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Abstract. We reduce the counting problem for the vacuum diagrams of a φ4

theory to a moment problem. As a consequence we are able to give the generat-
ing function for the counting of diagrams on a torus with one hole, besides the
known result for planar diagrams. The method can be extended to φn theory
and also to the counting of diagrams on a torus with an arbitrary number of
holes.

I. Introduction

In their paper Planar Diagrams [1], E. Brezin, C. Itzykson, C. Parisi and J.B. Zuber
have discussed the combinatorics of Quartic Vertices, and found the generating
function E{0\g) which solves the counting problem for the vacuum diagrams in the
planar approximation. The technic used was the saddle point method. Unfortunate-
ly this method does not provide an easy way to reach even the next generating
function E{1)(g) which solves the counting problem on a torus with one hole.

In this paper, we have obtained for this generating function a rather simple
expression:

^ α 2 ) , (LI)

with, following the notation in [1] :

, (1.2)

where the root to be taken (1.2) is the root regular at g = 0. Of course we have also
verified that the generating function E(0){g) is given by:

> = - \ log a1 4- ̂ (a2 - 1)(9 - a2). (1.3)

The general case, the computation of £(fe)(#) for k ̂  2 will be considered elsewhere.
As shown in [1], the generating functions E(k\g) appear as coefficients in the

asymptotic expansion:
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where In{g/n) is the integral:

/„(?/«)=? Π (Λ-

We show that ln can be thought as the Hadamard determinant of order n associated
with the positive measure

dμ(λ) = e~λ2/2~{9/n)λA dλ. (1.6)

By expanding in continued fraction the generating function of the moments
associated with the measure (1.6) we obtain a non linear recursive relation for the
coefficients of the continued fractions.

This relation is equivalent to a non linear recursive relation among 6 conse-
cutive In.

We show that, in the limit n -> oo, those recursive relations transform into an
infinite set of coupled differential equations, forming a triangular system which
can be analysed.

The method extends naturally to measures which are exponentials of an
arbitrary polynomial, and therefore to vertices with n lines.

Here we have only worked out the functions Ei0\g) and E{1\g) but, it seems
feasible with this method to get eventually E(k) in closed form: this will be discussed
in a near future.

II. The Moment Problem Formulation

Let us consider a positive measure dμ(x) defined on [ — GO, -f oo], and its associated
moments:

+ 00

μk= J xkdμ{x) fc = 0,1,2,...

— oo

The integral

+ oo i = n

n — ) I I ^r*Λ ΐ) I I V / i)
- o o i = l 1 ^l<j^.n

can be reexpressed in terms of the μk's, by the formula (see Appendix AI)

(II. 1)

(II.2)

where Dn is the Hadamard determinant of order (n+ 1), associated with the
moments μk:

D =

μ 0 μ χ . . .. μ n

μ i μ 2 •••• / W i

(II.4)
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The generating function of the μk's? has, for formal expansion in powers of 1/z:

149

(115)

We shall normalize the problem, by setting:

μ0 z

with

Mo

to G{z) is associated the Hadamard determinant:

D =
3 1 ^2 ••• ' ύ n + l

Sn Sn+1 •*• S2n

(116)

(117)

(II.8)

Dn and Dn are connected by:

DM = μ»+ 1Dn. (II.9)

We shall, from now on, consider the case where the odd moments μ2p+i are
identically zero, and therefore introduce the continued fraction expansion of
G(z)[2]:

G(z) =
1

z-R,

z- ... (11.10)

The nth approximation to it, is a rational fraction, the [n — l/«](z) Pade Approxi-
mation, that we write:

[n-ί/ri](z) =

where

NJiz)
(11.11)

(11.12)

is a polynomial of degree n in z with the highest degree coefficient normalized to 1,
and

Nn{z) = zn~ι 4- ..., (11.13)
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is a polynomial of degree (n - 1) in z with the highest degree coefficient normalized
to 1.

The first approximations read:

[0/1] = -

CV2] =
1

z —.

