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Abstract. We consider an algebraic invariant for non-commutative dynamical
systems naturally arising as the spectrum of the modular operator associated
to an invariant state, provided certain conditions of mixing type are present.
This invariant turns out to be exactly the annihilator of the invariant T of
Connes. Further comments are included, in particular on the type of certain
algebras of local observables.

1. Preliminaries

Following a standard terminology we say that a triple {M, G, α} is FK*-system if 01
is a von Neumann algebra, G is a locally compact (Hausdorff) group and
α: G—>Aut(^) is a representation of G by *-automorphisms of M such that the
map geG->otg(A)e& is ultra weakly continuous for every Ae&.

Amply motivated both by mathematical and physical reasons, such non-
commutative dynamical systems have been studied for several years by many
authors, part of them being interested in particular in the determination of the
algebraic type for 01 (e.g. [1-9]).

As a motivation example, let us give a direct proof, in the factor case, of a
theorem of Hugenholtz [6] and Stormer [2,7] (the general proof would not be
more difficult).

Theorem 1. Let {01, G, α} be a W*-system, where 02 acts on a Hubert space Jf. Let
us assume the existence of a unitary representation U of G on ffl, which implements
α, such that U(g)ξ = ξ, geG, where ξeJt? is cyclic for & and (£ξ are the only
XJ-invariant vectors. Then 2k is of type III or ξ is a trace vector for &'.

Proof in the factor case. We can assume ξ cyclic and separating for M, otherwise
considering E0lE,E = {β'ξ\. Let ω be the positive functional ω(A) = (Aξ, ξ\ Ae0l,
and σω its modular group. We have to show that if ̂  is semifinite, then ω is a trace,
that is σω is trivial. If 01 is semifinite there exists a one-parameter unitary group
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such that

σ?(A) = V(t)AV(-ή, Ae&, ίelR.

As ω is α-invariant, σω and α commute, thus

= σ?(A) = V(t)A V( -1), A e M,

that is αg(F(ί)) and V(t) implement the same group on 0ί', thus

We have

As ί->0, F(ί) strongly tends to / and ω(V(t)) does not vanish near zero. Fixed geG,
λ(g, t) is then a character of R equal to 1 on a open set, therefore λ(g, t) = ί
identically. It follows that V(t) is a fixed element for α. As ξ is separating, the
α-fixed points are scalars, therefore VC<EI and σω is trivial. Π

The above theorem furnishes simple conditions to derive the type III property,
in particular 1 must be a simple eigenvalue for U. However, these conditions
cannot determine the invariants S or T of Connes [12] and a more specific
analysis is needed. Assuming a strongly clustering property with respect to ω and
the norm asymptotic abelianness for a dense subalgebra, Stormer [1] proved that
spec(ω) (the spectrum of the naturally associated modular operator) is an algebraic
invariant equal to the invariant S (at least in the factor case).

Here we shall deal with a much weaker assumption, which in the factor case
means that the point spectrum of U contains only one point and 1 is a simple
eigenvalue for U. In such case spec(ω) is still an algebraic invariant equal to the
invariant S for non type III 0 factors and equal to the annihilator of the invariant T
in the general situation. The type IΠ 0 anomaly can occur, as shown in the
examples.

In Appendix II we shall give a simpler and more general proof of Stormer
result. This will be obtained as the combination of two propositions that may have
their own interest. In such way we shall clarify the role and the localization of the
effect of the asymptotic abelianness.

We shall make other remarks, for instance we present a little extension of a
theorem of Driessler [3], necessary for example to derive the type 11^ property for
some algebras in quantum field theory, without assuming any mass gap condition.

2. Determination of Algebraic Invariants

Let {<%, G,α} be a W*-system, U(β) the group of the unitary operators of 0ί and
aut(C/(^)) its automorphism group. The representation α induces an action
α : G-»aut([/(^)) that leaves invariant the normal subgroup U(β£) of U(β\ where
^ = MΓΛM'. Thus one can naturally forms the action α: G->aut(C/(^)/£/(JQ). We
consider the following condition, which is somewhat of mixing type.
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Condition M. The only fixed point for the action άis the unity of XJ(β)jXJ(β\ i.e.
Vt\J(β\ 0Lg(V)V-1e3ί, all geG^Ve^.

