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Abstract. In an arbitrary system of particles with central repulsive interactions,
right and left velocities exist at each moment of time, including infinity. An
arbitrary system of particles with finite-range interactions splits into inde-
pendent bounded clusters. The number of collisions in Sinai's billiard is finite.

Professor Sinai has asked if a finite system of hard balls (spheres) in infinite space
has only a finite number of collisions over the infinite time interval one assumes
that the spheres are homogeneous, and that momentum and kinetic energy are
conserved. There is a similar question for a finite time interval and Sinai's billiard,
i.e., a system in the space with convex obstacles (walls).

Some results obtained by Sinai and other authors [1-4] led to the hope that
the above questions have a positive answer. This hope is confirmed in the present
paper.

The theorem asserting the finiteness of the number of collisions (including
reflections by the walls) does not extend to hard bodies with arbitrary shapes: even
between two convex bodies in the plane there can be infinitely many collisions in a
finite time interval. Also, the shape of the walls is essential: one ball in a convex
domain in the plane can hit the boundary an infinite number of times in a finite
amount of time [8] it is clear that in convex vessels (billiard tables) a ball can also
follow the boundary around at unit speed (in our vessel with convex walls this is
possible only along a straight line interval contained in the boundary). If we drop
the condition of conservation of energy it becomes possible to get an infinite
number of collisions between three balls on the line.

We obtain however, in the context of this paper, a number of results on general
systems of particles with finite-range or repulsive interactions. Apart from
continuity no smoothness condition is imposed a priori on the trajectories.

In Sect. 1 the existence of right and left velocities is established for all values of
the time, including infinity, for an arbitrary system of particles with central
repulsive interactions. Nothing is assumed about the energy in Sects. 1-4.
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In Sect. 2 it is shown that an arbitrary system of particles with finite-range
interactions splits into independent bounded clusters in a neighborhood of every
value of time, including infinity (cf. [6]).

Sect. 3 establishes, among other things, that, for an arbitrary system of particles
with repulsive interactions, which is bounded at time infinity, the integral over all
time of the inner kinetic energy converges.

In Sect. 4 we state results for the smooth case.
Finally, in Sect. 5 the finiteness of the number of collisions is proved for a

system of hard spheres in a vessel (container) with convex walls (obstacles).
Conservation of energy is assumed. The walls are not required to be smooth
unique continuation of trajectories is not implied by our axioms (when, for
example, a multiple collision occurs or a ball goes into a corner).

Notation

Let JV^l be an integer, RN be JV-dimensional Euclidean space. The length
(modulus) of a vector u in RN is denoted by \u\, and the scalar product of two
vectors by (u, Vs).

Let T be a positive number or + oo. Numbers t in the interval [0, T) will be
called time points or moments. We consider a finite system, indexed by /, of
particles in R^, with positive masses m (ί), where iel, ίe[0, T). The trajectories
χ.(ί) of all particles are assumed to be continuous functions of the time t.

For any subsystem of particles, indexed by J C /, we let

mj(ή = £ mj(t), Xj(ή = Σ Xj(ή m .(ί)/K(0
JeJ jeJ

be the total mass and the center of mass of the subsystem.

1. System of Centrally Repulsing Particles in a "Directed" External Field
of Forces: The Existence of Velocities

In this section it is supposed that some convex closed cone V in RN without whole
straight lines is given and that

for every vector u from the conjugate cone

V* = {u:(u,v)^0 for all veV},

for every number C, and every time ίe(0, T), there exists δ > 0 such that for the
subsystem

on the time interval (t — δ,t + δ) the mass wij(ί) is constant, and the projection
(u,Xj(t)y of the mass center is a convex (downwards) function of time t.
The physical sense of the axiom is transparent: the particles repel each other

centrally and, besides, some exterior forces with directions in the cone V act on
them (Fig. 1). In the case V=0, there are no exterior forces and x7 is linear.
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Theorem (1.1). For such a system, for each iel and each ίe(0, T) such that

liminfm (τ)Φθ, the following double limits exist and are finite:

lim lim TΪ,—~,

l i m l i m x ί ( O-x,.(0 = :
t^t'<t"^t t -t

In particular, one has the following limits and equalities:

) — x (i) x ()

Lx,(t)= lim - ^ i ^ = lim Lx,.(τ)= lim Rxt(τ),
t>τ^t t — X t>τ-*t t>τ-+t

X (t) — χ (r)

Rxί(t)= lim - ^ 1—= lim RxAτ)= lim LxAτ).
ί<τ->ί t — X t<τ-*t ί<τ->f

Moreover, if lim infm (ί) + 0 and max \Rxj(t)\-H>+ oo w/zerc

finite limits exist and are equal:

lim lim x ^ χ

Γ>ί">ί'->Γ t" — t'

following

() () ()

To prove the theorem we will need the two following lemmas.