(11.14)

(11.15)

[2/3] = -
z —.

z-Λ,

(11.16)

(11.17)

M2=z2
(11.18)

N3 = z 2 -

J? -
2 —

and

[3/4] = -

z-R2

z .

with

N4 = z[z2 - (R2

Mί = z4-z2(R,

3 ~" / 2\
^2v^4 ^2/

F r o m Dn = RnR^ x ... R"~ J (11.22), we see that :

2) _ ^ _ 5

D 2 = R2Rl = (s 4 - s 2)5 2

D — R R2R3 - i s c - ς2V« — <?2Ί

1 This is a consequence of ΛnOn

2_, = Dn_2Dn [13]

(Π.19)

(11.20)

(11.21)

(11.22)
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Finally, combining (II.3), (II.9) and (11.22), we get:

I^nlμlRr'RY2 ...Rl^R^,. (11.23)

The problem of evaluating In, is therefore reduced to the problem of computing
the Rn from the measure dμ(x).

To end this paragraph we give for completeness the recursive relation among
the polynomials Mn(z) or Nn(z), the numerators and denominators of the nth
approximation fulfil the relation:

Yk+ι(z) = zYk(z)-RJk_1(z), (11.24)

with

No(z) = 0 N1{z)=l

(ΊI25)
M0(z) = l Mγ{z)=z. K * '
As is well known the Mn(z) form the set of orthogonal polynomial with respect

to the measure dμ(x).

III. Asymptotic Formulae

In the present situation the measure dμ(x) reads:

with

β = -.
n

The moments of the measure:

+ 00

ί ί k = f xke~χ2!2-βχAdx,
— oo

have the following properties:

or

The recursive relation (IΠ.4) shows clearly that G(z\ the generating function of the
moments has to be the solution of a linear first order differential equation with
polynomials coefficients. We shall use this fundamental remark in Sect. IV.

Expanding for k even (III.3) in powers of β, we get:

(III 4)

P Q
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)

In particular:
P=o Pι

7 1.3.5...(2fc

Following reference [1], we want to evaluate the asymptotic expansion:

' l ω W » ) _ E ( a ) Uβ) E2(g)

Setting

we have, from formula (11.23):

V2

where we have set

£ 0 = l .

It will be shown in the sequel that Rp(g/n) has the following expansion:

Rp(g/n) = Pip/n) + ̂ P2(p/n) + ... (III. 10)

with

P(O)=1, (ΠI.ll)

where p{x\ p2W
 a r e holomorphic on [0,1].

By making use of the Euler formula, that we recall:
Let/(x) be of class C2p on [0,1], then:

- Y f(p/n) = }f(x)dx + ̂ -[/(0) +/(1)] + ̂ \\[/'(I) -/'(<

r> 1 D 1

_2)!^P-2
( 2 p _ 2 ) !

v ; (2p)!n 2 P + 1

2 ) + . . .
where

(IΠ. 13)
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We get:

-E0(g)=$(I-x)log p(x)dx (111.14)
o

and

where we have used (III.6) to expand log μo(g/n) up to second order in l/n, as
wellas(III.ll).

IV. A Recursion Formula

We shall now derive a recursion formula for the Rp(β). In the sequel we shall keep
β fixed independent of n. We consider the generating function of the μk:

oo . . +oo p-x2/2~βx4J

Σ4h= ί ^-—7^. (IV.l)

As pointed out in the previous section, G(z) must fulfil a linear first order differen-
tial equation. It is not difficult to obtain the equation:

G\z) + [ z + 4/?z3]G(z) = μ0 + 4βμ2 + 4βμoz\

Therefore G{z) = G(z)/μ0 satisfies the equation:

W(z)G'(z) = 2V(z)G(z) + U(z), (IV.3)

where

W(z) = 1

V(z)= ~^-2βz3 (IV.4)

U(z) = (\+4βs2) + 4βz2.

Here s2 = ̂  following (II.7).

We must now expand in continued fraction the solution of (IV.3) which admits
the positivity representation (IV.l).

