O(2) Symmetric Connections in an SU(2) Yang-Mills Theory ${ }^{\star \star}$

Clifford Henry Taubes*
Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138 USA

Abstract

The general $\mathrm{O}(2)$ symmetric Yang-Mills equations are derived. An ansatz for $\mathrm{O}(2)$ symmetric merons is presented and it is shown that any connection in this ansatz will have $\mathrm{SU}(2)$ topological charge density which is a sum of delta functions at points in a plane with weights $\pm \frac{1}{2}$. It is shown that any connection in this ansatz will be C^{∞} away from these points.

1. Introduction

If the four-dimensional, Euclidean space, Yang-Mills equations are required to be $O(3)$ symmetric, it was shown by Witten [1] that the equations reduced to the equations describing an interacting system on the Poincare half-plane consisting of a $U(1)$ gauge field and a charged scalar field with self-couplings. DeAlfaro, Fubini, and Furlan [2] discovered an explicit $O(3)$ symmetric solution to the Yang-Mills equations with the property that the topological charge density has values $\pm \frac{1}{2}$ concentrated at points; the 'two meron solution.' For arbitrary positive integer N, Glimm and Jaffe [3, 4] reduced the problem of finding N-meron, $\mathrm{O}(3)$ symmetric, solutions to the question of whether certain (infinite action) solutions to the scalar elliptic equation.

$$
\begin{equation*}
r^{2}\left(\partial_{r}^{2}+\partial_{r}^{2}\right) \psi=\psi\left(\psi^{2}-1\right) \tag{1.1}
\end{equation*}
$$

existed. These N-meron solutions of Glim and Jaffe are also characterized by a topological charge density which is equal to a sum of delta functions on a line with weights $\pm \frac{1}{2}$ at the merons. Jonsson, McBryan, Zirilli, and Hubbard [5] proved that these (infinite action) solutions to Eq. (1.1) do indeed exist. In this paper, an $\mathrm{O}(2)$ symmetric $\mathrm{SU}(2)$ Yang-Mills connection is defined and the form of the $\mathrm{O}(2)$ symmetric Yang-Mills equations are derived. It is then shown that certain classes of $\mathrm{O}(2)$ symmetric connections have topological charge densities which are the sum of delta functions in a plane with weights $\pm \frac{1}{2}$. The $\mathrm{O}(3)$ symmetric solutions of Glimm and Jaffe are included in these classes. It remains to be proven whether there are any other solutions to the Yang-Mills equations contained in these classes.

[^0]For convenience, this paper is divided into seven sections. In Sect. 2, the form of the Yang-Mills equations are derived when the fields are required to have $\mathrm{O}(2)$ symmetry. Section 3 relates the $\mathrm{O}(3)$ symmetric Yang-Mills equations derived by Witten to the $O(2)$ symmetric equations. In Sect. 4, the $O(3)$ symmetric meron solutions of Glim and Jaffe are discussed in the $O(2)$ format. In Sect. 5, we define our classes of $\mathrm{O}(2)$ symmetric connections. It is shown in Sect. 6 and 7 that these classes are disjoint and that any connection in a given class defines a Yang-Mills connection on \mathbb{R}^{4} which has topological charge density concentrated at points in a plane with weights $\pm \frac{1}{2}$.

2. The O(2) Symmetric Yang-Mills Equations

The following index notations will be used: Greek indices $\alpha, \beta, \gamma, \delta$ run from 0 to 3 , where $x^{0}=t, x^{1}=x, x^{2}=y, x^{3}=z$. Greek indices $\mu, \nu, \sigma, \lambda$ run from 1 to 3 where $x^{\nu}(v=1)=t, x^{\nu}(v=2) \equiv \rho=\left(x^{2}+y^{2}\right)^{1 / 2}, x^{\nu}(v=3)=z$. Latin lower case indices i, j, k run from 1 to 3 , Latin capitals A, B, C run from 1 to 2 where $x^{A}(A=1)=x$ and $x^{A}(A=2)=y$. Repeated indices are to be summed over. It is convenient to define the following space-time dependent representation of the $\mathrm{SU}(2)$ Lie algebra,

$$
\begin{align*}
& Q^{1}=\varepsilon^{3 B A} \frac{x^{B}}{\rho} \sigma^{A} \\
& Q^{2}=\sigma^{3} \\
& Q^{3}=\frac{x^{A}}{\sigma} \sigma^{A} \tag{2.1}
\end{align*}
$$

where $\sigma^{i}(i=1,2,3)$ are the Pauly matrices and $(\varepsilon)^{i j k}$ is the completely antisymmetric Levi-Civita symbol. Further define

$$
\begin{align*}
Q_{A}^{k} & =\varepsilon^{3 B A} \frac{x^{B}}{\rho} Q^{k} \\
R_{A B} & =\delta_{A B}-x_{A} x_{B} / \rho^{2} \tag{2.2}
\end{align*}
$$

then the following commutation algebra is satisfied by $\left\{Q^{k}\right\}_{k=1}^{3}$

$$
\begin{align*}
{\left[Q^{i}, Q^{j}\right] } & =2 i \varepsilon^{i j k} Q^{k} \\
{\left[Q^{i}, Q_{A}^{i}\right] } & =2 i \varepsilon^{i j k} Q_{A}^{k} \\
{\left[Q_{A}^{i}, Q_{B}^{j}\right] } & =2 i R_{A B} \varepsilon^{i j k} Q^{k} . \tag{2.3}
\end{align*}
$$

One also has the trace relations:

$$
\begin{align*}
\operatorname{Tr}\left(Q^{i} Q^{k}\right) & =2 \delta^{i k} \\
\operatorname{Tr}\left(Q_{A}^{i} Q_{A}^{k}\right) & =2 \delta^{i k} \\
X_{A} Q_{A}^{i} & =0 . \tag{2.4}
\end{align*}
$$

An arbitrary Yang-Mills connection may be written in the following form:

$$
A_{0}=\frac{i}{2} A_{t}^{k} Q^{k}
$$

$$
\begin{align*}
& A_{3}=\frac{i}{2} A_{z}^{k} Q^{k} \\
& A_{B}=\frac{i}{2}\left\{A_{\rho}^{k} \frac{x_{B}}{\rho} Q^{k}+\frac{1}{\rho}\left(\phi^{1} Q_{B}^{1}+\left(\phi^{2}+1\right) Q_{B}^{2}+\phi^{3} Q_{B}^{3}\right)\right\} \tag{2.5}
\end{align*}
$$

We define an $\mathrm{O}(2)$ symmetric connection by the requirement [6]:

$$
A_{\mu}^{k}=A_{\mu}^{k}(t, \rho, z) \text { and } \phi^{k}=\phi^{k}(t, \rho, z) .
$$

Here the vector A_{μ}^{k} for each $k=1,2,3$ is a three component vector and

$$
A_{\mu}^{k}(\mu=1)=A_{t}^{k} ; A_{\mu}^{k}(\mu=2)=A_{\rho}^{k} \text { and } A_{\mu}^{k}(\mu=3)=A_{z}^{k} .
$$

The Yang-Mills curvature tensor is given by the expression:

$$
\begin{equation*}
\mathscr{F}_{\alpha \beta}=\partial_{\alpha} \mathscr{A}_{\beta}-\partial_{\beta} \mathscr{A}_{\alpha}+\left[\mathscr{A}_{\alpha} \mathscr{A}_{\beta}\right] \tag{2.6}
\end{equation*}
$$