The above condition occurs in each of the following cases:
(a) M is a factor and a contains only one one-dimensional subrepresentation.

Note that in this case α is ergodic, that is

therefore any eigenoperator of norm one must be unitary. In particular we have
this if α is weakly mixing in the sense of Doplicher and Kastler [13] with respect to
a α-invariant state

mJω(A*αg(A))-|ω(A)|2 |==O, A e ^ , (1)

where m is the Godement mean on G. Indeed condition (1) is equivalent to the
absence of finite-dimensional subrepresentations of α, except the trivial one-
dimensional one.

Another sufficient condition for α to have only one eigenoperator is that α is
strongly clustering with respect to a faithful state φe0t^ in the sense that, for every
A, Be3%, there exists a sequence gneG such that

φ(ugn(A)B) -• φ(A)φ(B) as n^oo.

(b) The system is asymptotically abelian in the strong topology in the sense that,
for any given A,Be0t, there exists a sequence gneG such that

\\l*gn(A),B-]x\\-+0 as n - o o (2)

(convergence in mean suffices) for every x in the underlying Hubert space jf. To
check condition M let Ve U(β) transform as <x,g(V) = λ(g)V with λ(g)e&. We then
have

that entails
The condition given by formula (2) usually occurs when dealing with a local

structure, namely there exists a faithful α-invariant state ω e ^ strongly clustering
with respect to α and α is norm asymptotically abelian on a dense subalgebra (e.g.
[4])

(c) 01 is abelian.

Lemma 1. Let {01, G, α} be a W*-system and assume that condition M holds. If C is
the center of G, for every heC, oth is inner iff och is the identity automorphism.

Proof. For a fixed heC we have to show that if there exists Ve& such that <xh(Ά)
= VAV*, Ae&, then Ve0l'. Since h commutes with every geG we have

Hence V and cng{V) implement the same group on 0t, thus α 0 ( F ) F ~ 1 e ^ / n ^ and,
by condition M, Ve0ϊr\0l. •

For the sake of completeness we prove the following known lemma.
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Lemma 2. Let {01, G, α} be an ergodic W*-system and {01, H, β} another W*-system
with H abelian and β commuting with a. Then sp(β), the spectrum of β, is a closed
subgroup of the dual of H.

Proof. We have to prove that if p,qesp(β), then p-qesp(β), that is the spectral
subspace &{β, E) is non-trivial for every neighborhood E of p — q. Indeed let Et

(i = 1,2) be neighborhoods of p and q respectively such that E1 — E2CE and choose
OΦ^e^jS,£•). For every geG we have oc^A^A^e^β^) (α leaves invariant the
^-spectral subspaces) and, for some geG, ot^A^A^ + O because
F = support {(XgiA^geG} is α-invariant, thus F = I. •

We now introduce an algebraic invariant for von Neumann algebras naturally
appearing when dealing with condition M. As usual Aφ denotes the modular
operator of a state φ.

Definition 1. Let M be a von Neumann algebra. We put

Sg(«)= Π S P ( ^ Φ )
φ

where φ runs on the set of normal faithful states of 01 such that sp(z^) is a
multiplicative subset of R [i.e. sp(σ<10) is a group]. Such states always exist, as next
proposition will show.

By its they definition Sg(^)\{0} is a closed subgroupof R + . We shall see that it
is fully expressible in terms of the Connes invariant T (the subgroup of R, not
closed in general, of all ί e R such that σf is inner for one, thus for every, faithful
state φe&J. As a consequence Sg is not unrelated with the invariant S
(intersection of sp(Aφ) for all faithful states φeR^).

Proposition 1. Let M be a von Neumann algebra with separable predual M^. We
have:

(i) There exists a faithful state φe$^ such that sp(zlφ) is multiplicative.
(ii) Sg(^)\{0} = T{m)L (duality between R and R + J .

(Hi) Sg (β) D S(β) and, if 01 is a factor not of type IΠ0, Sg (βft) — S(β).

The proof of this proposition will be given later. We now calculate invariants
for a class of F^*-systems.

