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Abstract. The general O(2) symmetric Yang-Mills equations are derived.
An ansatz for O(2) symmetric merons is presented and it is shown that any
connection in this ansatz will have SU(2) topological charge density which is
a sum of delta functions at points in a plane with weights + \. It is shown that
any connection in this ansatz will be C00 away from these points.

1. Introduction

If the four-dimensional, Euclidean space, Yang-Mills equations are required to
be O(3) symmetric, it was shown by Witten [1] that the equations reduced to the
equations describing an interacting system on the Poincare half-plane consisting
of a (7(1) gauge field and a charged scalar field with self-couplings. DeAlfaro,
Fubini, and Furlan [2] discovered an explicit O(3) symmetric solution to the
Yang-Mills equations with the property that the topological charge density has
values + \ concentrated at points; the 'two meron solution.' For arbitrary positive
integer N, Glimm and Jaffe [3, 4] reduced the problem of finding JV-meron, O(3)
symmetric, solutions to the question of whether certain (infinite action) solutions
to the scalar elliptic equation.

r2(d2 + d2)φ = φ(φ2~l) (1.1)

existed. These JV-meron solutions of Glim and Jaffe are also characterized by a
topological charge density which is equal to a sum of delta functions on a line with
weights + \ at the merons. Jonsson, McBryan, Zirilli, and Hubbard [5] proved
that these (infinite action) solutions to Eq. (1.1) do indeed exist. In this paper,
an O(2) symmetric SU(2) Yang-Mills connection is defined and the form of the
O(2) symmetric Yang-Mills equations are derived. It is then shown that certain
classes of O(2) symmetric connections have topological charge densities which
are the sum of delta functions in a plane with weights ± \. The O(3) symmetric
solutions of Glimm and Jaffe are included in these classes. It remains to be proven
whether there are any other solutions to the Yang-Mills equations contained in
these classes.

* National Science Foundation Pre-doctoral Fellow
** Supported in part by the National Science Foundation under Grant PHY 77-18762

0010-3616/79/0069/0179/S03.00



180 C.H. Taubes

For convenience, this paper is divided into seven sections. In Sect. 2, the form
of the Yang-Mills equations are derived when the fields are required to have
O(2) symmetry. Section 3 relates the O(3) symmetric Yang-Mills equations derived
by Witten to the O(2) symmetric equations. In Sect. 4, the O(3) symmetric meron
solutions of Glim and Jaffe are discussed in the O(2) format. In Sect. 5, we define
our classes of O(2) symmetric connections. It is shown in Sect. 6 and 7 that these
classes are disjoint and that any connection in a given class defines a Yang-Mills
connection on U4 which has topological charge density concentrated at points
in a plane with weights ± \.

2. The O(2) Symmetric Yang-Mills Equations

The following index notations will be used: Greek indices α, β, y, δ run from 0 to 3,
where x° = ί, x1 = x, x2 = y, x 3 = z. Greek indices μ, v, σ, λ run from 1 to 3 where
xv(v = 1) = ί, xv(v = 2) = p = (χ2 + y2)112, xv(v = 3) = z. Latin lower case indices
i,7, k run from 1 to 3, Latin capitals A, B, C run from 1 to 2 where xA(A = 1) = x
and xA(A = 2) = y. Repeated indices are to be summed over. It is convenient to
define the following space-time dependent representation of the SU(2) Lie algebra,

Q1=^BAX-σA

Q* = X-σA (2.1)
σ

where σ\i = 1,2,3) are the Pauly matrices and (ε)ιjk is the completely antisymmetric
Levi-Civita symbol. Further define

RAB = δAB ~ XA*B/P2 ( 2 2 )

then the following commutation algebra is satisfied by {Qk)l=1

[eJ i 9 βi] = 2/^ B ε i j k β k . (2.3)

One also has the trace relations:

Tr(QlQk) = 2(5*

^ β ! . = 0. (2.4)

An arbitrary Yang-Mills connection may be written in the following form:
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(2.5)

We define an O(2) symmetric connection by the requirement [6]:

Ak

μ = A% p, z) and φk = φ% p, z).

Here the vector Λk

μ for each fc = 1,2,3 is a three component vector and

Ak

μ(μ = 1) - Ak A%μ = 2)= Ak and Ak

μ(μ = 3) = Ak.