If one defines the electric and magnetic parts of $\mathscr{F}_{\alpha \beta}$ in the usual way, $E_{\alpha}=\mathscr{F}_{0 \alpha}$, $B_{\alpha}=\frac{1}{2} \varepsilon^{0 \alpha \beta \gamma} \mathscr{F}_{\beta \gamma}$, then in terms of the fields A_{μ}^{k} and ϕ^{k} :

$$
\begin{align*}
& E_{3}=i / 2 F_{03}^{k} Q^{k} \\
& E_{A}=i / 2\left\{F_{0 \rho}^{k} \frac{x_{A}}{\sigma} Q_{k}+1 / \rho\left(D_{0} \phi\right)^{k} Q_{A}^{k}\right\} \\
& B_{3}=i / 2\left(1 / \rho\left(D_{\rho} \phi\right)^{k} Q^{k}\right) \\
& B_{A}=i / 2\left\{F_{3 \rho}^{k} Q_{A}^{k}-\frac{x_{A}}{\rho}\left(D_{3} \phi\right)^{k} Q^{k}\right\} . \tag{2.7}
\end{align*}
$$

In Eq. (2.7) the three-dimensional field tensor $F_{\mu \nu}^{k}(\mu, \nu=1,2,3)$ and $\left(D_{\mu} \phi\right)^{k}$ are defined by:

$$
\begin{align*}
F_{\mu v}^{k} & =\partial_{\mu} A_{v}^{k}-\partial_{v} A_{\mu}^{k}-\varepsilon^{i j k} A_{\mu}^{i} A_{\mu}^{j} \\
\left(D_{\mu} \phi\right)^{k} & =\partial_{\mu} \phi^{k}-\varepsilon^{i j k} A_{\mu}^{i} \phi^{J} \tag{2.8}
\end{align*}
$$

where

$$
\partial_{\mu}(\mu=1)=\frac{\partial}{\partial t} ; \quad \partial_{\mu}(\mu=2)=\frac{\partial}{\partial \rho} ; \quad \partial_{\mu}(\mu=3)=\frac{\partial}{\partial z} .
$$

In terms of the three-dimensional fields of Eq. (2.5), the Yang-Mills action is

$$
\begin{align*}
a & =2 \pi \int_{\rho \geqq 0} \iint d t d \rho d z \mathscr{L}(\rho, t, z) \text { and } \\
\mathscr{L} & =\rho / 4 F_{\mu \nu}^{k} F_{\mu \nu}^{k}+\frac{1}{2 \rho}\left(D_{\mu} \phi\right)^{k}\left(D_{\mu} \phi\right)^{k} . \tag{2.9}
\end{align*}
$$

The $\mathrm{SU}(2)$ topological charge is

$$
\begin{align*}
Q^{\mathrm{SU}(2)} & =2 \pi \int_{\rho \geqq 0} \iint_{d t d \rho d z q(\rho, z, t)} \text { and } \\
q(\rho, z, t) & =\frac{-1}{16 \pi^{2}} \varepsilon_{\mu \nu \sigma} F_{\mu \nu}^{k} D_{\sigma} \phi^{k} \tag{2.10}
\end{align*}
$$

The $\mathrm{SU}(2)$ charge density may be written as the divergence of a non-gauge invariant current

$$
I_{\alpha}=\frac{-1}{8 \pi^{2}} \varepsilon_{\delta \alpha \beta \gamma} \operatorname{Tr}\left(\mathscr{A}_{\delta} \partial_{\beta} \mathscr{A}_{\gamma}+\frac{2}{3} \mathscr{A}_{\delta \cdot} \mathscr{A}_{\beta} \mathscr{A}_{\gamma}\right)
$$

whose components are:

$$
\begin{align*}
I_{A} & =\frac{-x_{A}}{\rho^{2}} \frac{1}{16 \pi^{2}}\left(D_{3} \phi^{k} A_{0}^{h}-D_{0} \phi^{k} A_{3}^{k}+\left(\partial_{0} A_{3}^{k}-\partial_{3} A_{0}^{k}\right)\left(\phi^{h}+\delta^{k 2}\right)\right) \\
I_{3} & =\frac{1}{16 \pi^{2}} \frac{1}{\rho}\left(D_{\rho} \phi^{k} A_{0}^{h}-D_{0} \phi^{k} A_{\rho}^{k}+\left(\partial_{0} A_{\rho}^{k}-\partial_{\rho} A_{0}^{k}\right)\left(\phi^{k}+\delta^{k 2}\right)\right) \\
I_{0} & =\frac{-1}{16 \pi^{2}} \frac{1}{\rho}\left(D_{\rho} \phi^{k} A_{3}^{k}-D_{3} \phi^{k} A_{\rho}^{k}+\left(\partial_{\rho} A_{3}^{k}-\partial_{3} A_{0}^{k}\right)\left(\phi^{k}+\delta^{k 2}\right)\right) . \tag{2.11}
\end{align*}
$$

The Yang-Mills equations in terms of the fields A^{k} and ϕ^{k} are

$$
\begin{align*}
& \frac{1}{\rho} \hat{c}_{\mu} \rho F_{\mu \nu}^{k}-\varepsilon^{i j k} A_{\mu}^{i} F_{\mu \nu}^{j}+\frac{1}{\rho^{2}} \varepsilon^{i j k} \phi^{i} D_{v} \phi^{j}=0 \\
& D_{\mu} \frac{1}{\rho} D_{\mu} \phi^{k}=0 . \tag{2.12}
\end{align*}
$$

Define a metric tensor $g^{\mu v}=\rho^{2} \delta^{\mu v}$ with determinant $\sqrt{g}=\frac{1}{\rho^{3}}$. The lagrangian of Eq. (2.9) can be rewritten as

$$
\begin{equation*}
\mathscr{L}(\rho, z, t)=\frac{1}{4} \sqrt{g} g^{\mu \sigma} g^{v \pi} F_{\mu \nu}^{k} F_{\sigma \pi}^{k}+\frac{1}{2} \sqrt{g} g^{\mu \nu} D_{\mu} \phi^{k} D_{v} \phi^{k} \tag{2.13}
\end{equation*}
$$

This is the metric covariant lagrangian for an $\mathrm{SU}(2)$ Yang-Mills field coupled to a triplet of Higg's mesons on a three dimensional space (with boundary) of constant negative curvature. The boundary is the plane $\rho=0$. The Yang-Mills equations (Eq. 2.12) are the variational equations of this lagrangian when written in terms of the metrix $g^{\mu \nu}$. To avoid confusion in the remainder of this paper, all raising and lowering of the three dimensional indices ($[\mu, \nu, \sigma]=[t, \rho, z]$) will be done by the Kronecker delta $\delta_{\mu v}$. Factors of ρ will be written explicitly.

The self dual and anti-self dual instanton solutions to the Yang-Mills equations will be solutions to the first order equations $\mathscr{F}_{\alpha \beta}= \pm \frac{1}{2} \varepsilon_{\alpha \beta \gamma \delta} \mathscr{F}_{\gamma \delta}$. In terms of the three-dimensional formalism, this is just

$$
\begin{equation*}
D_{\mu} \phi^{k}= \pm \frac{1}{2} \rho \varepsilon_{\mu \sigma \%} F_{\sigma \lambda} . \tag{2.14}
\end{equation*}
$$

Here $\varepsilon_{\mu \sigma \lambda}$ is the completely antisymmetric three-dimensional Levi-Civita tensor: $\varepsilon_{t \rho z} \equiv+1$.