Following Laguerre [4] (we give in Appendix All the necessary elements to
understand this construction), we consider the function:

to which is associated the polynomial Ωn having the same term of highest degree
as the polynomial part of the previous function:

where in Ωn there is no even part due to a parity argument. We also introduce,
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still using the same parity argument:

The Laguerre equations read:

R,

This system of equations reduces to:

which by identification gives:

The first relation in (IV. 11) for n = 0 reads differently:

7i-7o + Ci=0 ( I γ 1 2 )

To the set of Eqs. (IV. 11) we have to add, the initial conditions:

Co = 4 ) 8

d0 = 1 + 4βs2

γ0 = - 1/2 (IV.13)

Ro = 1

c_i = 0
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From(IV.13)weget

cλ =4βs2

dγ =\

7i = - ( i + 4j8s2) (IV. 14)

The value obtained for Rλ fits exactly the value in (11.18), which shows correct-
initialization.

We shall rewrite (IV. 11) as:

dn (IV. 15)

d - 4- R" d
Kn-1

The first equation in (IV. 15) is immediate to solve and gives:

?„ = ? !+ 4βR, - 4βRn =-\- 4βRn.

Finally we have:

n^O (IV.17)

and

This last relation is the one we need to obtain the asymptotic expansion of Rk(g/ri),
which will now be discussed.

Let us make a last remark, the relation (IV.8) holds only from n = 2, because
the last relation (IV. 17) holds only from n = 1. Therefore it is necessary to compute
directly from (IV. 15), R2 and R3 one gets:

d2 = l + b2 + 4βs2

2

_ \ - s 2 - 4βs2

2

°2 ~ 72 (IV. 19)

l-s2-4β

I2βs2

2

C 3 = s 2 l i -

d l ~ S 2
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1 -

1

4βs

W

2βs2

2 ( i -

+- 2( | - 6β)s2

2 + 2βs\

l-s2-4βS

2

2)

•s2-4βs2

2)'

It is easy to check that the values of R2 and R3 obtained in this way are the same
as the ones which one gets by making use of formulae (11.19), (11.21) and (III.4).

However if one sets Ro = 0 in (IV.8) and Rx = s2, the correct value of R2 is
then obtained, for n = 0; then for n = 1, also the correct value of R3 is obtained.
Therefore we can consider (IV.8) to be valid from n = 0, provided we set JR0 = 0.

V. Estimate of the Generating Functions E0(g) and Eχ(g)

To compute the generating functions E0(g) and E^g) from formulae (III. 14) and
(III. 15), it is necessary to have an asymptotic estimate of Rp(g/n).

When g = O{β = 0), Eq. (IV. 18) reduces to:

Rn+1(0)=l + Rn(0). (V.I)

That is, using the previous remark, that in fact (V.I) is valid from n = 0 with Ro = 0:

Λn(0) = n. (V.2)

Therefore Rk = k satisfies the equation:

[(fc+ l)Rk+1 - kΛj + ^ { ( f c + l)R k + 1 [(fc+ l )R k + 1 + (fc + 2)R k + 2 ]

-kRk(kRk + (k-l)Rk_ί-]} = L (V.3)

Setting:

V
x = ~

n

ε = - (V.4)
n

Eq. (V.3) becomes:

\yt[x + ε] - yε[x] ] + 4g[yε(x + ε) [y,(χ + ε) + yε(x + 2ε)]

Ά W + J,(ϊ-e)]] = t (V.5)

Expanding yε(x) in powers of ε, we have:

yJLx) = y{x) + εyi(x) + ε2y2(x) + ε3y3(x) + 0(ε4), (V.6)

and

ye(x + ε) = y(x) + ε^^x) + /(*)] + ε2{y2(x) + y'^x) + iy"(x)]

+ ε3[y3(x) + y'2(x) + y[{x) + i
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yε(x - ε) = y(x) + εΓj ^x) - y'(x)] + ε2[>2(x) - yt(χ) + A/(χ)] (V.7)

yε(x + 2ε) = )<x) + β ^ x ) + 2y'(x)] + ε2[y2(x) + 2y\{x) + f/(x)]

+ ε3[y3(x) + 2y2(x) + 2y'[(x) + | / ' ( x ) ] + ...