The Yang-Mills curvature tensor is given by the expression:

^^.^--V^ + IX^] (2.6)

If one defines the electric and magnetic parts of jFα/? in the usual way, Ex = SFθΛ,

B* = ϊ^'^βy, then in terms of the fields A\ and φk:

E3 = iβFk

03Q
k

y σ

B3 = i/2(l/p(DώfQk)

In Eq. (2.7) the three-dimensional field tensor Fk

μv(μ, v= 1,2,3) and (Dμφ)k are
defined by:

where

μ d t ' μ dp" μ dz'

In terms of the three-dimensional fields of Eq. (2.5), the Yang-Mills action is

1
<£ =r p/4FkFk H (D φf(D φ)k. (2 9)

μ μ 2p
 μ μ

The SU(2) topological charge is

: ^ π ί ί ί dtdpdzq(ρ9z,t) and

- 1
js~2£μvσF

k

μvDσφ
k. (2.10)
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The SU(2) charge density may be written as the divergence of a non-gauge invariant
current

whose components are:

d3A
k

0)(φk + δk2))
μ lυ/L

JL±{Dpφ
kAk

0 - Doφ
kΛk

p + (d0A
k - dpA

k

0)(φk + δk2))

- D3φ
kAk

p + OVI3 - 5 3 ^ ) ( 0 k + (5k2)). (2.1:
_ - 1 1

I671 p ^

The Yang-Mills equations in terms of the fields Ak and φk are

Dμ-Dμφ
k = 0. (2.12)

Define a metric tensor gμγ = p2δμγ with determinantyjg = —^. The lagrangian

of Eq. (2.9) can be rewritten as

i?(p, z, ί) = \^ΓQcΓcΓ¥\jk

σn + l2^ggμγDμψ
kDvψ

k (2.13)

This is the metric covariant lagrangian for an SU(2) Yang-Mills field coupled
to a triplet of Higg's mesons on a three dimensional space (with boundary) of
constant negative curvature. The boundary is the plane p = 0. The Yang-Mills
equations'(Eq. 2.12) are the variational equations of this lagrangian when written
in terms of the metrix gμv. To avoid confusion in the remainder of this paper, all
raising and lowering of the three dimensional indices ([μ, v, <τ] = [ί,p,z]) will be
done by the Kronecker delta δμv. Factors of p will be written explicitly.

The self dual and anti-self dual instanton solutions to the Yang-Mills equations
will be solutions to the first order equations ^aβ = ± \ εaβyd^yδ. In terms of the
three-dimensional formalism, this is just

Dμφ
k=±1

2pc,μrj./σλ. (2.14)

Here zμσ} is the completely antisymmetric three-dimensional Levi-Civita tensor:

The O(2) symmetric equations have this form for the following reasons. In
coordinates (ί, p, z, μ) on U4 with μ = Arg(x + iy\ the restriction to O(2) symmetry
means that all fields and gauge transformations must be independent of μ. Under
a guage transformation U, the four-dimensional Yang-Mills connection j</α

transforms as siΆ -> Us/^U'1 + UdJJ~ι. If U is independent of the angle μ then
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the component si μ of the connection transforms as a Higgs scalar. The form of the
metric gμv follows from the fact that the Yang-Mills lagrangian in its original
form on U4 is scale invariant.

From this point on, we shall work solely in terms of the three-dimensional
variables (f, p, z), and fields Ak

μ and φk. Define the manifold, M, with boundary by

0} (2.15)

Let AM denote the exterior algebra of differential forms on M. The forms dx1 — dt,
dx2 = dp.dx3 = dz form a basis of 1-forms for AM d will denote the exterior
derivative in the usual way on AM Λ will denote the exterior product on AM.

The symbol A will refer to an SU(2) connection on M, a Lie algebra valued
1-form; Ak will refer to its components in some specified basis for the SU(2)
algebra. The symbol φ will refer to the Higg's field; φk to the components with
respect to some specified basis. Notice that on M, dQk = 0 for k = 1,2,3.

The manifold M has a boundary, dM; the boundary is the plane p = 0. To
discuss certain topological notions it will be necessary to compactify M. The
conformal compactification of M will be denoted M and it is the three ball; the
sphere at infinity is mapped to the South Pole. The boundary is the two sphere
and will be denoted dM.