The $\mathrm{O}(2)$ symmetric equations have this form for the following reasons. In coordinates (t, ρ, z, μ) on \mathbb{R}^{4} with $\mu=\operatorname{Arg}(x+i y)$, the restriction to $\mathrm{O}(2)$ symmetry means that all fields and gauge transformations must be independent of μ. Under a guage transformation U, the four-dimensional Yang-Mills connection \mathscr{A}_{α} transforms as $\mathscr{A}_{\alpha} \rightarrow U \cdot \mathscr{A}_{\alpha} U^{-1}+U \partial_{\alpha} U^{-1}$. If U is independent of the angle μ then
the component \mathscr{A}_{μ} of the connection transforms as a Higgs scalar. The form of the metric $g^{\mu \nu}$ follows from the fact that the Yang-Mills lagrangian in its original form on \mathbb{R}^{4} is scale invariant.

From this point on, we shall work solely in terms of the three-dimensional variables (t, ρ, z), and fields A_{μ}^{k} and ϕ^{k}. Define the manifold, M, with boundary by

$$
\begin{equation*}
M=\left\{(t, \rho, z) \in \mathbb{R}^{3} \mid \rho \geqq 0\right\} \tag{2.15}
\end{equation*}
$$

Let Λ_{M} denote the exterior algebra of differential forms on M. The forms $d x^{1}=d t$, $d x^{2}=d \rho, d x^{3}=d z$ form a basis of 1 -forms for $\Lambda_{M} ; d$ will denote the exterior derivative in the usual way on $\Lambda_{M} ; \wedge$ will denote the exterior product on Λ_{M}.

The symbol A will refer to an $\mathrm{SU}(2)$ connection on M, a Lie algebra valued 1 -form; A^{k} will refer to its components in some specified basis for the $\mathrm{SU}(2)$ algebra. The symbol ϕ will refer to the Higg's field; ϕ^{k} to the components with respect to some specified basis. Notice that on $M, d Q^{k}=0$ for $k=1,2,3$.

The manifold M has a boundary, ∂M; the boundary is the plane $\rho=0$. To discuss certain topological notions it will be necessary to compactify M. The conformal compactification of M will be denoted \hat{M} and it is the three ball; the sphere at infinity is mapped to the South Pole. The boundary is the two sphere and will be denoted $\partial \hat{M}$.

As it is written in Eq. (2.9), the Yang-Mills lagrangian is a functional of A and ϕ and may be interpreted as a scalar function on M. Similarly the $\mathrm{SU}(2)$ charge density $q(x)$ in Eq. (2.10). The current I_{α} of Eq. (2.11), when interpreted as the components of a 1-form in Λ_{M} has the form

$$
\begin{equation*}
I=\frac{1}{8 \pi^{2}} \varepsilon_{\mu v \sigma} \operatorname{Tr}\left(\partial_{v} A_{\sigma}\left(\phi+\frac{i}{2} Q^{2}\right)+A_{v} D_{\sigma} \phi\right) d x^{\mu} \tag{2.16}
\end{equation*}
$$

If one defines the natural duality operation in Λ_{M} by

$$
\begin{equation*}
^{} d x_{\mu}=\frac{1}{2} \varepsilon_{\mu \nu \sigma} d x^{\nu} \wedge d x^{\sigma} \tag{2.17}
\end{equation*}
$$

then $q(x)$ is related to I by

$$
q(x)=d^{*} I \equiv * d * I
$$

and

$$
\begin{equation*}
* I=-\frac{1}{8 \pi^{2}} \operatorname{Tr}\left(\left(\phi+i / 2 Q^{2}\right) d A+A \wedge D \phi\right) \tag{2.18}
\end{equation*}
$$

The Yang-Mills equations on M (Eq. (2.12) are not complete without specification of the boundary conditions for the connection A and the Higg's field ϕ on ∂M. Because of the factor $1 / \rho$ in the lagrangian of Eq. (2.9), we take as our boundary condition on the Higg's field ϕ the requirement that $D \phi=0$ on ∂M ($D \phi$ is defined by $D \phi=d \phi+[A, \phi]$). The field ϕ may be considered as a cross section of a threedimensional vector bundle over M. We can use the basis $\left\{Q^{i}\right\}_{i=1}^{3}$ as a basis for the cross sections of this vector bundle. Locally we can pick coordinates in the bundle so that

$$
\begin{equation*}
\phi=\frac{i}{2} \hat{\phi} U^{-1} Q^{2} U \tag{2.19}
\end{equation*}
$$

This is just the polar decomposition where $\hat{\phi}$ is a scalar function on M and U is a cross section of the principal $\mathrm{SU}(2)$ bundle over M. The condition that $D \phi=0$ on ∂M implies that

$$
\begin{align*}
d \hat{\phi} & =0 \\
A & =\hat{A} \frac{i}{2} U^{-1} Q^{2} U+U^{-1} d U \tag{2.20}
\end{align*}
$$

at $\rho=0 . \hat{A}$ is a 1 -form in Λ_{M}.
The lagrangian of Eq. (2.9) has formally six independent degrees of freedom. Equations (2.20) constrain three of them on the boundary of M.

3. The $\mathbf{O}(3)$ Symmetric Ansatz of \mathbf{E}. Witten in $\mathbf{O (2)}$ Form

Witten's $\mathrm{O}(3)$ symmetric ansatz [1] takes the $\mathrm{SU}(2)$ connection to have the following form:

$$
\begin{align*}
& \mathscr{A}_{0}=\frac{i}{2} \bar{A}_{0} \frac{x_{k}}{r} \sigma^{k} \\
& \mathscr{A}_{k}=\frac{i}{2} \bar{A}_{1} \frac{x_{k}}{r} x_{j} \sigma^{j}+\frac{i}{2} \frac{\bar{\phi}_{0}}{r}\left(\delta_{k j}-\frac{x_{k} x_{j}}{r^{2}}\right) \sigma^{j}+\frac{i}{2}\left(\bar{\phi}_{1}+1\right) \frac{1}{r} \varepsilon_{k j i} x_{i} \sigma^{j} \tag{3.1}
\end{align*}
$$

where $r=\left(\rho^{2}+z^{2}\right)^{1 / 2}$ and $\bar{A}_{0}, \bar{A}_{1}, \bar{\phi}_{0}$ and $\bar{\phi}_{1}$ are functions of r and t only. The $\mathrm{O}(3)$ symmetric fields $\bar{A}_{i}, \bar{\phi}_{i} i=0,1$ determine a set of $\mathrm{O}(2)$ symmetric fields $\left(A_{\mu}^{k}, \phi^{k}\right)$ defined in Sect. 2. The correspondence is given by the following table:

$$
\begin{array}{lll}
A_{0}^{1}=0 & A_{0}^{2}=\bar{A}_{0} \frac{z}{r} & A_{0}^{3}=\bar{A}_{0} \frac{\rho}{r} \\
A_{\rho}^{1}=\left(\bar{\phi}_{1}+1\right) \frac{z}{r^{2}} & A_{\rho}^{2}=\frac{z \rho}{r^{2}}\left(\bar{A}_{1}-\frac{1}{r} \bar{\phi}_{0}\right) & A_{\rho}^{3}=\frac{1}{r^{2}}\left(\rho^{2} \bar{A}_{1}+\frac{z^{2}}{r} \bar{\phi}_{0}\right) \\
A_{3}^{1}=-\left(\bar{\phi}_{1}+1\right) \frac{\rho}{r^{2}} A_{3}^{2}=\frac{1}{r^{2}}\left(z^{2} \bar{A}_{1}+\frac{\rho^{2}}{r} \bar{\phi}_{0}\right) & A_{3}^{3}=\frac{\rho z}{r^{2}}\left(\bar{A}_{1}-\frac{\bar{\phi}_{0}}{r}\right) \\
\phi^{1}=\frac{\rho}{r} \bar{\phi}_{0} & \phi^{2}=\frac{\rho^{2}}{r^{2}}\left(\bar{\phi}_{1}+1\right)-1 & \phi^{3}=-\frac{\rho z}{r^{2}}\left(\bar{\phi}_{1}+1\right) \tag{3.2}
\end{array}
$$