Theorem 2. Let {01, G, α} be an ergodic2 W*-system obeying condition M and ω e f φ

an (^-invariant state. We then have
(i) T(β) is a closed subgroup of R equal to the kernel of the map

f ( )
(ii) 9ί is of type III or ω is a trace for 9ί.

(Hi) Sg(i*) = sp(ΛJ.
(iv) T(^) = (Sg(^)\{0})1 (duality between R + and WL).
The case S(β) φ Sg (β) can occur.

Proof, (i) Note that the support of ω is a projection of 01 which is α-invariant, hence
by ergodicity equal to / and ω is faithful. We shall prove that for fixed ίeR, σf

ω is
inner iff σ™ acts identically. Since ω is α-invariant, σω and α commute and we can
form the VP-system {f ,GxR,α°σ}. An application of Lemma 1 yields the
desired result.

2 Having condition M, ergodicity is equivalent to ergodicity on the center
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(ii) This is a general consequence of Theorem 1, but here it follows directly by
point (i). The representation α leaves globally invariant the type component of ^ ,
thus their supports are fixed points. As α acts ergodically, M is of type III or
semifinite. If & is semifinite T{β) = 1R, therefore by point (i) σω is trivial and ω is a
trace.

(iii) By Lemma 2 sp(σω) is a group, thus Sg(^)Csp(zlω). To get the reverse
inclusion, we show that sp(Aω)Csp(Aφ) for every faithful state φeM^ such that
sp(zjφ) is multiplicative. If sp(zlφ)C {0,1}, then Δφ = I and φ is a trace; by point (ii)
also ω is a trace and sp(zlω) = {l}. If sp(zJφ) = ]R+ the inclusion is obvious. Finally
if, for some μe(0,1), sp(Δφ) = {μn,neZ}~, we have the following chain of impli-
cations where t0 = 2π/log μ

>&? =l=>σf is inner =>σf

ω is inner
to to to

=>sp(Δω)C{μ\neZ}-

where we made use of the Connes cocycle Radon-Nicodym theorem and of the
above point (i).

(iv) This follows easily by points (i) and (iii) or by (i) and Proposition 1.
In the examples we shall see that Sg may be strictly larger than S. •

Remark 1. There can be algebraic properties that allow us to calculate S(M) in the
above theorem. For example if M is a factor and sp(zlω)\{0} is cyclic and non-
trivial, then either the centralizer 0lω is a factor and 5'(^) = sp(zlω) or the center of
mω is non-atomic and S(β)= {0,1}.

Corollary 1. Let 01 be a factor acting on a separable Hubert space J4f, ζe J f a cyclic
vector for & and U a unitary representation on fflofa locally compact group G such
that U{g)MU(g)'~1 =0t, U{g)ξ = ξ, geG. Suppose that, on the orthogonal subspace of
ξ in Jf7, U has no one-dimensional subrepresentation. Then spec(ω)\{0}=Sg(^)\{0},
where ω(Λ) = (Aξ, ξ), AeM.

Proof Let E = \β!ξ\e0t as U(g)E = EU(g\ geG, and ξ is cyclic and separating for
E01E, the ^-system {EME, G, α} ag(EAE) = EU(g)AU{g)~1E, verifies condition M
and spec(ω) = Sg(E&E) by the previous theorem. Now M is semifinite iff @t' is
semifinite iff 0t'E is semifinite (β' is isomorphic to m'E) iff EStE = {St'E)' is
semifinite. In such case we then have

by Proposition 1. Otherwise 0ί is a type III factor so that 01 is isomorphic to EϊME
and Sg(^) = Sg(£^£). Q

Corollary 2. Let 2ί be a separable unital C*-algebra and φ, ωe'Ά* factor states that
are invariant and weakly mixing with respect to an action of a locally compact group
(not needed to be the same for φ and ω). //spec (ω)\{0} φ spec (φ)\{0}, then the GNS
representation πφ and πω are disjoint.
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Proof. Being factor representations, πφ and πφ are either disjoint or quasi-
equivalent. The weakly mixing condition holds also in πω(9I)" and π (31)",
therefore if π ω and πφ are quasi-equivalent, by the above corollary, we must have
spec (ω)\{0}= spec (φ)\{0}. D

Lemma 3. Let 3F be a type 1^ factor with separable predual. For every closed
subgroup Λ.=f={l} o/IR+, there exists a faithful state c o e ^ such that sp(Δω) = Λ.

