In \cz - p2 \ ] , (2.9)

α(r), ε(r) being arbitrary functions. Actually α(r) is inessential. In fact, by performing
the coordinate transformation

u —• u — jα(r)rfr,

v ~^ v + jo

the line element corresponding to the ansatz α ̂  0 is reduced to the one which
can be obtained by putting α = 0. We point out that the choice ε(r) = 0 leads to
a type D metric, namely the metric IV A of Kinnersley's catalogue [11]. The
general case ε ψ 0 is a type II metric with p = 0.

2 The general case P Φ 0 is very cumbersome, hardly practicable and will be not considered here.
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3. Comments

The structure of the metric (1.3) allows us to derive the following results:
(foj for every V* there exists a null three-surface H, given by r = const.,

such that F f c H ;
(b2) the vector field normal to H is ( = d/du - R(r)d/dv
(b3) £ is geodesies, non-diverging (p = 0), and affϊne parametrized.

In view of the evident analogy with the properties of a stationary black hole
[2, 8], one could be led to determine whether the surfaces H represent horizons.
If this were the case, adopting for every H,r = r0, the well known definitions
of temperature K (surface gravity) and angular velocity Ω, one could show that
K = 0 and Ω = R(r0). However this interpretation does not seem possible in the
vacuum case. Indeed, if H were an horizon, its topology should be S2 x U. Consider
now the slice Σ given by r = const, and u = const.: as Σ is spacelike we should
require its topology to be S2 [12]. Unfortunately, independently of topological
identifications on the coordinate v, the two-area of Σ is always unbounded. In
the case R = 0 the proof is straightforward. On the other hand, even in the general
case R = r, P ψ 0, it is possible to show that, setting q = 1, ζ = S - rP, the metric
on Σ becomes:

dσ2 = p2(r)ζ~ \c(r)ζ - p2(r))1/2dv2 + ζ(c(r)ζ - p2(r)Γ3/2dζ2 (3.1)

where c(r), p(r) are arbitrary functions: then the proof is again straightforward.
On purely physical ground, it is our opinion that the right topology on H

could be obtained only by using some pathological energy momentum tensors
[13].

Appendix

We consider the following metric:

ds2 = 2ω°ω1 + (ω2)2 + (ω3)2, (A.I)

where

ω° = dr,

ω 1 = S(r, z)du + P(r, z)dv + X(r, z)dr,

ω2 = V(r,z)(R(r)du + dv),

ω3=dz/q(z). (A.2)

By means of Cartan's calculus [14], we obtain the following connection one-
forms :

ω°0 = aω° +f/2ω2 - d/2ω\ ω\ = - bω° -fβω1 - gω2 - e/2ω3

ω°2 =f/2ω° ω\ = - cω° - dβω1 - e/2ω2

ω°3 - - d/2ω° ω2

3 = - e/2ω° - hω2 (A3)
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where

S-RP qV{S-RP)

b = spL-PSι^ , _ vR

r

V(S-RP)

S-RP * z υ V S-RP

11 S-RP " * V

The curvature two-forms follows at once, namely:

θ°0 = Aω° A ω1 + Bω° A ω2 + Cω° A ω3 + 2Dω2 Λ ω 3

θ°2 = Eω° A ω2 + Dω° Λ ω 3

θ°3 = - Dω° A ω2 + Fω° Λ ω 3

θ1

2 = - Bω° A ω1 + Gω° Λ ω 2 + Hω° A ω3 + Eω 1
 Λ ω 2 - Dω 1

 Λ ω 3

+ J ω 2
 Λ ω 3

θ*3 = - Cω° A ω1 + iίω° Λ ω 2 + Kω° Λ ω 3 + Dω1 A ω2 + F ω 1 Λ ω 3

+ Lω 2
 Λ ω 3

θ2

3 = - 2Dω° A ω1 + Jω° Λ ω 2 + Lω° Λ ω 3 + M ω 2 Λ ω 3 , (A.5)

A = 3/2/4 - d2/4 G= -gr + ag- bf- g2 -ch + e2/4

B =/ r/2 +/flf - de/4 H = qbz + er/2 - cf/2 - ae/2 + bd/2

C = dJ2 + 3β//4 J = qgz~ 3β//4 - gfc + rf^/2

D = - ^/z/4 +//z/4 X = ̂ cz + e2/4

E = -f2/4 - dh/2 L = ̂ βz/2 - de/2

F = qdJ2 - d2/4 M = qhz- h2 (A.6)

Einstein vacuum equations may be cast in the following form:

B + L = 0 (A.7)

A + 2E = 0 (A.8)

4 - M = 0 (A.9)

E-F = 0 (A.10)

C-J = 0 (A.ll)

G + K = 0 (A.12)

Introducing the null tetrad ω°, —ω1,ω2± iω3, in the vacuum case the Newman
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-Penrose components of the Weyl tensor read [15]:

Ψ3 = 2" 1/2(B - iC\ Ψ4= -G + ίH (A. 13)

Remark. For the sake of completeness, we analyze space-times which satisfy

(αt) and (α3)' but not (a2). In this case the line element is [4]:

where ω° = dz, ω1 = Adu + Bdr, ω2 = C(rdu + dv) + Ddr, ω3 = £(rdu + dv);A, B,

C, D, E being functions of r, z only. Now, a straightforward calculation of the

anholonomic component G n = Rtl = RPίpl yields:

G n = - f ( £ 2 + C2)2(ADEy2 (3.2)

which shows at once that there exist no vacuum metrics. Moreover, taking into
account Einstein's equations Gtj = 8πT.., it is an easy matter to verify that the
weak energy condition (T.jkW ^ 0, k non-spacelike [2]) is never satisfied assuming
k = g-\ω°) = A-\d/du - rd/dv).
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