As an example, the solution to the Yang-Mills equations corresponding to a single instanton [7] at the origin of \mathbb{R}^{4} has the following form in terms of $\left(A_{\mu}^{k}, \phi^{k}\right)$;

$$
\begin{align*}
& A=\frac{2}{1+x^{2}}\left\{(z d \rho-\rho d z) \frac{i}{2} Q^{1}+(z d t-t d z) \frac{i}{2} Q^{2}+(\rho d t-t d \rho) \frac{i}{2} Q^{3}\right\} \\
& \phi=\frac{2 \rho}{1+x^{2}}\left\{-t \frac{i}{2} Q^{1}+\frac{i}{\rho_{2}} Q^{2}-z \frac{i}{2} Q^{3}\right\}-\frac{i}{2} Q^{2} . \tag{3.3}
\end{align*}
$$

The single meron solution of DeAlfaro, Fubini and Furlan [2] has the following form in terms of $\left(A_{\mu}^{k}, \phi^{k}\right)$:

$$
\begin{align*}
& A=\frac{1}{x^{2}}\left\{(z d \rho-\rho d z) \frac{i}{2} Q^{1}+(z d t-t d z) \frac{i}{2} Q^{2}+(\rho d t-t d \rho) \frac{i}{2} Q^{3}\right\} \\
& \phi=\frac{\rho}{x^{2}}\left\{-t \frac{i}{2} Q^{1}+\rho \frac{i}{2} Q^{2}-z \frac{i}{2} Q^{3}\right\}-\frac{i}{2} Q^{2} . \tag{3.4}
\end{align*}
$$

4. The $\mathbf{O}(3)$ Symmetric Merons

By a gauge transformation, the two meron solution of DeAlfaro, Fubini and Furlan [2] corresponding to a meron on the t-axis at the point (t, ρ, z) given by $S_{+}=(\varepsilon, 0,0)$ and an antimeron at $S_{-}=(-\varepsilon, 0,0)$ on the t-axis may be put in the following form:

$$
\begin{align*}
& A=\frac{2 \varepsilon}{x_{+} x_{-}} \frac{1}{x_{+} x_{-}+2 \rho \varepsilon}\left\{-2 \rho z d \rho-2 z t d t+\left(\rho^{2}-z^{2}+t^{2}-\varepsilon^{2}\right) d z\right\} \frac{i}{2} Q^{1} \\
& \phi=\frac{i}{2}\left(-\frac{x^{2}-\varepsilon^{2}}{x_{+} x_{-}} Q^{2}-\frac{2 z \varepsilon}{x_{+} x_{-}} Q^{3}\right) \\
& \text { where } x_{ \pm}=\left(\rho^{2}+z^{2}+(t \mp \varepsilon)^{2}\right)^{1 / 2} . \tag{4.1}
\end{align*}
$$

This gauge is manifestly neutral [4] as can be seen by examining the expression for the $\mathrm{SU}(2)$ current, equation (2.16). Both the connection, A, and the Higgs field, ϕ, are C^{∞} in $M-\left\{S_{+}\right\}-\left\{S_{-}\right\}$. There is no singular string [3] in this gauge.

On the boundary $\partial M-\left\{S_{+}\right\}-\left\{S_{-}\right\}$, the two meron solution takes the following form:

$$
\begin{align*}
& A=\frac{2 \varepsilon}{x_{+}^{2} x_{-}^{2}}\left\{-2 z t d t+\left(t^{2}-z^{2}-\varepsilon^{2}\right) d z\right\} \frac{i}{2} Q^{1} \\
& \phi=\frac{i}{2}\left\{-\frac{\left(z^{2}+t^{2}-\varepsilon^{2}\right)}{x_{+} x_{-}} Q^{2}-\frac{2 z \varepsilon}{x_{+} x_{-}} Q^{3}\right\} . \tag{4.2}
\end{align*}
$$

If one defines $\tan \omega=\frac{2 z \varepsilon}{t^{2}+z^{2}-\varepsilon^{2}}$, then the boundary values of Eq. (4.2) may be written as

$$
\begin{align*}
& A=d \omega \frac{i}{2} Q^{1} \\
& \phi=\frac{i}{2}\left(\cos \omega Q^{2}+\sin \omega Q^{3}\right) \tag{4.3}
\end{align*}
$$

Since the ρ component of A is zero on $\partial M-\left\{S_{+}\right\}-\left\{S_{-}\right\}$and ϕ is a function only of ρ^{2}, it is clear that the conditions of equation (2.20) are identically satisfied on $\partial M-\left\{S_{+}\right\}-\left\{S_{-}\right\}$. Furthermore, the connection, A, and Higgs field ϕ are constant as $\rho \rightarrow \infty$ so that A and ϕ are a C^{∞} connection and Higgs field on the compactified space, \hat{M}, except at the points $\left\{S_{+}\right\}$and $\left\{S_{-}\right\}$. Equation (2.20) is satisfied on $\partial \hat{M}-\left\{S_{+}\right\}-\left\{S_{-}\right\}$.

The function ω is homogeneous of degree zero and is such that if Γ is any
closed curve in $\partial M-\left\{S_{+}\right\}-\left\{S_{-}\right\}$,

$$
\begin{equation*}
\int_{\Gamma} d \omega=2 \pi\left(n_{+}^{\Gamma}-n_{-}^{\Gamma}\right) \tag{4.4}
\end{equation*}
$$

where $n_{ \pm}^{\Gamma}$ is the winding number of Γ about $S_{ \pm}$.
The more general $\mathrm{O}(3)$ symmetric meron solutions of Glimm and Jaffe corresponding to N merons on the t-axis at points $S_{+i}=\left(t_{+i} 0,0\right)$ and N antimerons on the t-axis at points $S_{-i}=\left(t_{-i}, 0,0\right)$ with $t_{-i}<t_{i}<t_{-(i+1)} i=1$ to $N\left(t_{-(N+1)} \equiv \infty\right)$ can be put into a form analogous to the form of the two meron solutions given by Eq. (4.1). Let ψ_{N} be a solution to Eq. (1.1) corresponding to N merons at the points S_{+i} and N antimerons at the points S_{-i} for $i=1$ to N. There exists a gauge in which the connections and Higgs field for the solution ψ_{N} has the form:

$$
\begin{align*}
& A=\frac{-1}{\left(\rho\left(1-\psi_{N}^{2}\right)^{1 / 2}+r\right)} \frac{r}{\left(1-\psi_{N}^{2}\right)^{1 / 2}}\left\{\psi_{N}\left(1-\psi_{N}^{2}\right) \frac{\rho}{r} \frac{1}{r^{2}}(\rho d z-z d \rho)-\frac{z}{r} d \psi_{N}\right\} \frac{i}{2} Q^{1} \\
& \phi=\frac{i}{2}\left(\psi_{N} Q^{2}-\frac{z}{r}\left(1-\psi_{N}^{2}\right)^{1 / 2} Q^{3}\right) \tag{4.5}
\end{align*}
$$

if one defines the angle ω by

$$
\begin{equation*}
\cos \omega=\psi_{N} ; \quad \sin \omega=-\frac{z}{|z|}\left(1-\psi_{N}^{2}\right)^{1 / 2} \tag{4.6}
\end{equation*}
$$

Then on $\partial M-\bigcup_{i= \pm 1}^{ \pm N}\left\{S_{i}\right\}$ the boundary values of the connection and Higgs field of Eq. (4.5) are given precisely by Eq. (4.3) also. Equation (2.20) is satisfied on $\partial M-\bigcup_{i= \pm 1}^{ \pm N}\left\{S_{i}\right\}$ by the N-meron solution.