Lemma (1.2). (Convexity criterion for a function.) If Φ is continuous function on an
interval [0,T), and for each te(0,T) there is δo>O such that 0 ^ ί - < 5 0 < ί + <50

and Φ{t + δ) + Φ(t-δ)^2Φ(t) for all δe[0,δo], then Φ is convex on [0,T).
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Proof. Take any t' < t" in [0, T). The inequality

αΦ(ί') + (1 - α) Φ{t") ̂  Φ(octf + (1 - α) t"),

which is to be proved for all αe[0,1], can be rewritten in terms of the function

as the equality max<F(ί) = 0 [we have Ψ(t')=Ψ(t") = ΰ]. Among ίe[ί',ί"], on

which the maximum is obtained, we choose the minimal number t. This t cannot
lie inside [ί',ί"], because of the condition on (50 [the inequality
Φ(t + δ) + Φ(t-δ)^2Φ(t) is equivalent to inequality Ψ{t + δ)+Ψ(t-δ)^2Ψ{ty].
Thus, t = t\ that is *F(0^0 for all ίe[ί',ί"], as required.

Lemma (1.3). (An inequality.) Given an integer n ^ 1, and real numbers mf.^0 and xt

(ί^i^n). Let

n n n n

m= Yjmi,x= X mixi/m,S = j X X
i = 1 i = l i = 1 j = 1

/ Let us proceed by induction on w. If n = l, both sides of the inequality
vanish, so let n^2. Without loss of generality one can assume that xn^xt for all i.
Let rή — m — mn, x' = (mx — mnxn)/m'. By induction

S ' - = Ί "Σ " Σ mpjixi - xj ̂  Σ mf\χ' - χύ •
i = 1 j = 1 i = 1

Furthermore

S-S' = mn {m'xn - m'x') = m' (mx - mV) - mπ (mx - mnxn)

= m*xn — mnmx — m/2x' + m'mx

From this, using the inequality

\x' -x^x-x^-ix-x'),

we get:

n- 1

^ Σmf\x-Xι\,

as m/2 = (mί + ...
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Having these two general lemmas, let us prove the theorem. The condition on
the cone V means that the conjugate cone F* contains a basis of RN as vector
space. So, projecting our system on rays from F*, we see that it is enough to check
the theorem in one-dimensional case N= 1. Choosing a basis on the line, we will
consider x (ί) as real functions. These continuous functions have the following
properties:

for each time moment ίe(0, T) and each number C there is δ >0 such that, for
the subsystem J = {jeI:xi(t)>C} on time interval (t — δ, t + δ\ the mass πij is
constant and the function Xj is convex.
Physically, "acceleration" of every "right" subsystem is directed to the right, as

it is caused by repulsion from particles on the left and by external forces directed
from the left.

Lemma (1.4). Let μt be real numbers such that |μ.| ̂ m (ί)2 for all i and t. Then the
function

φ(0=iΣ Σ ̂ W .̂(t)k-(ί)-χ/ί)l
;=i j=i

n

+ m,2x/(ί) + Σ μp,(t)
ΐ = l

is convex on [0, T).

Proof Because of Lemma (1.2) it is enough to show that for any ίe(0, T) there is
(So>0 such that 0^ ί- (5 0 <ί + (50<T and Φ(t + δ) + Φ(t-δ)^2Φ(t) for all
δe[0,δol

Fix t and choose δ0 >0 such that δ0 ^t,δo< T-ί, and such that χ.(τ)φXj(τ) for
all τe[t — δ09 ί + <50] whenever χ.(ί) + X/(0 [we used the continuity of xf(ί) and the
finiteness of /] . Take a positive δ^δ0. We want to check that

A2Φ(t): =

[the same notation A2 will be used later for other functions on [0, T)].

Case ί. xi(t) = xj(t) for all ij [then Φ(t) = mjxI(t) + Σμixi(t)']. Using twice the

inequality of Lemma (1.3) we get:

iel

iel iel

^ A 2

Xlmj + Σ μtΔ
 2xr = (m2 +%HtU %

iel \ iel )

[the inequalities mt(t ± δ)2 ^ |μ,| have been used]. Now it is enough to note that

iel

General Case. Let J be the set of particles with minimal coordinate at t, and let K

be the complement of J in /: J== ίjel:χ.(t)= minχ.(ί)l, K = I-J. Since Case 1 is
1 J iel \
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already considered, one can suppose that K is non-empty. Let Φj and Φκ be the
functions for subsystems J and K, analogous to the function Φ — Φj for whole
system I = JuK. Then

Φ(τ) - Φj(τ) + Φκ(τ) + mj(τ)mκ(τ)(xκ(τ) - x7(τ)) + nxj{τ)mκ{τ)(xj{τ) + xκ(τ))

= Φj(τ) + Φκ(τ) + 2mj(τ)mκ(τ)xκ{τ).