As it is written in Eq. (2.9), the Yang-Mills lagrangian is a functional of A and φ
and may be interpreted as a scalar function on M. Similarly the SU(2) charge
density q(x) in Eq. (2.10). The current Ia of Eq. (2.11), when interpreted as the
components of a 1-form in AM has the form

I = ^εμvσTv(dvAσ(φ + ~Q2) + AvDσφ)dx^ (2.16)

8π V V 2 / /

If one defines the natural duality operation in AM by

*dxμ=
ι

2εμvσdxvΛdxσ (2.17)

then q(x) is related to / by

q{x) = d*I = *d*I

and

1
*/ = - ^Tr((</> + i/2Q2)dA + A A Dφ) (2.18)

The Yang-Mills equations on M (Eq. (2.12) are not complete without specification
of the boundary conditions for the connection A and the Higg's field φ on dM.
Because of the factor 1/p in the lagrangian of Eq. (2.9), we take as our boundary
condition on the Higg's field φ the requirement that Dφ = 0 on dM (Dφ is defined
by Dφ = dφ + [A, φ]). The field φ may be considered as a cross section of a three-
dimensional vector bundle over M. We can use the basis {Q1}^ ί as a basis for the
cross sections of this vector bundle. Locally we can pick coordinates in the bundle
so that

φ=-φU"1Q2U (2.19)
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This is just the polar decomposition where φ is a scalar function on M and U is
a cross section of the principal SU(2) bundle over M. The condition that Dφ = 0
on δM implies that

Λ = Λ^U-ιQ2U+U~1dU (2.20)

at p = 0. A is a 1-form in ΛM.
The lagrangian of Eq. (2.9) has formally six independent degrees of freedom.

Equations (2.20) constrain three of them on the boundary of M.

3. The O(3) Symmetric Ansatz of E. Witten in O(2) Form

Witten's O(3) symmetric ansatz [1] takes the SU(2) connection to have the
following form:

~

where r = {p2 + z 2 ) 1 / 2 and A0,Aι,φ0 and φx are functions of r and t only. The
O(3) symmetric fields ^ , ^ 1 = 0,1 determine a set of O(2) symmetric fields
(Ak

μ,φ
k) defined in Sect. 2. The correspondence is given by the following table:

A1 — Π A2 — A - A3 — A —

r ° r2 1 r2 ι

As an example, the solution to the Yang-Mills equations corresponding to a single
instanton [7] at the origin of [R4 has the following form in terms of (Ak

μ, φ
k)\

A — Λ (zdp — ρdz)-Q} + (zdt — tdz)-Q2 + {pdt — tdp)-Q3

The single meron solution of DeAlfaro, Fubini and Furlan [2] has the following
form in terms of (Akφk):
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= -ϊ\ (zdp - pdz)~Qι + {zdt - tdz)~Q2 + (pdt -
x I 2 2 2
P f i i i o i α ] i* o ,~ Λs

= ~< -t-Q1 +ρ-Q2 -z-Q3 >--62 (3.4)
xL 2 2 2 2

4. The O(3) Symmetric Merons

By a gauge transformation, the two meron solution of DeAlfaro, Fubini and
Furlan [2] corresponding to a meron on the ί-axis at the point (ί, p, z) given by
S + = (ε, 0,0) and an antimeron at S _ = ( — ε, 0,0) on the ί-axis may be put in the
following form:

A = — l—w-\ ~ 2pzdp - Iztdt + (p2 - z2 + t2 - ε2)dz l^β 1

x+x_ x + x_ +2pε ( J2

where x ± - (p 2 + z2 + (ί + ε)2) 1 / 2. (4.1)

This gauge is manifestly neutral [4] as can be seen by examining the expression
for the SU(2) current, equation (2.16). Both the connection, A, and the Higgs field,
φ, are C00 in M — {S + } — {S_}. There is no singular string [3] in this gauge.

On the boundary dM — {S + } — {S_}, the two meron solution takes the
following form:

2 [ x.