Proof We first construct ω with sp(Δω) = {λn,neZ}~, for a given λe(0,1). #" is
isomorphic to ^( j f) , #? a separable infinite-dimensional Hubert space. Let Tr be
the trace of 38(#ΐ\ H e ^ ( j f ) a positive non-singular trace class operator such that
sp(H) = {λn,neN}~ and ω = Tr(H )/Tr(if). In a standard representation of 3F on
Jf (x)Jf, where JΓ is a Hubert space isomorphic to J"f, we can identify Δω with
H®H~13, therefore sp(Δω)={λn,neΈ}~. As to the case Λ = Ϊ F , we choose
λ1,λ2e(0,1) with log(/l1)/log(A2) irrational and ω{ faithful normal states of 3F such
that spCdωi) = {λ?,neZ}~ (i = l,2). Since #" is isomorphic to J * ® ^ the state

{ is a state of 3F with sp(zJω) = IR+. Π

of Proposition 1. (i) If 0t is finite the assertion is trivial. Otherwise 0t
decomposes as &1®&2 where Mγ is a finite von Neumann algebra (possibly zero)
and 012 is a properly infinite one. It is enough to show that s p ( ^ ) = IR+ for one
normal faithful state φeM2^ hence we can assume M to be properly infinite. 0t is
then isomorphic to @t® J^, #" a type /^ factor. By Lemma 3 there exists a faithful
state ω e ^ with sρ(zlω) = IR+, therefore, for any_faithful state ψe^., the state
φ = ψ®ω of ffl®^~8% has spectrum sp(zlφ) = lR+.

(ii) If T(^) = {0} the assertion follows by the above point (i), hence we can
assume Ύ(β) to be non trivial. If 01 is finite the assertion is obvious. Otherwise we
shall show that, for each ίoeT(f)\{0}, there exists a faithful normal state φe$^
with sp(zlφ) = {iί,II

JwGZ}~5 where λ = exp (2π/ί0). By an argument similar to that
given above, we can again assume 0t to be properly infinite, thus 0t is isomorphic
to M®^. By [14, Theorem 1.3.2] there exists a faithful state ψe&^ such that
^ ° = 1. Taking a faithful state ω e J ^ , given by Lemma 3, such that

) = {λn,neΈ}~, the state ( p Ξ i p g ω e f f ® ^ is then a state of ^ such that

(iii) The inclusion is obvious from (i) and the other assertion follows from (ii)
and the Theorem 3.4.1 of [14].

Remark 2. We could define Sg {β) letting φ vary among the semi-finite faithful
normal weights of R with multiplicative spectra. In this case Proposition 1 is still
valid with S defined in terms of weights.

3. Examples

Condition M occurs in many cases of interest, for instance in quantum field theory
due to the usual presence of the strong asymptotic abelianness. The simplest
example is however furnished by the Powers factors: as shown in [1] each such a

3 This follows easily identifying canonically 2tf®X with the Hilbert-Schmidt operators HS(j^),
thus ^(Jf)(g)l with τiβ{2/e)\ where π{A)B = AB, Ae@(3tf\ BeHSffl), and the equality
π(σ?(A)) = π(HitAH~it)
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factor M belongs to a FF*-system {<%, G,α}, where α contains only the trivial one-
dimensional subrepresentation, as we can check easily since a is strongly clustering
with respect to a faithful state ω e l r In this way one can construct type IΠA,
λe(0,1], or ll1 factors, but the rich structure that one has, namely the presence of
norm asymptotic abelianness for a dense C*-subalgebra, prevents M from being of
type IΠ 0, thus $g(M) = S(0l) by Proposition 1. We now construct examples where
Sg =t= S. All von Neumann algebras will have separable predual.

α) For every Λ,e(0,1) there exists a W*-system {Ji,H,y} obeying condition M,
where Ji is a type III0 factor and Sg{Jί) = {λn,ne^}~.