By induction, the theorem is valid for system K (with the number of particles
smaller than in /), so Δ2Φκ^0. It was shown in the above consideration of Case 1
that (in fact without assumption on convexity of Φ)

where

μj = Σ μ / T h u s

If Δ2Xj^0, then zl 2 Φ^2m J m κ zl 2 x x ^0, because the function xκ is convex on
the segment [t — δ0, ί + <30].

If, on the contrary, Δ 2x3 < 0, then A 2Φ ^ 2m2Δ2Xj + 2nijmκΔ
 2xκ = 2mKΔ 2x7 ^ 0,

because x7 is convex on [0, T).

Hence, Lemma (1.4) is proved. This implies that, for any pair (ί, t) such that

lim înf mi(τ)Φθ, in a neighborhood of time t the function xt can be represented as

a difference of two convex functions, so that it has right and left derivatives at t.
Thus, the first part of Theorem (1.1) is proved. If lim inf m^t) Φ 0 and

liminf max|JRx/(ί)|Φ + oo, then, in some neighborhood of T, the function x

can be represented as the difference of the two convex functions with bounded
derivative and consequently has a finite left derivative at T, and the left derivative
is continuous from the left at T. Hence, Theorem (1.1) is proved.

Besides Theorem (1.1) one can obtain from Lemma (1.4):

Corollary (1.5). // all \Xi(t)\ are bounded when t-+T, then for any ί with

lim inf m (ί)Φθ there is a finite limx (f)= :Xj(T).

Proof Indeed, by Lemma (1.4) χ.(ί) can be represented as the difference of two
convex functions bounded at T, in the case N = 1 this implies the assertion for
any N.

In the next section the following lemma (with N = l) will be useful:

Lemma (1.6). The function /(ί): = rnaxχ.(ί) is convex on all ίntervall [0, T).
iel

Proof. We take arbitrary ίe(0, T) and will show that there exists δ0 >0 such that
2f(t)Sf(t-δ)+f(t + δ) for all <5e[0,<50] [see Lemma (1.2)]. Consider the subset
J = {jeI:Xj(t)=f(t)}. By the above condition of repulsion, there exists <50>0 such
that function x3 is convex on (t — δ,t + δ). Since /(τ)^x (τ) for all i and all τ,
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) for all τ. So, for (Se[0,<50], we have:

2/(0 = 2Xj(t) S xj(t -δ) + Xj(t + δ) g/(ί -

as required.
In the remaining part of this section we consider some examples. In all these

examples our system consists of three particles (/ = {1, 2, 3}) interacting only at
moments of collisions (coincidences) and V is empty, that is the function Xj in the
axiom of repulsion is not only convex but linear.

Let to<t1< ... be the following sequence: tk = k in the case T = + oo;
tk = T(l— 2~k) in the case TΦ + oo. We have: ίfc->T. In the examples below, we
assume that on every segment [tk,tk+ί] all three particles move with constant
velocities. To give such system it is therefore enough to indicate numbers xf(ik)
where i = 1, 2, 3 k = 1,2,... . We leave to the reader the checking of the axiom of
repulsion.

Example (1.7). Let T=l,q = (3- ]/ϊ)/2;

for ί e [ ί 2 k _ 1 9 ί 2 k + 1 ) ,

- 1 ) for ίe[ ί 2 f c _ 2 , t2k),

m2(t) = l—mι(t) — m3(t) for all t.

Then Xj -^0 for all i when ί->l; m1 and ra3 tend to | ; m2-^0; Kxj-^1, Rx3-> —1,
and Kx2 oscillates between —1 and 1 when ί-»l. This example shows that the
condition lim inf mf(ί)=t=0 is essential in Theorem (1.1); note that in this example
we can continue the trajectories for all time [0, + oo) with preservation of the
axiom of repulsivity, puting, for example, χ.(ί) = 0 and mί(t) = 1/3 for all i and t ^ 1.