If one defines

may be written as

ztdtλ

t2-,

+

 x-

,a,,α

-V--

g 2 ) O 2

t2

2 2
Z

2zε

χ+χ^

2zε

+ z 2 -ε 2 '
boundary values of Eq. (4.2)

φ=Ucos coQ2 + sin ωQ3 Y (4.3)

Since the p component of A is zero on δM — {S + } — {S_} and φ is a function
only of p 2 , it is clear that the conditions of equation (2.20) are identically satisfied
on dM — {S+} — {S_}. Furthermore, the connection, A, and Higgs field φ are
constant as p -* 00 so that A and φ are a C00 connection and Higgs field on the
compactified space, M, except at the points {S+} and {£_}. Equation (2.20) is
satisfied on dM - {S+} - {S_}.

The function ω is homogeneous of degree zero and is such that if Γ is any
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closed curve in dM — {S + } — {S_},

$dω = 2π(nΓ

+-nΓ_) (4.4)
r

where n + is the winding number of Γ about S± .
The more general O(3) symmetric meron solutions of Glimm and Jaffe cor-

responding to N merons on the ί-axis at points S+i = (ί+ -0,0) and iV antimerons
on the ί-axis at points S_t = (ί_ i50,0) withί_ f < tt < t_{i+l)i = 1 to JV(ί_(iV+1) Ξ OO)
can be put into a form analogous to the form of the two meron solutions given by
Eq. (4.1). Let φN be a solution to Eq. (1.1) corresponding to N merons at the points
S + i and N antimerons at the points S_t for i = 1 to N. There exists a gauge in
which the connections and Higgs field for the solution ψN has the form:

</' = ^( / ' N e 2 - ; ( l - < A N ) 1 / 2 β 3 ) (4-5)

if one defines the angle ω by

cos ω = ψN; sin ω = - γ—(l - ψl)1'2. (4.6)

Z

±N

Then on dM — (J {Sj the boundary values of the connection and Higgs field
£ = ± 1

of Eq. (4.5) are given precisely by Eq. (4.3) also. Equation (2.20) is satisfied on
±N

dM — (J {Sj by the iV-meron solution.
i = ± l

It was shown in reference [5] that | ψN | -> 1 pointwise as p 2 4- z2 -> 0 and
ί different from t± for i = 1 to AT. This implies that the angle ω defined in Eq. (4.6)

±N

is well defined in dM — [j {Sj. Taking into account that ^ N is equal to + 1
i= ± 1

on the ί-axis between meron and antimeron, i.e., for ί_f < t < t+i (for i = 1 to ]V)
and equal to — 1 everywhere else on the ί-axis one can show that for any closed

±N

curve Γ in dM - [j {Sj,

j d ω = 2τt £ («r

+ i - « - / ) (4-7)
Γ ί = 1

where π^ t is the winding number of Γ about the point S±i.
The curvature form, F, for the connection in Eq. (4.5) is given by

(4.8)

As a distribution in the plane p = 0, the (ί, z) component off is formally

FJt Λ dzl-Qι \p=0 = Γ 2π X (<5(z)<5(f - ί + 1 ) - <5(z)<5(ί - ί _ ( ) ) l d z Λ dt-Q1. (4.9)
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This is another way of expressing the loop integral of Eq. (4.7).
Both A and φ of Eq. (4.5) have been shown in reference [5] to be real analytic

where (p2 + z2) ψ 0. The differentiability of φN at p2 + z2 = 0 is not known but
±N

it seems a reasonable conjecture to postulate C00 behavior in M — [J {Sf}.
i = ± l

5. An Ansatz for O(2) Symmetric Merons

The O(3) symmetric JV-meron solution of Glimm and Jaffe in the neutral gauge
of reference [3] correspond to the following connection on ίR4:

^ ι = ̂ + l ) ^ k j Λ σ ' - . (5.1)

In Eq. (5.1), ψN is a solution to Eq. (1.1). Equation (1.1) for φN was derived by
taking the Witten ansatz of Eq. (3.1) and looking for solutions with delta functions
for the SU(2) topological charge density. This reduced the number of degrees of
freedom in the ansatz to just one. Glimm and Jaffe showed that by a gauge trans-
formation, A0,A1 and φ0 could be set equal to zero yielding the connection in
Eq. (5.1). The SU(2) charge density and current (Eq. (2.10) and (2.16)) are manifestly
zero for the connection in Eq. (5.1). The delta functions of weight + \ in the SU(2)
charge density are regained when a gauge transformation which is singular at the

j ±N

merons is made. The SU(2) charge density becomes formally - ]Γ + δ(r)δ(t — t±i)
_̂  2 ; = ±i