Identifying the powers in ε in (V.5) we get, up to ε2 terms:

ε term : y'(x) [1 + 24gy{x)~\ = 1 (V.8)

ε2 term : {/(x)[l + 24gy(x)] + 240y
2(x)} + 2yt(x) + 48<?[>(x)};1(x)]' = 0. (V.9)

Equation (V.9) simplifies, if one takes into account (V.8); it reduces to:

that is

However one has to take into account the boundary condition :

yε(θ) = o (V.12)

or

y(0) = 3Ί (0) = ^(0) = y3(0) = ... = 0. (V. 13)

Then integrating (V.8) we get:

and

taking into account (V.I3).
The fact that y^x) is identically zero simplifies the contribution of the ε3

term, which reduces to:

6}4 + / ' + 4g{y(36y2 + I2y'") + y'(36y2 4- 24/)} = 0. (V.16)

However by differentiating twice equation (V.8), we can simplify (V.16), which
becomes:

or

y2 = [K2-4gyy"-\y'.

K2 is fixed by the condition y2(0) = 0, which gives K2 = 0

Finally

96<?

2J,(X) _ 2

y2(X) ~ [1 + 24gy{x)T " d
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And the corresponding functions p(x) and p2(x) read:

P2(x) =
x x ( l+48#x) 2

(V.20)

(V.21)

As stated previously these functions are holomorphic in x on the closed interval
[0,1] and strictly positive on this interval.

Formulae (V.20) and (V.21) give for Rp(g/n) the expansion:

Rp(g/n) = Pip/n) + -s p2(p/n) + ... (V.22)

and

96q2

— + 3 8 4
(V.23)

R2(g/n)= 1 - ^ + 1 2 4 8 ^
n nn

- ^ + 26884+.••

R1(g/n),R2{g/n) can be checked to agree up to the order 1/n2, with the expan-
sions one can get directly from formulae (IV. 19), (IV.20) combined with (III.5).

Contrary to what we have stated in (III. 10) we do not find Ro — 1, however
the first formula of (V.23) shows clearly that the correction to the final formulae
will be of order 1/n3 which in the present situation is irrelevant.

Combining (V.20) and (III. 14) we get, integrating by parts:

8 2;

-}x(l+48gx)-ll2dx

=4 log
- l + x / l + 48α . 3 , 1 1

8 48$ 3 (48#)2 3 (48gf)2

Setting

α2 =
240

(V.24)

(V.25)

(V.26)

(V.27)
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we recover formula of reference [1]:

- E0(g) = \ log a2 - ^ ( α 2 - 1)(9 - α2) =

159

(V.28)

In the same way, combining (V.21) and (III. 15) we get:

(l-x)dx

(1 + 4Sgx)2>

or
•4*g- _ 1 «

24tΊ24_tΊ p

(2p)

(Pθ2

The first coefficients of the expansion of E^g) are:

Using the variable a2 defined in (V.27) we get:

(V.29)

(V.30)

(V.31)

(V.32)
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Note Added in Proof. Dr. J. B. Zuber has worked out the E2 function:

1 (1 - a2)3

E2(9) = ^-

Appendix I

We want to prove formula (II.3). From the definition of a determinant we have:

+ oo j = n

= ί Σ<
— oo j = 1

= J L
— oo j = 1

1 ... 1

n - 1 v n - 1 v n - 1
Λ l Λ 2 Λ n

(AI.1)

(AI.2)

(AI.3)

If one permutes in (AI.3) the Xj in all possible manners and adds up the results,
one gets:

! £ „ - ! = ί Σdμ(Xj)
- o o 7 = 1

which is just (AI.3).

1 1 ... 1

n— 1 n— 1

(AI.4)
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Appendix II

The Laguerre method.
We shall, for completeness explain in detail the Laguerre method for expanding

in continued fraction, the solution of a linear differential equation of the first order
with polynomial coefficients.

G(z\ the generating function of the moments is the solution of:

(AII.l)W{z)G\z)

where

W(z) = 1

V(z)=-

l/(z) = (l

and

z

with

z

Y
+

2V(z)G(z)+U(z\

-2βz3

4βs2) + Aβz2

z z

S° = 1

 n (AΠ.4)

We see that G{z) is formally an odd function of z. Therefore the approximation

Si' (AIL5)

has its polynomials Mn(z) which are of parity (—)" and degree n while Nn(z) are
of parity (—)"~1 and degree n — 1.