Proof. We need a structure theorem of Araki [20] and Takesaki [12] of which we
recall the part of interest for us. Ingredients are: a finite von Neumann algebra <ffl0,
a projection Ee&0 with E* =λl and an isomorphism <9 of &0 onto E&0E. Then
one requires that the automorphism § of 3ίo = StonSt'Q defined by §(A)E = 8(A)9

Ae£?0, acts ergodically on £f0 leaving invariant a state φoe££o^. Having this, one
forms a type III factor M = 9t(^?0,S) which has some of the features of a discrete
cross product. φ0 canonically extends to a state φeM^ with sp(Aφ) = {λn,neZ}~.
Moreover an automorphism τeAut(^ 0 ) is admissible, that is it extends to a
τe Aut(^) with φ°τ = φ, iϊΐ there exists a partial isometry We&0 such that

τ(A)) W*9 A@

Conversely any factor 0t belonging to an ergodic FF*-system {β9 G, α} with an
α-invariant state φeM^ sp(Δφ) = {λn,neZ}~, can be realized as 9ϊ(^?0,θ)5 where
&0=&φ is the centralizer of φ.

Now take {M, G,α} be the above mentioned example with M the type IΠ λ

Powers factor, ωe0t^ the α-invariant state and {^o,G,α0} the FJ/^-system
obtained considering the restriction α° of the representation α to &0=$ω: as ^ 0 is
a factor the system verifies condition M.

Let {<s/, TL, β} be a classical mixing P^*-system, that is j/Φ(C/ is abelian and β
is mixing with respect to a faithful state μ e ^ .

The system { ^ 0 ® J / , Gx Z,α°(x)β} is mixing with respect to φ 0 Ξ ω |
Let £ G f 0 and θ : ^ 0 - > £ ^ 0 ^ s u c h that ^ = 5R(^0,θ). Then 5 ® ^ ! maps 3
onto £ ® 1^ 0 (X)J/£(X) 1 and 5 ® ^ ! = l®βι acts ergodically on the center l(g)j/ of

so we can form

The automorphisms u°g®βn are admissible for ^ # : we check just the first
condition in formula (3), the other one may be checked analogously. Indeed let us
fix geG and choose W= Wge&0 a partial isometry such that

Condition (3) then holds for oξ®βn, neZ, and W® 1:

= W*a°go$(A)W®βn+1(B)

= W*®loc°g®βno$®β1(A®B)W®l.
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Therefore the automorphisms oίg®βni gεG, neZ, extend to automorphisms"ά^®^
of Ji commuting with σφ, the modular group of the extension of φ0. The factor Ji
is of type ΠI 0 (because the center of Jiφ, 1(X)J/, is infinite-dimensional), sp(zlφ)
= {2!\rιeZ}~ and the PF*-system {Jf,H,γ}, where H = GxΈxWi and
γ='oί^®~β®σφ, verifies condition M. To check the last assertion we note that if
VeJt is a unitary eigenoperator for y, then VeJίψ (see [12] or the end of the proof
of Theorem 3). Therefore V is a unitary eigenoperator for α0®/?, thus Ve(£I since

verifies condition M by construction. Finally by Theorem 2 we have Sg(Ji)

φ = {λn

9neZ}-. D
β) In the above example we can require that γ is weakly mixing with respect to an

invariant state

Proof. It is enough to modify the above example to have G abelian, thus H abelian
[see point (a) of Sect. 2]. We get this changing the W^-system {^, G,α} with the
one considered in [15] where G = IR. •

Remark 3. Weakly mixing conditions do not suffice to have Sg = S and it should be
interesting to give other conditions to have this. Norm asymptotic abelianness on
a dense subset suffices, but this condition is a very strong property of the
representation. More interesting would be conditions on the state. See however
Appendix II.

Up to now we have seen that almost every combination between S and Sg
allowed by Proposition 1 can actually occur in Theorem 2. For a general von
Neumann algebra M, we can also have S(^) = Sg(^?) = {0,1}, namely when
T(^)φIR and T(β) = W^ but this cannot occur in Theorem 2 because T(β) is
closed. The only unexamined possibility is S(&) = {0,1} together with Sg(^) = IR+.
We do not have examples of this sort when condition M occur. However, in view
of possible future investigation^ we explicitely state in the Appendix I an example
of type IΠ 0 factor with Sg = R + , see also Connes [14], Hamachi et al. [22] and
Krieger [23].