It was shown in reference [5] that $\left|\psi_{N}\right| \rightarrow 1$ pointwise as $\rho^{2}+z^{2} \rightarrow 0$ and t different from $t_{ \pm i}$ for $i=1$ to N. This implies that the angle ω defined in Eq. (4.6) is well defined in $\partial M-\bigcup_{i= \pm 1}\left\{S_{i}\right\}$. Taking into account that ψ_{N} is equal to +1 on the t-axis between meron and antimeron, i.e., for $t_{-i}<t<t_{+i}$ (for $i=1$ to N) and equal to -1 everywhere else on the t-axis one can show that for any closed curve Γ in $\partial M-\bigcup_{i= \pm 1}^{ \pm N}\left\{S_{i}\right\}$,

$$
\begin{equation*}
\int_{\Gamma} d \omega=2 \pi \sum_{i=1}^{N}\left(n_{+i}^{\Gamma}-n_{-i}^{\Gamma}\right) \tag{4.7}
\end{equation*}
$$

where n_{+1}^{Γ} is the winding number of Γ about the point $S_{ \pm i}$.
The curvature form, F, for the connection in Eq. (4.5) is given by

$$
\begin{equation*}
F=-d \psi_{N} \wedge \frac{1}{r^{2}}(\rho d z-z d \rho) \frac{i}{2} Q^{1} \tag{4.8}
\end{equation*}
$$

As a distribution in the plane $\rho=0$, the (t, z) component of F is formally

$$
\begin{equation*}
\left.F_{t z} d t \wedge d z \frac{i}{2} Q^{1}\right|_{\rho=0}=\left[2 \pi \sum_{i=1}^{N}\left(\delta(z) \delta\left(t-t_{+i}\right)-\delta(z) \delta\left(t-t_{-i}\right)\right)\right] d z \wedge d t \frac{i}{2} Q^{1} \tag{4.9}
\end{equation*}
$$

This is another way of expressing the loop integral of Eq. (4.7).
Both A and ϕ of Eq. (4.5) have been shown in reference [5] to be real analytic where $\left(\rho^{2}+z^{2}\right) \neq 0$. The differentiability of ψ_{N} at $\rho^{2}+z^{2}=0$ is not known but it seems a reasonable conjecture to postulate C^{∞} behavior in $M-\bigcup_{i= \pm 1}^{ \pm N}\left\{S_{i}\right\}$.

5. An Ansatz for O(2) Symmetric Merons

The $\mathrm{O}(3)$ symmetric N-meron solution of Glimm and Jaffe in the neutral gauge of reference [3] correspond to the following connection on \mathbb{R}^{4} :

$$
\begin{align*}
& \mathscr{A}_{0}=0 \\
& \mathscr{A}_{h}=\frac{i}{2}\left(\psi_{N}+1\right) \frac{1}{r} \varepsilon_{k j i} x_{i} \sigma^{j} . \tag{5.1}
\end{align*}
$$

In Eq. (5.1), ψ_{N} is a solution to Eq. (1.1). Equation (1.1) for ψ_{N} was derived by taking the Witten ansatz of Eq. (3.1) and looking for solutions with delta functions for the $\mathrm{SU}(2)$ topological charge density. This reduced the number of degrees of freedom in the ansatz to just one. Glimm and Jaffe showed that by a gauge transformation, \bar{A}_{0}, \bar{A}_{1} and $\bar{\phi}_{0}$ could be set equal to zero yielding the connection in Eq. (5.1). The $\mathrm{SU}(2)$ charge density and current (Eq. (2.10) and (2.16)) are manifestly zero for the connection in Eq. (5.1). The delta functions of weight $\pm \frac{1}{2}$ in the $\mathrm{SU}(2)$ charge density are regained when a gauge transformation which is singular at the merons is made. The $\mathrm{SU}(2)$ charge density becomes formally $\frac{1}{2} \sum_{i= \pm 1}^{ \pm N} \pm \delta(\vec{r}) \delta\left(t-t_{ \pm i}\right)$ corresponding to N merons at the points $\left(t=t_{+i}, \vec{r}=0\right)$ and N antimerons at $\left(t=t_{-i}, \vec{r}=0\right)$ for $i=1$ to N. To find N merons in the plane $\rho=0$ at points $\left(t=t_{+i}\right.$, $\left.\rho=0, z=z_{+i}\right)$ and N anti-merons at $\left(t=t_{-i}, \rho=0, z=z_{-i}\right)$ a similar reduction of the number of degrees of freedom of the connection defined by Eq. (2.5) will be proposed in order to simplify the Yang-Mills equations (Eq. 2.12). For this reduced connection, the $\operatorname{SU}(2)$ charge density and current will be manifestly zero as for the connection in Eq. (5.1), but it will be shown that by a gauge transformation which is singular at the merons, the $\mathrm{SU}(2)$ charge density will formally be a sum of delta functions,

$$
q=\frac{1}{2} \sum_{i=1}^{N} \pm \delta(x) \delta(y) \delta\left(t-t_{ \pm i}\right) \delta\left(z-z_{ \pm i}\right)
$$

Further, the connection on \mathbb{R}^{4} will be C^{∞} except at the merons in this gauge. If one restricts A and ϕ to be of the following form:

$$
\begin{align*}
A & =\frac{i}{2} A^{1} Q^{1} \\
\phi & =\frac{i}{2} \phi^{2} Q^{2}+\frac{i}{2} \phi^{3} Q^{3} \tag{5.2}
\end{align*}
$$

with A^{1} in Λ_{M}, then the lagrangian of Eq. (2.9) reduces to

$$
\begin{align*}
& \mathscr{L}=\frac{\rho}{4} F_{\mu \nu} F_{\mu \nu}+\frac{1}{2 \rho}\left(D_{\mu} \phi^{2} D_{\mu} \phi^{2}+D_{\mu} \phi^{3} D_{\mu} \phi^{3}\right) \\
& \text { with } F=d A^{1} \\
& \quad D \phi^{k}=d \phi^{k}-\varepsilon^{k 1 i} A^{1} \phi^{j} \tag{5.3}
\end{align*}
$$

with the restriction of the connection to that of Eq. (5.2), $F_{\mu \nu}^{2}=F_{\mu \nu}^{3}=0$. The Yang-Mills equations become:

$$
\begin{align*}
& \frac{1}{\rho} \partial_{\mu} \rho F_{\mu v}+\frac{1}{\rho^{2}}\left(\phi^{2} D_{v} \phi^{3}-\phi^{3} D_{v} \phi^{2}\right)=0 \\
& D_{v} \frac{1}{\rho} D_{v} \phi^{k}=0 \quad k=2,3 \tag{5.4}
\end{align*}
$$

These equations describe the interaction of a charged, scalar field with a $U(1)$ gauge potential on M. The ansatz of Eq. (5.2) transforms covariantly under gauge transformations generated by $\frac{i}{2} Q^{1}$. Given the field configuration of Eq. (5.2), the $\mathrm{SU}(2)$ charge density and current (Eq. (2.10) and (2.16)) are manifestly zero. The Yang-Mills action for the ansatz of Eq. (5.2) is

$$
a=2 \pi \int_{M} \mathscr{L} d \rho d t d z
$$

A given pair (A, ϕ) of the form given by Eq. (5.2) defines an equivalence class [A, ϕ] of cross sections ϕ of the complex line bundle over M and connections A on this bundle. Two pairs $\left(A_{1}, \phi_{1}\right)$ and $\left(A_{2}, \phi_{2}\right)$ represent the same equivalence class if there exists a $U(1)$ gauge transformation, g, generated by $\frac{i}{2} Q^{1}$ such that g transforms $\left(A_{1}, \phi_{1}\right)$ into $\left(A_{2}, \phi_{2}\right)$.