Example (1.8). Let q = 2— j/3 in the case T = + oo, q = (3— ]/ΐ)/2 in the case
T < + oo;

m1(t) = (l-q2k)/(2-3q2k) for ίe[ί 2 k _ 2 , ί2 k),

m 3 ( ί ) - ( l - ^ 2 f c + 1 ) / ( 2 - 3 ^ 2 k + 1 ) for ί e [ ί 2 J k _ 1 9 ί 2 J k + 1 ) ,

m2(ί) = l-m1(ή~m3(ί) for all ί

Then x^t)-* — 1, x3(ί)->Ί, x 2 oscillates between x1 and x 3 i^xt and JRX3 tend
to 0, the velocity Rx2 oscillates between — oo and + oo in the case T< + oo and
between —2 and 2 in the case T= + oo (when ί->T); mx and m3 tend to ^, m2->0.
This example shows that the condition lim infm ;(ί)φ0 is essential in Corollary
(1.5).
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Example (1.9). Let m (ί) = l for all ί, ί; q = 2 + j/3 in the case T = + o o ,

g = (3 + |/7)/2 in the case T < + oo

Then Rx^t)-* — oo, JRX3-> + oo, Rx2 oscillates between — oo and + oo when ί->T.
This example shows that the condition lim s u p l & K ^ + oo is essential for the
existence of

Example (1.10). Let mi(t) = l for all i, t; q is the same as in Example (1.8);

xι(tk)^(~q)k-3qk, χ2{tk)=-2{-q)\ x3(ίJk) = 3g* + (-g)k.

Then x. and Λxf tend to 0 for i = l , 2 , 3 when ί-»T. This example shows that,
without conservation of energy, three equal particles on the line can have an
infinite number of collisions in finite of infinite interval of time [0, T), momentum
being conservated.

Remark. If the cone V above contained a whole line, then, evidently, the assertion
of Theorem (1.1) would be false.

2. System of Particles with Finite-Range Interactions:
Splitting into Bounded Independent Clusters

Let ritj(t) be non-negative functions on [0, T), where ίjel. Two particles i,j will be

called remote enough at t if \xi(t) — xj(t)\>riJ(t). A subsystem of particles will be
called independent at t if every one of its particles is remote enough at t from every
particle outside the subsystem.

Our axiom (hypothesis) of finite-range interaction is as follows:
for each time moment ίe(0, T) and each subsystem J C / independent at t there
must exist δ > 0 such that on the time interval (t — δ, t + δ) the total mass m3 of
the subsystem is constant and the function x3 is linear.
Thus, in this section we assume that the mass of a subsystem is conserved and

its center of mass moves with constant velocity vector when this subsystem is
independent, i.e., its particles are remote enough from other particles.

Theorem (2.1). Suppose min lim inf m (ί)φθ and

max lim^sup ru7.(ί)/(m.(ί) + mβ)) = : ρ < + oo .

Then there is ίoe(0, T) and there is a splitting of the particles into subsystems
(clusters) such that every cluster J is independent at any t ^ t0 and it has one of the
following two properties:

a) for any C > 0 there exists ί c e(ί 0 , T) such that, for any ίe(ί c , T\ a subsystem
KcJ, independent at ί, can be found with the modulus of the velocity of xκ at t
greater than C

b) the distance \Xj(t) — Xj(t)\ from the cluster center of mass to any particle jeJ is
bounded when t->T by (mj(to)~ lim inf m.(t))ρ.
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Thus, speaking informally, if the diameter of an independent cluster is not
bounded, then its energy tends to + oo, whatever is meant by energy [we will not
give any formal definition of energy because in this section particles are not bound
to have velocities, see Example (2.2) below].

An example of a system with finite-range interactions in the sense of this
section (with bounded ritJ) is a system of mass centers of bounded bodies moving in
infinite space with conservation of momentum and interacting at moments of
collisions only.

If all ritj(t) above are identically equal to 0 then the hypothesis of finite-range
interaction with such r. . implies the hypothesis of Sect. 1 with cone V=0. The
examples of Sect. 1 show that the case a), or b), or both can occur in a cluster.

Proof of Theorem (2.1). Two particles ίj will be called remote enough at T if
there is toe(0, T) such that they are remote enough at all t>t0. We place i,j in the
same cluster if and only if there is an integer k ̂  1 and there are particles p 0 , . . . , pk

such that po = ί, pk=j, and ps-vps are not remote enough at T for 5 = 1,..., k.

Since the number of all particles is finite there exists a moment of time ίoe(0, T)
such that every cluster is independent at all ί = ί0ϊ

 a n d therefore there will be no
interactions between the clusters for ί = ί0. Hence each cluster can be considered
separately.