4. The Case of a Semigroup Action

In von Neumann algebras of physical provenience one also meets more general
objects than FF*-systems {M, G,α}: G is only required to be a semigroup and α is
an action of G by injective endomorphisms of ^ . The above used techniques are no
longer useful because α need not to commute with the modular group, but one is
amply compensated having a spectral condition for α. An illustration of this fact is
given by the following extension of a theorem of Driessler. Really our statement is
little more general, than the original one [3], not using the cluster property
of the vacuum, but it is sufficient to get the type Π ^ property for the algebras
associated to wedge regions (e.g. defined by X ^ I X Q I ) in quantum field theory,
without assuming any mass gap condition, and to the forward light cone (defined
by x0 ^ |x|) in free massless fields.

Theorem 3. Let Mbe a von Neumann algebra acting on a Hubert space ffl, ξeffl a
separating unit vector for 01, G a locally compact abelian group with dual Γ and U a
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unitary representation of G on J f such that U(g)ξ = ξ, geG, and <£ξ are the only
U-invariant vectors. Suppose that there exist subsets G+CG and Γ+CΓ such that:

(a) G + u ( — G + ) = G and U(g)3tU(g) 1C&, geG +

(b) Γ + n(-Γ + ) = {0} and sp(ϊ7)cΓ+.

Then M is a type J//1 factor or & = (£I.

Proof. Let £ be a selfadjoint projection of the centralizer 0lω of the state ω(A)
= {Aξ,ξ), Ae@. For every geG + , U{g)EU{-g)e@, therefore

F(g) = (EU(g)Eξ, ξ) = (EU(g)EU(- g)ξ, ξ)

= (U(g)EU(-g)Eξ,ξ) = (

that is F(g) = F( — g),geG + , and, by property (a), F(g) = F( — g) for every geG. Now
F is a positive-definite function, hence it is the Fourier transform of a measure F
on Γ that verifies F(p) = F( — p), peΓ. By assumption (b) we have support (JF)CΓ+,
thus support ( F ) c Γ + n ( — Γ+) = {0} and this implies that F is constant. In
particular F(g) = F(0), geG, therefore

(U(g)Eξ,Eξ) = (Eξ,Eξ)=\\Eξ\\2 = \\U(g)Eξ\\\\Eξ\\, geG.

By the limit case of the Schwartz inequality we then have U(g)Eξ = χ(g)Eξ, when
χ(g) is a complex number, therefore

F(g) = (U(g)Eξ, Eξ) = χ(g)(Eξ, Eξ) = (Eξ,Eξ).

Hence, if £^#=0, we have χ(g)=l and U(g)Eξ = Eξ, that is Eξ is a U-invariant
vector, thus Eξ = ξ by assumption. As £ is separating we then have E = 0 or E = /,
thus ^ ω = C/. Now the triviality of Mω entails firstly that 31 is a factor, because
0lc\0l' C&ω, and secondly ^ is of type Π ^ (if non-trivial): this can be viewed in a
lot of manners. For example we can see by Lemma 2 that sp(σω) is a closed group.
If Sp(σω) = {0}, then ω is a trace and 3l = @ω = <CL If sp(σω) = IR, 31 is of type 11^
due to the equality S(&)\{0} = Γ(σω) [14, Theorem 3.2.1]. The remaining case
sp(σω) cyclic and non-trivial cannot occur. Otherwise there should exist λe(0,1)
and Ve& of norm 1 such that σ™{V) = λuV, teWL By the KMS property one easily
derives [12]:

) = λω(AV),

As V*V, VV*eMω = (CI9 V is unitary and

l=ω(VV*) =

that is a contradiction. •
We now mention two examples where the above theorem can be applied. Other

examples can be easily shown. The algebras in the following corollary are those
ones associated to regions of the Minkowski space in algebraic quantum field
theory (see e.g. [17, Chap. 23]).
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Corollary 3. The following von Neumann algebras are factors of type.IIIv

(i) Algebras associated to wedge regions.
(ii) Algebras associated to light cones in the free scalar field of mass zero4".