Fix N pairs of points, $S_{ \pm i}=\left(t_{ \pm i}, 0, z_{ \pm i}\right)_{i=1}^{N}$. Define F_{M}^{N} to be the set of $U(1)$ gauge equivalent classes of connections and cross sections (of the form given by Eq. (5.2)) of the \mathbb{C}^{1} bundle over M which are C^{∞} in $M-\bigcup_{i= \pm 1}^{ \pm N}\left\{S_{i}\right\}$ and satisfy the following three conditions:
(i) $D \phi=0$ on $M-\bigcup_{i= \pm 1}^{ \pm N}$

$$
\begin{equation*}
|\phi|=1 \tag{5.5}
\end{equation*}
$$

(ii) For any closed curve Γ in $\partial M-\bigcup_{i= \pm 1}^{ \pm N}\left\{S_{i}\right\}$,

$$
\begin{equation*}
\operatorname{Tr}\left(-i Q^{1} \int_{\Gamma} A\right)=2 \pi \sum_{i=1}^{N}\left(n_{+i}^{\Gamma}-n_{-i}^{\Gamma}\right) \tag{5.6}
\end{equation*}
$$

where $n_{ \pm i}^{\Gamma}$ is the winding number of Γ about the point of $S_{ \pm i}$.
(iii) If $[A, \phi] \in F_{M}^{N}$, then for all $\left(A^{\prime}, \phi^{\prime}\right) \in[A, \phi],\left(A^{\prime}, \phi^{\prime}\right)$ is C^{∞} on $\hat{M}-\bigcup_{i= \pm 1}^{ \pm N}\left\{S_{i}\right\}$. Notice that each F_{M}^{N} is indexed by a set of distinct points.

In Sect. 4 it was shown that the two meron solution and the N-meron generalizations of Glimm and Jaffe define equivalence classes in some F_{M}^{N}. The remainder of this paper is devoted to studying the properties of the F_{M}^{N} and their members.

6. Properties of the \boldsymbol{F}_{M}^{N}

In this section we prove two facts about the F_{M}^{N}. The first fact is that if one gauge transforms the boundary values on ∂M of a cross section and connection in a given F_{M}^{N}, then that gauge transformation can be extended in a C^{∞} manner to all of M to define a gauge transformed connection and cross section. This will follow from Proposition 1. From Proposition 2 it will follow that the sets F_{M}^{N} and $F_{M}^{N^{\prime}}$ are disjoint unless the set of points defining F_{M}^{N} and $F_{M}^{N^{\prime}}$ are identical. Thus for $N \neq 0$, F_{M}^{N} does not contain equivalence classes which are pure gauges.

Define $F_{\partial M}^{N}$ indexed by the set of points $\left\{S_{ \pm i}\right\}_{i=1}^{N}$ analogously to the definition in Sect. 5 of F_{M}^{N}. The set $F_{\partial M}^{N}$ is the set of $U(1)$ gauge equivalent classes of connections and cross sections of the \mathbb{C}^{1} bundle over ∂M which are C^{∞} in $\partial M-\bigcup_{i= \pm 1}^{ \pm N}\left\{S_{i}\right\}$ and satisfy conditions (i), (ii) and (iii) of Sect. 5 on ∂M. Denote the principal $U(1)$ bundle over M by $P(M, U(1))$ and the principal $U(1)$ bundle over ∂M by $P(\partial M, U(1))$. A C^{∞} gauge transformation on $M(\partial M)$ defines a C^{∞} cross-section of $P(M, U(1))(P(\partial M, U(1)))$. For a connection and cross section (A, ϕ), let $(A, \phi)_{\partial M}$ denote the restriction of (A, ϕ) to $\partial M .(A, \phi)_{\partial M}$ is just the pull back under the inclusion $i: \partial M \rightarrow M$ of the pair (A, ϕ). The action of a cross section g of $P(M, U(1))$ on (A, ϕ) will be denoted by $g(A, \phi)$. Similarly the action of a cross section \tilde{g} of $P(\partial M, U(1))$ will be denoted $\tilde{g}(A, \phi)_{M}$. Given $(A, \phi) \in[A, \phi]$ and $[A, \phi]$ in some F_{M}^{N}, a cross section \check{g} of $P(\partial M, U(1))$ defines a gauge equivalent boundary value $\tilde{g}(A, \phi)_{\partial M}$.
Proposition 1. Let $(A, \phi) \in[A, \phi]$ in some F_{M}^{N}. Let g be any cross section of $P(\partial M, U(1))$. Then g extends to a C^{∞} cross section of $P(M, U(1))$. Further, there exists $\left(A^{\prime}, \phi^{\prime}\right) \in[A, \phi]$ such that $\left(A^{\prime}, \phi^{\prime}\right)_{\partial M}=g(A, \phi)_{\partial M}$.
Proof. Note, \hat{M} is the three-dimensional closed ball and its boundary, $\partial \hat{M}$, is the two sphere. Standard topological arguments (see for example reference [8] pp. 150-151) imply that \tilde{g} can be extended to a C^{∞} cross section, g, of $P(\hat{M}, U(1))$. From condition (iii) we see that because all members of $[A, \phi]$ may be defined on \hat{M}, there exists a pair $\left(A^{\prime}, \phi^{\prime}\right) \in[A, \phi]$ with boundary values equal to $\tilde{g}(A, \phi)_{\partial M}$, namely $g(A, \phi)$ where g is the extension of \tilde{g}.

Proposition 2. Let $[A, \phi] \in F_{M}^{N}$ for $N>0$. Then $[A, \phi]$ is not a pure gauge.
Proof. The conditions (5.5) and (5.6) are invariant under the action of $U(1)$ gauge transformations which are C^{∞} on $M-\bigcup_{i= \pm 1}^{ \pm N}\left\{S_{i}\right\}$. If $[A, \phi]$ were a pure gauge then
one could find, for each $(A, \phi) \in[A, \phi]$ a C^{∞} gauge transformation, g, on $M-\bigcup_{i= \pm 1}^{ \pm N}\left\{S_{i}\right\}$ such that $g(A, \phi)=(0,1)$. Hence, $(0,1) \in[A, \phi]$ which contradicts the condition of Eq. (5.6). A similar argument can be used to show that $F_{M}^{N} \cap F_{M}^{N^{\prime}}=\varnothing$ unless the points defining F_{M}^{N} and $F_{M}^{N^{\prime}}$ coincide.