corresponding to N merons at the points (t = t + i,7=0) and N antimerons at
(t = t_i,r = O)for i = 1 to N. To find N merons in the plane p = Oat points (t = ί+ ,
p = 0,z = z+ •) and N anti-merons at (t = t_i,p = 0,z = z_i) a similar reduction
of the number of degrees of freedom of the connection defined by Eq. (2.5) will be
proposed in order to simplify the Yang-Mills equations (Eq. 2.12). For this reduced
connection, the SU(2) charge density and current will be manifestly zero as for
the connection in Eq. (5.1), but it will be shown that by a gauge transformation
which is singular at the merons, the SU(2) charge density will formally be a sum
of delta functions,

q = \ Σ ± δ{x)δ{y)δ(t - t±i)δ(z - z±i).

Further, the connection on U4 will be C°° except at the merons in this gauge.
If one restricts A and φ to be of the following form:

(5.2)
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with A1 in ΛM, then the lagrangian of Eq. (2.9) reduces to

^ = £ f Λ + γpΦμΦ
2Dμφ

2 + Dμφ
3Dμφ

3)

with F = dAι

with the restriction of the connection to that of Eq. (5.2), F2

μv = F3

μv = 0. The
Yang-Mills equations become:

1 1 2

D -D φk = 0 fc = 2,3 (5.4)
P

These equations describe the interaction of a charged, scalar field with a (7(1)
gauge potential on M. The ansatz of Eq. (5.2) transforms covariantly under gauge

transformations generated by -Q1. Given the field configuration of Eq. (5.2), the

SU(2) charge density and current (Eq. (2.10) and (2.16)) are manifestly zero. The

Yang-Mills action for the ansatz of Eq. (5.2) is

M

A given pair (A,φ) of the form given by Eq. (5.2) defines an equivalence class
[A, φ~\ of cross sections φ of the complex line bundle over M and connections A
on this bundle. Two pairs {A1,φι) and {A2,φ2) represent the same equivalence

class if there exists a (7(1) gauge transformation, g, generated by -Q1 such that

g transforms (Aί,φι) into (A2,φ2).
Fix N pairs of points, S±i = (ί± ί,0,z± i)f= 1. Define FN

M to be the set of 17(1)
gauge equivalent classes of connections and cross sections (of the form given by

±N

Eq. (5.2)) of the C 1 bundle over M which are C00 in M - (J {Sj and satisfy the
i= ± 1

following three conditions:
±N

(i) Dφ = 0 on M - (J
i - ± 1

iΦ| = 1 (5.5)
±N

(ii) For any closed curve Γ in dM — \J {5 },
i = ± l

T r ( - IQ} \ A \ = 2 π Σ (n

Γ

+i - nΓ_.) (5.6)
V r / ί = i

where π+ is the winding number of F about the point of S± .
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±N

(iii) lΐ [A,φ'jeF'h, then for all (A'9φ')e[A9φ']9 {A',φf) is C™ on M - [j {Sj.
i=±l

Notice that each F1^ is indexed by a set of distinct points.
In Sect. 4 it was shown that the two meron solution and the JV-meron generaliza-

tions of Glimm and Jaffe define equivalence classes in some F^ The remainder of
this paper is devoted to studying the properties of the FN

M and their members.

6. Properties of the F^M

In this section we prove two facts about the F1^. The first fact is that if one gauge
transforms the boundary values on dM of a cross section and connection in a given
F ^ , then that gauge transformation can be extended in a C00 manner to all of M
to define a gauge transformed connection and cross section. This will follow from
Proposition 1. From Proposition 2 it will follow that the sets FN

M and FN

M are
disjoint unless the set of points defining FΉ

M and FN

M are identical. Thus for N φ 0,
F^ does not contain equivalence classes which are pure gauges.