Proof. In both cases one applies the previous theorem with U a one-parameter
group of light-like translations and ξ the vacuum vector, ξ is cyclic and separating
owing to the Reeh-Schlieder theorem and the commutation of space-like sepa-
rated observables as well as, in free massless fields, of observables localized in the
forward light cone with those ones localized in the past light cone. •

In a Wrightman theory, the results contained in Corollary 3 follow from the
knowledge of the modular operator associated to the vacuum vector; see [11,10]
and [16] respectively.

Remark 4. If the vacuum vector is not separating for the von Neumann algebra 0t
associated to the forward light cone, Theorem 3, applied to 0t\ entails that either
9ΐ =t= <CI and M is again of type Π ^ or 0t' = <C/ and St = @(3tf). The last case occurs
when dealing with a mass gap condition [18].

Appendix I

The purpose^ of this appendix is to give explicitly an example of type ΠI 0 factor
with Sg = IR+ 5. This can be easily done making use of Takesaki duality theory
[19]. _

γ) In the following construction M is a factor of type III0 and Sg(^) = IR+.

Construction. By Proposition 1, we must exhibit a factor M such that S(Jί) = {0,1}
and T(Jί) = {0}. The construction is somewhat similar to that given in example α).
Let M be a type Π ^ factor, φeSl^ a faithful state and J 0 Ξ F ( J , I R , O the cross
product of ^ by σφ. &0 is a type I I ^ factor and the dual action 5 of σφ on Mo

verifies ToSt = e~h, teJR, where τ is the trace of ^ 0 [19, Theorems 8.2, 9.7]. Let
{j</,IR,α} be a FF*-system with stf abelian and α mixing with respect to an
α-invariant state μesi^. We consider the action of 1R on Jίo = 0to®s$ given by

5: ίeR->θ f (g) octe Aut{Jί0).

Jί0 is a semifinite von Neumann algebra, Ϊ Ξ τ ® μ i s a faithful normal semifinite
trace on Ji^ and $ diminishes τ according to

ToSt = e~t7c, teΊR.

The theory of Takesaki entails then that Jί = W*{Ji0, IR, S) is a factor of type IΠ 0

with trivial invariant T. Indeed the restriction of 5 to Jir\Ji' acts ergodically,
being equal to α, thus Jί is a factor [19, Theorem 8.5]. Moreover S(Ji) = {0,1} and
T{Jί) = {0} because α is not periodic and the point spectrum of α contains only one
element [19, Theorem 9.6 and Theorem 9.4]. •

Appendix II

The result of StΘrmer mentioned in the preliminaries can be easily derived
following in part an argument of Herman [20]. We shall say that a FF*-system

4 Owing to the results of Buchholz [16], the same applies to any theory of local algebras in which
there is a massless scalar one-particle state generating a complete set of asymptotic states
5 The existence of such factors follows as a special case of Theorem 3.4.4 of [14] we thank Prof. A.
Connes for pointing out this fact to us
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{01, G, α} verifies the three-fold factorization property (cf. [20]) with respect to the
von Neumann algebra Ae0l'ύfor every projection 0 + EeA we have:

Ae&t, Eotg(A)E = O, all geG=>A = 0.

Tn the following S'(0ί) = nspec(ω), where ω runs on the normal states of M, and
Γ(β) is the Connes spectrum of β (see [1], [14] resp.).

Proposition 2. Let {M, G,α} and {&,H,β} be W*-systemsf where H is abelίan and α
commutes with β. If {&, G, a} verifies the three-fold factorization property with
respect to the center of 0tβ, then Γ(β) = sp(β).

Proof. Given pesp(β), we have to show that M(βE, F) Φ {0} for every projection
£ φ θ of the center of 0tβ and every neighborhood F of p. Indeed let 0 + Ae^(/?,F).
Since α commutes with β we have <xg(A)e0l(β,F)9 thus Eag{A)EeM{βE,F\ geG.
Owing to the three-fold factorization property we can choose geG such that

D

Proposition 3. Let Mbe a von Neumann algebra and ω a faithful normal state of 01.
Then Γ(σω) = S'(M)\{0} (with the natural duality of R with R + J . In particular
5"(^)\{0} is a closed subgroup of IR+.