We have by definition of the [n — \/n\ Pade Approximations:

If we derive with respect to z, we get:

= K(Z)Mn(z)-M'n(Z)Nn(Z) + 0 ( z _ ( 2 n + 2 ) )

M2(z)

and introducing (AII.7) into (AII.l):

C/(z)M2(z) + 2K(z)iVn(z)MB(z) - W(z)[N'n(z)Mn(Z) - M;(z)Nn(z)] = Anθn(Z),

(AII.8)

where /4n is a constant suitably chosen and θn(z) a polynomial in z such that:

F(z) 0(z" / 2 " + 1 ) )
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(AII.9) shows clearly that θn(z) is at most of degree 2 in z, taking into account that
W(z) is of degree zero and V(z) of degree 3.

Therefore we can set:

There is no odd term in θn(z) by the parity argument.
We recall that the polynomials Mn{z) and Nn(z) fulfil: [5]

Nn+ ,(z)Mn(z) - Mn+1(z)Nn(z) = An+ι. (AΠ.l 1)

where we fix the previous constant which was arbitrary to be equal to the constant
in (All. 11).
Pluging the value of An from (AII.l 1) into (AII.8), we get:

\U(z)Mn(z) + V(z)Nn(z) - W(z)N'n(z) + θn(z)Nn_ fcfiM H{z)

= C ^ ) M n _ ,(z) - W(z)M'n{z) - V(z)Mn(z)]Nn(z),

which implies due to the fact that —^—- is an irreducible fraction2:
Mn(z)

W(z)MΛ{z) = [Ωn{z) - V(z)]Mn(z) +

W(z)N'n(z) = [Ωn(z) + V(z)]Nn(z) + θn(z)Nn_ t(z) + U(z)Mn(z) (AIL 14)

where Ωn(z) is a polynomial.

From (AII.l 1) written for An and An+ι, one gets:

LAΛ+ i(z) + K+ iNn_ AzftMJLz) = [AnMn+ x(z) + An+ xMn_ ^zftNJLz). (AIL15)

Setting

Rn = ̂ f1> ( A I L 1 6 )

we see, using again the irreducibility of—-— that (AIL 15) implies:

Mn{z)

Nn+ι(z) - Qn(z)Nn(z) + Rfl^iz) = 0, (AIL17)

Mn + 1(z) - Qn(z)Mn(z) + RnMn_,{z) = 0, (AII.l8)

where Qn is a polynomial of degree 1, which by parity has no constant term,
furthermore here:

because our polynomials are normalized following (11.12) and (11.13).
We have now to fix the degree of Ωn(z). From (AIL 13), one gets:

Ωn(z) = V(z) + W(z) jj^j - θn(z) ̂ φ . (AII.20)

Sending z -> + oo, we see that Ωn(z) increases like the term of highest degree of the

2 This is so, because the zeros of Nn(z) are separated by those of Mn(z) [5]
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polynomial part of:

W(z)
V{z) + n ——, (AII.21)

z

that is, here:

Ωn=-2βz* + ynz. (AII.22)

There is no even part in Ωn by parity argument.

If we derive (AIL 18) and multiply by W(z\ we get:

W(z)M'n+ ,(z) - mz)Qn(z)M'n(z) - W{z)Qn{z)Mn{z) + ^(z)RπM;_ X(Z) = 0.

(AIL23)

But using (AIL 13) written for n — 1, w and n + 1, in (AII.23) we obtain:

(Ωn+ι- V)Mn+ , + ^ , - W β : - βπ(Ωπ - F)]Mn

+ [«„(«.-1 - V)- β A ] M B _ t + Rnθn_,Mn_2 = 0. (AII.24)

Substituting

MB+1 = δA-V»-i. (AII.25)

we get:

+ « A - i M B _ 2 = 0. (AII.26)

This Eq. (AII.26) must be compared with (AIL 18) written for (n— 1). And therefore:

*,(«,,+ iW~ O Λ - i U ) ) - ^ Q n - i W n - 1 ( * ) ~ fi^) (AIL28)

By adding up all Eqs. (AII.28) we get:

^ ^ J (AII.29)

But initialization implies:

θo(z)=U

Θ _ 1 ( Z ) Ξ 0 (AII.30)

Ω0(z)=V(z)

Ω_1{z)=-V(z),

and therefore

All the necessary machinery for section IV has been set up.
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