We take a cluster J and forget the other clusters. We want to prove that if the
property a) does not hold, then the property b) of the theorem holds. This property
can be reformulated as follows: for every ε > 0 and every line in RN there is
Tεe(t0, T) such that the distance between the projections of Xj(t) and Xj(t) on this
(straight) line does not surpass (mj(ί0) — m;.(ί))(ρ + 2ε) for all jeJ and t^Tε.

Fixing the line we are reduced to the case JV = 1. Choosing a basis (an
orientation and the origin) on the line, connected with the center of mass of J, we
will assume that Xj(t) are real functions and that Xj(t) = 0 for all ί^ί 0 .

We surround now every point χ.(ί) on the line by the segment

iχ.(r) - m (ί)(ρ + ε), xf(ί) + mf(ί)(ρ + ε)]

of the length 2m/(ί)(ρ + ε). A subsystem of particles and the corresponding
subsystem of segments are called tight if the diameter of the union of the segments
is not greater than the sum of the lengths of the segments. It is clear that if two
tight subsystems of segments have a common point then their union will be a tight
subsystem too. In particular, if a particle belongs to two tight subsystems, then the
union of these subsystems is also a tight subsystem.

So, in every instant, the whole system (the cluster under consideration) of
particles on the line splits uniquely into maximal tight subsystems which will be
called accumulations.

Taking greater t0 if necessary, we can assume that

rtβ) ="(m (ί) + mj(ή)(ρ + ε) for all t = t0

and all iJeJ. Then particles are remote enough at t^t0 whenever the correspond-
ing segments have no intersection. In particular, in each instant ί = ί0, every
accumulation is an independent subsystem at t.
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In each moment of time, we surround the mass center of every accumulation by
the segment whose length is the sum of the lengths of all segments in the
accumulation. This segment will be called a spindle. The obtained spindles cover
all our segments, every spindle covers an independent subsystem, its length is
proportional to the mass of the subsystem. The sum of the lengths of all spindles is
equal to the sum of the lengths of all segments, and is equal to 2(ρ + ε)mJ? where

mj = Wjfro) = nij{t) for t t t 0 .

Now we contract the spindles into points as follows. For every ίe(ί 0, T) and
ieJ, let yt(t) denote the middle of the corresponding spindle (i.e. the mass center of
the corresponding accumulation). We set

z ί (ί)=y i (ί)+(β+e)( Σ mj(t)- Σ m

\yj(t) > yι(t) yj(t) < yΛt)

According to this formula, the distance between neighbouring points z (ί) and
Zj(t) is equal to the distance between the corresponding spindles. Particles ij from
the same accumulation and only such particles correspond to the same zi(t) = zj(t).
We have

Σ m^t) = X m£(ί)^(ί) = Σ mi(t)Xi(t) = 0 for all t.
ίeJ ieJ ίeJ

Although the functions yt(t) are discontinuous, the functions zf(ί) are con-
tinuous on (ί0, T). We can consider the system J of the particles with the masses
mf(ί) and the trajectories zf(ί). For this system, the hypothesis of finite-range
interaction holds with ritj = 0. Hence, the hypothesis of repulsivity (see Sect. 1)
holds with empty V.

Therefore, we can apply the results of Sect. 1 for zf(ί). Since the maximum of the
moduli of the velocities of the mass centers of the independent subsystems does not
tend to + oo (as it was assumed above) and since lim inf m (ί)Φθ for all i (see the
condition of the theorem) there exist right Rzt(t) and left Lzt(t) velocities in some
neighborhood of T, and there are lim Rzi(t) = lim Lzi(t)= :Lzi(T)+ + oo.

In the case T=t= + oo it follows that there are the finite limits lim z (ί) = '.z^T). If

particles ij are not remote enough at T, then, obviously, zi(T) = zj(T). By our
definition of the splitting into clusters, we get z (T) = 0 for all ie J, so

lim sup Xj(t)ύ(Q + ε)(VJ- n m ^mj(tί] f° r a nY J'e J >

as required.
In the case T= + oo we have Lzi{T) = 0 for all ieJ by our definition of cluster.

It follows, by Lemma (1.6), that the left and right derivatives of the function

max z,(ί) tend to 0 when ί-*T and hence this function does not increase for t > ί 0 .
jeJ J

Analogously, min z,(ί) does not decrease for t > ί0. In view of Corollary (1.5) there
jeJ J

exist finite limits zi(T)\ = lim zf(ί). It follows, as in the case T= + oo, that zi(T) = 0

for all i, that implies the assertion b) of Theorem (2.1), as required (Fig. 2).
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Example (2.2). Let m^ί) be a positive constant function on [0, T), xx(ί) be a
continuous function on [0, T), iV= 1, / = {1,2}

m^O^m.W, x ^ t ^ - x ^ t ) , r 1 # 2(ί):=r 2 f l(ί): =2|x1(ί)|

on [0, T). Then the hypothesis of finite-range interaction holds. The trajectory xx

may have velocity nowhere.