Define F^M indexed by the set of points {S±ί}f=1 analogously to the definition
in Sect. 5 of FN

M. The set FN

dM is the set of U(l) gauge equivalent classes of connections
±N

and cross sections of the C 1 bundle over dM which are C00 in dM — (J {Sj
ί=±l

and satisfy conditions (i), (ii) and (iii) of Sect. 5 on dM. Denote the principal 1/(1)
bundle over M by P(M, U{\)) and the principal 1/(1) bundle over dM by
P{dM, 1/(1)). A C00 gauge transformation on M(dM) defines a C00 cross-section
of P(M, U(l))(P(dM, £/(!))). For a connection and cross section (A, φ), let (A, φ)dM

denote the restriction of (A, φ) to dM. (A, φ)dM is just the pull back under the inclu-
sion i: dM -> M of the pair (A, φ). The action of a cross section g of P(M, U(\))
on (A, φ) will be denoted by g(A, φ). Similarly the action of a cross section g of
P(dM,U(l)) will be denoted g(A,φ)M. Given (Λ,φ)€[Λ,ψ] and [A,ψ] in some
F1^, a cross section g of P(dM, U(l)) defines a gauge equivalent boundary value
g(A,φ)dM.

Proposition 1. Let (A9φ)e[A,φ~] in some F ^ . Let g be any cross section of
P(δM,U(l)). Then g extends to a C00 cross section of P(M, (7(1)). Further, there
exists [A,φ')e[A,φ~] such that (A',φ')dM = g{A,φ)dM.

Proof Note, M is the three-dimensional closed ball and its boundary, dM, is the
two sphere. Standard topological arguments (see for example reference [8]
pp. 150-151) imply that g can be extended to a C00 cross section, g, of P(M, U{1)).
From condition (iii) we see that because all members of [A, φ~\ may be defined on
M, there exists a pair {A',φ')e[A,φ~\ with boundary values equal to g(A,φ)dM,
namely g(A, φ) where g is the extension of g.

Proposition 2. Let [A, φ'jeF^for N > 0. Then [A, φ~] is not a pure gauge.

Proof The conditions (5.5) and (5.6) are invariant under the action of U{\) gauge
±N

transformations which are C00 on M — (J {5-}. If [A, φ~\ were a pure gauge then
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one could find, for each (A,φ)e\_A9φ~] a C00 gauge transformation, g, on
±N

M~ U isi) s u c n t h a t g(AΦ) = (0,1). Hence, (0, l)e[A,φ~\ which contradicts
ί = ± 1

the condition of Eq. (5.6). A similar argument can be used to show that
FM n ^ M ~ 0 u n l e s s th e points defining F1^ and Fj^ coincide.

7. The Local Topological Charge

All field configurations of the form defined in Eq. (5.2) have zero SU(2) topological
charge and zero SU(2) current as defined in Eq. (2.18). The total topological charge
is gauge invariant but the current is not, the gauge transformations which are

generated by ~Q2 and ~Q3 will produce nonzero SU(2) current. One can define

the local topological charge of the merons by integrating the dual form to the
current, Eq. (2.18), over the surface of a small ball surrounding each meron [2].
The concept of local topological charge is, of course, not gauge invariant [3].

From this point on, all work will be done on the conformal compactification,
M, of M. For each ί = 1 to N and for λ > 0 define the set

^λ2} (7.1)

and int Bλ

± to be the interior of Bλ

± f. Define Mλ to be the compact manifold with
boundary resulting from the excision of the interiors of the Bλ

±i from M,

±N

Mλ = M- \J int Bf. (7.2)
i = ± l

The boundary of MΛ is the set
/ ±N \ ±N

dMλ = dMuί (J ΰBλΛ- (J int Df
\ i = ± l / ί=±l

where

dBλ

±i = {(ί,p,z)eM\(t - t±i)
2 + p2 + (z - z±i)

2 = x2} (7.3)

Dλ

± = {(ί,0,z)e3M|(ί - ί ± ί )
2 + (z - z ± i )

2 g A2}.

Of course λ is taken to be small enough that all Bλ

± are disjoint.
The dual form to the current 1-form in Eq. (2.16) is

(7.4)

The bundle P(Mλ,U{\)) of Sect. 4 may be considered as a sub-bundle of the
principal SU(2) bundle over M,P(M ;;SU(2)) by the obvious inclusion. If U is
C00 cross section of P(Mλ, SU(2)) then U acts on *I((A, φ)) in the following way:
For fixed, but general (A, φ)

— ^

(7.5)

[/(*/)= - —^[Tr [φdA + A Λ Dφ)
θ7Γ
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For (A, φ) of the form defined by Eq. (5.2), Eq. (7.5) becomes

U(*I)= -~^d(Ύr{(U~ιAU + U'^U^Q2 - U~xdU(U~^U)}). (7.6)