Proof. By the KMS condition, if E is a projection of Mω, then σωE is the modular
group of ω\EME, whence S'(^)\{0} CΓ(σω) and we have to show that Γ(σω)cS\@).
If there exists a semifinite projection 0 φ G e ^ n ^ ' C ^ ω and τ is a semifinite
normal faithful trace on 01G, then, by the Connes cocycle Radon-Nikodym
theorem, we have Γ(σω) C Γ(σωG) = Γ(στ) = {1} therefore we can assume 0ί to be of
type III. By definition we have S'($) = r\S(E&E), where £4=0 runs among the
projections of ^?. Since 01 is purely infinite, every projection Ee& is equivalent to
its central cover c(E\ thus 01 is isomorphic to 0tc(E) and

S'(β) = P| S(βG), G + 0 projection of
G

Since Γ(σω) = Γ(σφ) for every faithful state φe^^, we have

Γ ( O = Π Γ(σ*) C Π spec(φ) = S(«).

If we apply this inclution to the state ω\0lG and we then make the intersection for
every projection 0=#Ge0lc\0l' we get

Γ(σω) = Π Γ(σω°) C Π S(0tG) = S'{9t). D
G G

Theorem 4. Lei {M, G, α} fee α W*-system and ωeM^ a faithful oc-invariant state. If
the three-fold factorization property holds for {0t^ G, α} with respect to the center of
Mω, then

Proof. As ω is α-invariant, σω commutes with α. By Propositions 2 and 3 we then
have

spec(ω)\{0} - sp(σω) = Γ(σω) - S'(

Since OφS'iβt) iff S"(^) = {1}, we have spec(ω) = S/(^). Π

Corollary 5. Let {0t, G,α} foe a W*-system and ω e ^ απ a-invariant state whose
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(i) The system {&, G, oc} is asymptotically abelian in the strong topology and ω
is a-strongly clustering with respect to the same sequence gne G.

(ii) α is centrally ergodic and the center of 0Γ = {Λe0tjω(AB) = ω(BA\Be&}
is equal to the center of ϊffl.

Then

Proof. Since c(F) = /, we have S'(3t) = Sr(F3lF). In fact 3t has a semifinite direct
summand iff the same is true for F3tF, in which case S'(&) = S'(F@F) = {1}.
Otherwise 3t is of type III, F is equivalent to /, 3ί is isomorphic to FMF and again
S'(3t) = Sf(F3tF). The corollary is then proved if we show that the W*-system
{F01F, G, αF} verifies the assumptions of Theorem 4.

(i) Let E<F be a projection of 31 and A=FAFe&. If Eocg(A)E = O for every
geG, then

E<xg(A*A)E + E<xg(A*)lE, α,μ)]E = E*g(A*)Exg(A)E = 0

ω(E*gn(A*)[E, ocJAftE) = 0.

As n-KX) the left member of the last equality converges to ω(E)ω(A*A), that must
be zero. Since ω\FMF is faithful, we have ,4 = 0.

(ii) It is easily seen that FMωF is the centralizer of ω\F3tF, thus we can assume
that ω is faithful. The result then follows by Theorem 4, because the three-fold
factorization property with respect to the center is really a two-fold property and it
is entailed by the ergodicity on the center. •

Note that in Theorem 4 one can deal with a relatively α-invariant faithful
semifinite normal weight ω. In the point (i) of Corollary 4 one can require that the
asymptotic abelianness and the cluster property are taken in mean however some
cluster assumption is necessary, as shown by the simple example given by the
FF*-system {^®^/,G,α0j}, where {^,G,α} is a FΓ*-system like in the above
point (i) and j is the trivial action of G on an abelian von Neumann algebra s/
nevertheless, removing the cluster condition and assuming e.g. that ω is faithful,
one has spec(ω) = S(3t) [5]. Finally, in connection with Remark 3, we note that the
three-fold factorization property can be derived by a property of the faithful state
ω, namely ω(Eoch(A*)Eotg(A)) must approach ω(E)ω(A*A) in some sense.
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