Example (2.3). Change in Example (1.10) xx(ί) to x1(t) + d and x3(ί) to x3(ί) — d for
all ί, where dΞ̂ O is a real number. Then the hypothesis of finite-range interaction
holds with r.j(t) = d for all i,j, t. This example shows that, without conservation of
energy, three equal hard spheres (of any diameter d) on the line can have an infinite
number of collisions in finite or infinite interval of time [0, T), momentum being
conserved (the particles are the centers of the spheres).

Theorem (2.1) and Corollary (1.5) imply

Theorem (2.4). Under the condition of Theorem (2.1), suppose the axiom of

repulsivity of Sect, ί, and suppose that max|Lχ.(ί)|-|—• + oo when t->T. Then, for
iel

each iel, there exists a finite lίm(χ.(ί)~Lx (Γ)ί).

In some particular cases this was proved in [5, 7].

Remark. In the case when masses m (ί) = mi are constant the hypothesis of this
section is equivalent to the following axiom:

for any tί<t2<t3 from (0, T) there are vectors Pitj in RN such that

'ij + Pj^O for all ijel

P ί>J.= (-i—^ — — ι—^-\mi for all iel

if ^ ( O - x / O ^ ^ j W for all te[t19 ί3], then PUj = 0.

I,

jel
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3. System of Non-Attracting Particles: Above Estimation
of the Integral of Kinetic Energy

In this section we consider a system of particles where repulsivity prevails over
attraction. An exact formulation of this hypothesis is rather cumbersome because
the existence of velocities is not assumed.

Namely, in Theorem (3.1) below we suppose that all masses mi(t) = mί are
constant and

for every ίe(0, T) and every ε > 0 there is <5>0 such that for any t v t2, ί3

satisfying

max (0, t - δ) ̂  t ί < t2 < t3 < min (T, t + δ)

there exist vectors P . in RN with the following properties:

a) P u + P i f i = 0 for all ijel

^ for aU iel;
ι

c) {Pt j,xi{t2) — xj{t2)y^—ε(t3 — t1) for all

These Pt . have the physical meaning of impulses received by the particle i from
the particle j .

Note, that conditions a), b) imply that the mass center x/(ί) of the whole system
moves with constant velocity, i.e. the system is a closed one. Changing χ.(ί) to
xf(ί) — Xj(t\ we can assume that this center remains at 0.

The hypothesis above holds naturally in the following example: a system of
mass centers of hard bodies, which are star-shaped with respect to their centers,
interacting without friction at moments of collisions.

Theorem (3.1). The function J5(ί)= Σ Xiiίfrnjl is convex on the whole of [0, T). In
iel

particular, there exist the left derivative LD(t) on (0, T] and the right derivative
RD(t) on [0, T). For any strictly increasing sequence to<t1 < ... <tt on [0, T) we
have

Σ
= 1 iel h h-ί

Proof Let δ(t, ε) denote the δ>0 which exists by the hypothesis on interaction of
this section. It is enough to prove the assertion of the theorem for t0 + 0.

Using the compactness of [t0, ίz] we can find δ>0 such that every segment of
the length ^ 2δ in [ί0, ί J belongs to some segment of the form

[ί - δ(t, ε), t + δ(t, ε)] where te [t0, ί j .

Let 5 0 < 5 1 < ... <sq be a sequence, containing all tk9 such that 50 = ί0, sq = tι, and
sp — sp_1 <δ for all p.

Then there exist vectors P f (̂p) such that
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and

ΛI(p) = 0 for all ijel,

43

jel

where p = l, . . . , g — 1 .
We consider the sum

S=Y Σ <Pij(p),χt(sP)>

p=ί ijel

Since P 7(p) = — P. t(p\ this sum can be rewritten as

1 q-l

S = - Y Y < P (Ό) x ( s ) — x ( s )>

whence 5 ^ — ε(ίz —ί0).

On the other hand,

^ - I L f o r a l l i 6 / ,
I

q-

s 1
P =

1 /χ /

1 iel \

D(sq)-D(sq

sq-sq_1

-

-

qy y \X

L L
p = l ielmt ί\x

iel Z \

Thus,

(3.2) <

Γ q~2 1

Σ Σ-
L-i La

p = 1 iel

D(s )

sp + 1)-Xi(sp) Xi{sp)

Sp+l~Sp Sp

_,) D(Sl)-D(s0)
§ $

i\Sp+\) Xi\Sp)\ m i

SP+I~SP

\ q/ i ^ q I / ' I i

so~s

q-i

χ.(V l)-χ.(S/m.