7. The Local Topological Charge

All field configurations of the form defined in Eq. (5.2) have zero $\mathrm{SU}(2)$ topological charge and zero $\mathrm{SU}(2)$ current as defined in Eq. (2.18). The total topological charge is gauge invariant but the current is not, the gauge transformations which are generated by $\frac{i}{2} Q^{2}$ and $\frac{i}{2} Q^{3}$ will produce nonzero $\operatorname{SU}(2)$ current. One can define the local topological charge of the merons by integrating the dual form to the current, Eq. (2.18), over the surface of a small ball surrounding each meron [2]. The concept of local topological charge is, of course, not gauge invariant [3].

From this point on, all work will be done on the conformal compactification, \hat{M}, of M. For each $i=1$ to N and for $\lambda>0$ define the set

$$
\begin{equation*}
B_{ \pm i}^{\lambda}=\left\{(t, \rho, z) \in \hat{M} \mid\left(t-t_{ \pm i}\right)^{2}+\rho^{2}+\left(z-z_{ \pm i}\right)^{2} \leqq \lambda^{2}\right\} \tag{7.1}
\end{equation*}
$$

and int $B_{ \pm i}^{\lambda}$ to be the interior of $B_{ \pm i}^{\lambda}$. Define \hat{M}^{2} to be the compact manifold with boundary resulting from the excision of the interiors of the $B_{ \pm i}^{\lambda}$ from \hat{M},

$$
\begin{equation*}
\hat{M}^{\lambda}=\hat{M}-\bigcup_{i= \pm 1}^{ \pm N} \operatorname{int} B_{i}^{\lambda} \tag{7.2}
\end{equation*}
$$

The boundary of \hat{M}^{2} is the set

$$
\partial \hat{M}^{\lambda}=\partial \hat{M} \cup\left(\bigcup_{i= \pm 1}^{ \pm N} \partial B_{i}^{\lambda}\right)-\bigcup_{i= \pm 1}^{ \pm N} \operatorname{int} D_{i}^{\lambda}
$$

where

$$
\begin{align*}
& \partial B_{ \pm i}^{\lambda}=\left\{(t, \rho, z) \in \hat{M} \mid\left(t-t_{ \pm i}\right)^{2}+\rho^{2}+\left(z-z_{ \pm i}\right)^{2}=\lambda^{2}\right\} \tag{7.3}\\
& D_{ \pm i}^{\lambda}=\left\{(t, 0, z) \in \partial \hat{M} \mid\left(t-t_{ \pm i}\right)^{2}+\left(z-z_{ \pm i}\right)^{2} \leqq \lambda^{2}\right\} .
\end{align*}
$$

Of course λ is taken to be small enough that all $B_{ \pm i}^{\lambda}$ are disjoint.
The dual form to the current 1 -form in Eq. (2.16) is

$$
\begin{equation*}
* I((A, \phi))=-\frac{1}{8 \pi^{2}} \operatorname{Tr}\left(\left(\phi+\frac{i}{2} Q^{2}\right) d A+A \wedge D \phi\right) \tag{7.4}
\end{equation*}
$$

The bundle $P\left(\hat{M}^{\lambda}, U(1)\right)$ of Sect. 4 may be considered as a sub-bundle of the principal $\mathrm{SU}(2)$ bundle over $\hat{M}, P\left(\hat{M}^{\lambda}, \mathrm{SU}(2)\right)$ by the obvious inclusion. If U is C^{∞} cross section of $P\left(\hat{M}^{\lambda}, S U(2)\right)$ then U acts on $* I((A, \phi))$ in the following way: For fixed, but general (A, ϕ)

$$
\begin{align*}
U(* I)= & -\frac{1}{8 \pi^{2}}[\operatorname{Tr}\{\phi d A+A \wedge D \phi\} \\
& \left.+d\left(\operatorname{Tr}\left\{\left(U^{-1} A U+U^{-1} d U\right) \frac{1}{2} Q^{2}-U^{-1} d U\left(U^{-1} \phi U\right)\right\}\right)\right] \tag{7.5}
\end{align*}
$$

For (A, ϕ) of the form defined by Eq. (5.2), Eq. (7.5) becomes

$$
\begin{equation*}
U(* I)=-\frac{1}{8 \pi^{2}} d\left(\operatorname{Tr}\left\{\left(U^{-1} A U+U^{-1} d U\right) \frac{1}{2} Q^{2}-U^{-1} d U\left(U^{-1} \phi U\right)\right\}\right) \tag{7.6}
\end{equation*}
$$

Define the local topological charge of $(A, \phi) \in F_{M}^{N}$ in the gauge U by:

$$
\begin{equation*}
Q_{\mathrm{Loc}}^{ \pm i}[U,(A, \phi)]=2 \pi \int_{\partial B^{\lambda_{ \pm-}}-\mathrm{int}^{\lambda_{ \pm \pm}}} U(* I) \tag{7.7}
\end{equation*}
$$

A calculation shows that $Q_{\text {Loc }}^{ \pm i}$ depends only on $[A, \phi] \in F_{M}^{N}$
Proposition 3. For each $[A, \phi] \in F_{M}^{N}$, and $(A, \phi) \in[A, \phi]$ there exist a C^{∞} cross section U of $P\left(\hat{M}^{\lambda}, \mathrm{SU}(2)\right)$ such that
a) $U(* I((A, \phi)))=0$ on $\partial \hat{M}^{\lambda}-\bigcup_{i= \pm 1}^{ \pm N}$
b) $Q_{\mathrm{Loc}}^{ \pm i}[U,[A, \phi]]= \pm \frac{1}{2}$ for $i=1$ to N.

Proof. On $\partial \hat{M}-\bigcup_{i= \pm 1}^{ \pm N}\left\{S_{i}\right\}$ the condition of Eq. (5.5) and (5.6) require that $(A, \phi)_{\hat{\partial M}}$ have the form:

$$
\begin{align*}
& A=d \omega \frac{1}{2} Q^{1} \\
& \phi=\frac{1}{2}\left(\cos \omega Q^{2}+\sin \omega Q^{3}\right) \tag{7.8}
\end{align*}
$$

where ω is C^{∞} in $\partial \hat{M}-\bigcup_{i= \pm 1}^{ \pm N}\left\{S_{i}\right\}$ and has the property that if Γ is any closed curve in $\partial \hat{M}-\bigcup_{i= \pm 1}^{ \pm N}\left\{S_{i}\right\}$
then

$$
\begin{equation*}
\int_{\Gamma} d \omega=2 \pi \sum_{i}\left\{n_{+i}^{\Gamma}-n_{-1}^{\Gamma}\right\} \tag{7.9}
\end{equation*}
$$

where $n_{ \pm i}^{\Gamma}$ is the winding number of Γ about $S_{ \pm i}$.
Define U on $\partial \hat{M}-\bigcup_{i= \pm 1}^{ \pm N}$ int D_{i}^{λ} to be

$$
\begin{equation*}
U=\exp \left(-(\omega+\pi) \frac{i}{2} Q^{1}\right) \exp \left(\omega \frac{i}{2} Q^{2}\right) \tag{7.10}
\end{equation*}
$$