Oil

Define the local topological charge of (A, Φ)εFΉ

M in the gauge U by:

Qί:c[UΛAφ)-] = 2π j [/(*/). (7.7)
dBλ

±ι - intDλtι

A calculation shows that Q^c depends only on \_A,φ^\eFN

M

Proposition 3. For each [A,φ~\eFN

M, and {A,φ)e\_A,φ] there exist a C00 cross
section U 6>/P(MA,SU(2)) such that

±N
a) U(*I({A,φ))) = 0ondMλ- (J

i = ± 1

b) QΪLlU,[A,φ]-] = ±\for i=lto N.

±N

Proof. On dM - (J {Sj the condition of Eq. (5.5) and (5.6) require that (A, φ)m

i=±l

have the form:

13= \ (cos ωQ2 -f sin ωQ3) (7.8)

±N

where ω is C00 in dM — [j {Sj and has the property that if Γ is any closed
i= ± 1

±N

curve in 3 M - [j {Sj
i = ± l

then

i - n r _ 1 } (7.9)
Γ i

where nΓ

±i is the winding number of Γ about S ± i .

Define U on dM ~ [j int Df to be
i = ± l

[/ = expί - (ω + π)l-Qx jexpί ω^Q2 J. (7.10)

17 need not be known explicitly over the rest of Mλ. All one need show is that given
±N

U on dM — (J int Df, it can be extended in a C°° fashion to a cross section of
i = ± 1

P(MA, SU(2)). This is done in two steps. To extend U over 3 5 ^ - intDλ

±i note
that ^ 5 ^ j — int D + is topologically a disc. Its boundary (as a subspace),

δ(δJ5A

±ι - int Dλ

±i) = {(t9p,z)edM\(t - t± t)
2 + (z-z± f = λ2} (7.11)

is a circle. U is defined on d(dBλ

± i — int Dλ

± t ) for i = 1 to JV, and the arguments
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previously cited [8] with the fact that the fundamental group of SU(2),
π1(SU(2)), = 0 imply that a C00 extension to dBλ

±i — intD+ exists. These same
arguments imply that a C00 extension of U from δMλ to Mλ exists since

±N

π2(SU(2)) - 0 also. Thus if U is defined on δMλ - [j {Sj by Eq. (7.9), then it
ί = ± 1

can be extended to a C00 cross section of P{M\ SU(2)).
The extended cross section, U, acts on the boundary values of {A,φ) on

±N

δM — (J {Sj given by Eq. (5.8) to give the gauge transformed boundary values
i = ± l

of (A, φ) which are

U~^U= -~Q2 (7.12)

±N

The current 2-form, U(*I) from Eq. (7.7), can be evaluated on δM — (J Df
i = ± l

explicitly and is

U(*I) = ϊ-2d{dω). (7.13)

Because ω is C00 on <3Mλ — (J Df, this is zero which proves part α) of Proposi-
i = ± 1

tion 3. Both (X, φ) and [/ are C00 in MA so it follows that [/(*/) is also C00 in M λ.
t/(*/) is nonzero on each δBλ

±i — int Dλ

±i for i = 1 to N and here its integral
can be evaluated also. In full, Eq. (7.7) is

~ J dVriU-UU+U^dUUQ2

^πdBλ

±ί-\nίDλ±i ^

(7.14)

Using Stoke's theorem, this can be transformed to an integral over d(dBλ

± t —
int Dλ

±,) giving

t ~ j dω=+i. (7.15)

This completes the proof that U gives (A, φ) local topological charge ± \ at S±i

(for i = 1 to N) for any [A, Φ]eFN

M.
±N

Finally, since (A,φ) and U are C00 in MA — [j {Sj as one takes λ -• 0 and
t = ± l

[/" 1>ί[/+ U~1dU and U~ιφU satisfy Eq. (7.12), it follows that the connection
defined on (R4 by (A, φ) in the gauge given by U (Eq. (2.5)) is in fact C°° in

±N

[R4 - y {SJ. For p ^ 0 this fact follows from the C00 behavior of (4, φ) and t/.
i = ± l
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At p = 0, the connection on IR4 from Eq. (2.5) has the boundary values:

Since Q2 = σ3, the connection is C°° everywhere but at the points {Si= ί}
N.
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