— D(sq_ί) D(s 1) — i

~~sq-i sί—.

-χi(Sp-l)

(sJ-x^So)!2

° 1 pit

First of all, from (3.2) we get

Since here 5̂  = ίz, 50 = ί0, and, for an ε as small as we please, sx and sq_ί can be
chose freely in some neighborhoods of t0 and tι accordingly, we have

χ — S λ

sup
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Since here tx and ί0 can be arbitrary under the condition 0 < t0 < tι < T, we have
obtained the first assertion of the theorem (convexity of D).

Hence, the right part of inequality (3.2) is not greater than LD{tj) — RD{t0)
+ ε( ί I - ί 0 ) . On the other hand, note that \u\2/a + \v\2/β^ \u + v\2/(a + β) for
any vectors u, v and positive numbers a, β (it follows from the inequality
Ijβu-αif ^0).

Therefore the left part of (3.2) is not less than

iel

+ Σ Σ Xih

 11)*"'1 m'
iel k= 2 ^k k— ί

(without loss of generality, we can assume that sί <tί and sq_ί >tι_ί). Since in
(3.2) we can take ε as small as we please, and s1,sq_1as close to t0, tx respectively as
we please, we obtained the second assertion of Theorem (3.1).

Corollary (3.3). // T— + oo and the diameter of the system does not tend to + oo
when ί-> + oo, then, for any sequence to<tί<... we have

fc=l iel Lk~Lk-l

Proof Indeed, then RD(ή^0 for all t.

Corollary (3.4). Suppose that the right derivatives Rxt{t) of the trajectories exist and

are integrable in the sense of Riemann. Then, for the energy £7(ί)

= 2 Σ \^xi(t)~^xi(t)\2γni and for any h < t2 m t n e segment [0, T], we have
iel

Suppose now, in addition, the condition of Theorem (2.1) on the locality of

interaction, and let T= + oo. Then there is a ίoe(O, T) and there is a splitting of the

system into independent at t^t0 clusters such that, for the inner energy

Ej(t) = \ Σ I-Rxj(0 ~~ Rχj(OI2 mj °f every cluster J, either Ej(t) -• + oo when t -> + oo, or

00

J Ej(ήdt< + oo.
ίo

Proof Indeed, the first assertion follows directly from Theorem (3.1). To prove the
second assertion we have Theorem (2.1) and Corollary (1.3) to apply.

Remarks. The hypothesis of this section does not imply the existence of velocities, if

If N = 1, this hypothesis is equivalent to the hypothesis of Sect. 1 with N = 1,
V=0, and constant masses m{.
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4. Smooth Case

Here the results of Sects. 1-3 are formulated in the case of smooth trajectories.
Namely, in this section we suppose that all masses mi(ή = mi are constant, and that
all functions xt(t) have continuous first and second derivatives (velocities and
accelerations) dx^/dt, d2xi(t)/dt2. Let some continuous vector functions (forces)
Fij(t) and Ft(t) be given, satisfying the following Newton laws:

a) F ί J ( ί) + ί1

jpi(t) = 0 for all ί,jeI,te[0,T);

b) Fi(ή+ΣFίj(ή = fnid
2xi(t)/dt2 for all ie/,ίe[0,T).

jel

From Theorems (1.1) and (2.4) we get

Theorem (4.1). Suppose that

for all ijel, ίe(O, T) and that the closure of the convex cone generated by all Ff(ί),

where iel, te(O, T), does not contain straight lines. Then, either there exist finite

limits Lx^T): = lim dx^ή/dt for all is I, or the energy ^{dx^ldt^mjl tends to
ΐ ^ T iel

+ oo when t->T.
If the energy does not tend to H-oo, all F = 0, and, for some r^O, we have

Fij(t) = O whenever \xi(t) — xj(t)\>r, then there exist finite limits

lim (x A t) —Lx AT) t) where is I.

In some particular cases this was proved in [5,7].
From Theorem (2.1) we get

Theorem (4.2). Suppose that, for some non-negative functions ritj(t), forces
Fij(t) = O whenever \xi(t) — xj(t)\>rij(t), and external forces F^ή — O for all i, t.