U need not be known explicitly over the rest of \hat{M}^{λ}. All one need show is that given U on $\partial \hat{M}-\bigcup_{i= \pm 1}^{ \pm N}$ int D_{i}^{λ}, it can be extended in a C^{∞} fashion to a cross section of $P\left(\hat{M}^{\lambda}, \mathrm{SU}(2)\right)$. This is done in two steps. To extend U over $\partial B_{ \pm i}^{\lambda}-\operatorname{int} D_{ \pm i}^{\lambda}$ note that $\partial B_{ \pm i}^{\lambda}-\operatorname{int} D_{ \pm i}^{\lambda}$ is topologically a disc. Its boundary (as a subspace),

$$
\begin{equation*}
\partial\left(\partial B_{ \pm i}^{\lambda}-\operatorname{int} D_{ \pm i}^{\lambda}\right)=\left\{(t, \rho, z) \in \partial \hat{M} \mid\left(t-t_{ \pm i}\right)^{2}+\left(z-z_{ \pm i}\right)^{2}=\lambda^{2}\right\} \tag{7.11}
\end{equation*}
$$

is a circle. U is defined on $\partial\left(\partial B_{ \pm i}^{\lambda}-\operatorname{int} D_{ \pm i}^{\lambda}\right)$ for $i=1$ to N, and the arguments
previously cited [8] with the fact that the fundamental group of $\mathrm{SU}(2)$, $\pi_{1}(\mathrm{SU}(2)),=0$ imply that a C^{∞} extension to $\partial B_{ \pm i}^{\lambda}-$ int $D_{ \pm i}^{\lambda}$ exists. These same arguments imply that a C^{∞} extension of U from $\partial \hat{M}^{\lambda i}$ to \hat{M}^{λ} exists since $\pi_{2}(\mathrm{SU}(2))=0$ also. Thus if U is defined on $\partial \hat{M}^{\lambda}-\bigcup_{i= \pm 1}^{ \pm N}\left\{S_{i}\right\}$ by Eq. (7.9), then it can be extended to a C^{∞} cross section of $P\left(\hat{M}^{\lambda}, \mathrm{SU}(2)\right)$.

The extended cross section, U , acts on the boundary values of (A, ϕ) on $\partial \hat{M}-\bigcup_{i= \pm 1}^{ \pm N}\left\{S_{i}\right\}$ given by Eq. (5.8) to give the gauge transformed boundary values of (A, ϕ) which are

$$
\begin{align*}
& U^{-1} A U+U^{-1} d U=d \omega \frac{i}{2} Q^{2} \\
& U^{-1} \phi U=-\frac{i}{2} Q^{2} \tag{7.12}
\end{align*}
$$

The current 2 -form, $U(* I)$ from Eq. (7.7), can be evaluated on $\partial \hat{M}-\bigcup_{i= \pm 1}^{ \pm N} D_{i}^{\lambda}$ explicitly and is

$$
\begin{equation*}
U(* I)=\frac{1}{8 \pi^{2}} d(d \omega) \tag{7.13}
\end{equation*}
$$

Because ω is C^{∞} on $\partial \hat{M}^{\lambda}-\bigcup_{i= \pm 1}^{ \pm N} D_{i}^{\lambda}$, this is zero which proves part a) of Proposition 3. Both (A, ϕ) and U are $C^{i= \pm 1}$ in \hat{M}^{λ} so it follows that $U(* I)$ is also C^{∞} in $\hat{\mathrm{M}}^{\lambda}$.
$U(* I)$ is nonzero on each $\partial B_{ \pm i}^{\lambda}-\operatorname{int} D_{ \pm i}^{\lambda}$ for $i=1$ to N and here its integral can be evaluated also. In full, Eq. (7.7) is

$$
\begin{align*}
& Q_{\mathrm{Loc}}^{+i}(U,[A, \phi])=-\frac{1}{4 \pi_{\partial B^{\lambda}}} \int_{-i-\mathrm{int} D^{\lambda}+i} d\left(\operatorname{Tr}\left\{U^{-1} A U+U^{i+1} d U\right) \frac{i}{2} Q^{2}\right. \\
& \left.-U^{-1} d U\left(U^{-1} \phi U\right)\right\} . \tag{7.14}
\end{align*}
$$

Using Stoke's theorem, this can be transformed to an integral over $\partial\left(\partial B_{ \pm i}^{\lambda}-\right.$ int $D_{ \pm i}^{\lambda}$) giving

$$
\begin{equation*}
Q_{\mathrm{Loc}}^{ \pm i}(U,[A, \phi])=\frac{1}{4 \pi} \int_{\partial\left(\partial B^{\lambda}+{ }_{t i}-\mathrm{int} D^{\lambda_{ \pm 2}}\right)} d \omega= \pm \frac{1}{2} \tag{7.15}
\end{equation*}
$$

This completes the proof that U gives (A, ϕ) local topological charge $\pm \frac{1}{2}$ at $S_{ \pm i}$ (for $i=1$ to N) for any $[A, \phi] \in F_{M}^{N}$.

Finally, since (A, ϕ) and U are C^{∞} in $\hat{M}^{\lambda}-\bigcup_{i= \pm 1}^{ \pm N}\left\{S_{i}\right\}$ as one takes $\lambda \rightarrow 0$ and $U^{-1} A U+U^{-1} d U$ and $U^{-1} \phi U$ satisfy Eq. (7.12), it follows that the connection defined on \mathbb{R}^{4} by (A, ϕ) in the gauge given by U (Eq. (2.5)) is in fact C^{∞} in $\mathbb{R}^{4}-\bigcup_{i= \pm 1}^{ \pm N}\left\{S_{i}\right\}$. For $\rho \neq 0$ this fact follows from the C^{∞} behavior of (A, ϕ) and U.

At $\rho=0$, the connection on \mathbb{R}^{4} from Eq. (2.5) has the boundary values:

$$
\begin{aligned}
& \mathscr{A}_{0}=\frac{i}{2} \partial_{0} \omega Q^{2} \\
& \mathscr{A}_{3}=\frac{i}{2} \partial_{3} \omega Q^{2} \\
& \mathscr{A}_{B}=0 .
\end{aligned}
$$

Since $Q^{2} \equiv \sigma^{3}$, the connection is C^{∞} everywhere but at the points $\left\{S_{i=1}\right\}^{N}$.

Acknowledgements. The author would like to express gratitude to Thordur Jonsson for his many suggestions and criticisms, and to Arthur Jaffe for suggesting this problem and serving as a constant source of advice.

Reference

1. Witten, E. : Phys. Rev. Lett. 38, 3 (1976)
2. DeAlfaro, V., Fubini, S., Furlan, A. : Phys. Lett. 65, 163 (1976)
3. Glimm, J., Jaffe, A. : Phys. Lett. 73B, 167-170 (1978)
4. Glimm, J., Jaffe, A. : Phys. Rev. D18, 463-467 (1978)
5. Jonsson, T., McBryan, O., Zirilli, F., Hubbard, J. : Commun. Math. Phys. 68, 259-273 (1979)
6. Although the $\mathrm{O}(2)$ connection is completely general, a different choice of linear combinations of the $A \alpha$ will result in different equations. Similar O(2) symmetric equations were studied by Hung-Sheng Tsao (unpublished) and by Callan, Dashen, and Gross (unpublished). I am grateful to the authors for transmitting these results to me through A. Jaffe.
7. Belavin, A., Polyakov, A., Schwartz, A., Tyupkin, Y. : Phys. Lett. 59B. (1975), 85.
8. Steenrod: Topology of Fibre Bundles. Princeton, NJ : Princeton University Press, 1951

Communicated by A. Jaffe

Received January 11, 1979

[^0]: * National Science Foundation Pre-doctoral Fellow
 ** Supported in part by the National Science Foundation under Grant PHY 77-18762