Then, if max lim supr .(^/(m. + m ^ :ρή= + oo, there is toe(O, T) and there is a
iel t-+τ 'J J

splitting of the system into clusters such that \xi(t) — xj(t)\>riJ(t) for t^t0 and ij
from different clusters, and for each cluster J either its inner kinetic energy

Fj{t):= Σ —{xft) — xJ(t)2mj/2 tends to + oo when t->T, or lim sup |χ.(ί)
jej at t^τ

— Xj(t)\ ^ (mj — mj)ρ for all jeJ.

Compare this with a splitting into clusters in a system of attracting particles
[6].

From Theorem (3.1) we get

Theorem (4.3). Suppose that <F }{t), x^ή — x^ήy^O for all i,jel, te(O,T\ and
Ft = 0 for all I Then d2D{t)/dt2^2E{t) for all t, where

iel

E(t): =
d

2mj2.
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Fig. 3

5. Sinai's Billiard: The Finiteness of the Number of Collisions

Let a finite collection W of non-empty closed convex sets in RN be given, and let Ω
be the intersection of the closures in R^ of the complements in R^ of these sets.

We will call Ω a "vessel" with convex "walls" weW, although Ω may be
unbounded and its complement in RN may be unconnected. In particular, Ω can
coincide with all RN (for empty W) or with arbitrary, not necessarily convex,
polyhedron (for suitable W). In the vessel Ω (i.e., in the space RN outside the
obstacles we W) we will consider a system of hard spheres (balls) moving with
conservation of energy, centrally repulsing at moments of collisions between
themselves, and normally repulsing from the walls at moments of collisions with
them (Fig. 3).

Before giving exact axioms, we introduce some notation. For xeRN, we W, let
(x — w)*: = {u\(u,x — y}^0 for all yew}. For any two subsets A, B in RN let
d(A,B) be the infinum of the distances \a — b\ between points aeA, beB.

In Theorem (5.3) below, besides constancy of the masses mί(ί) = mί, we assume
that, for some non-negative numbers rf (radius of spheres), the following hy-
potheses hold:

(5.1) there is E ^ 0 (energy) such that for any open subinterval of (0, T) on which

all xi are linear we must have £ \dxi{t)ldt\2miβ = E\
iel

(5.2) for any tv ί2, ί3 satisfying 0^t1 <t2<t3 <T, there are vectors Pik where
iel, kel LJW such that

a )

b )

ji = ° f o r a 1 1

keluW

for all iel;

c) for any ijel either ri = rj = 0 and xi(t) = xj(t) for some ί e [ ί l 5 ί 3 ] , or Ptj

belongs to the convex cone generated by the vectors x (ί) —x; (0 with
\xt(ή- xj(ή\ = ri + rpte[tvt3'];
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d) for any iel, we W, the vector Piw belongs to the convex cone generated: by
the vectors xt(t)-y with yew, |x (ί)-y\ = rt = d(x (ί), w), te [tί9 ί3] in the case rf φ 0
and by the cones (x (ί) —w)* with xf(ί)ew, ί e [ ί 1 ? ί 3 ] in the case r = 0.

The condition (5.1) means the conservation of kinetic energy; nothing is
supposed about the existence or conservation of energy in moments of interaction.

The condition (5.2) means the absence of friction. The vector P. k in this axiom
have the sense of some mean impulse which the ball i receives from the ball or the
wall k in the interval [ ί l 5 ί 3 ] . The condition (5.2a) means the equality of the action
to the reaction. The condition (5.2b) means that balls interact only when they are
in contact, and the centrally repulse each other (without friction) at such moments
of time. The condition (5.2c) means that interaction of a ball with a wall occurs
only in moments of contact and it is directed at each such moment along a normal
to the wall going through the center of the ball such normal is unique in the case
r ' φ 0

We will not suppose that balls and walls are impenetrable, i.e., that
I** — Xj\ ^rί + rpXi£Ω, d(xt, w)^rt, because this condition is not necessary to prove
that the number of collisions is finite. So, balls can, for example, go through each
other without interaction at all, if they please.

We will say that there is no interaction in the system at t if in some
neighborhood of t all particles (i.e., the centers of balls) move with constant
velocity vectors, that is, all xt are linear. Other t, which will be called moments of
interaction in the system, are, obviously, a closed subset in [0, T). Such t is
characterized as follows: there is no neighborhood of ί, in which all xt are linear.

Theorem (5.3). Suppose that either TΦ + oo, or there is xeRN such that
d(x,w)^ min r for all we W (for example, W is empty). Then there exists only a

iel

finite number of moments of interaction in the system during the whole [0, T).

Proof. First of all, going to the configuration space, we reduce to the situation with
one ball of mass 1 of radius 0. Namely, in the space RNI we introduce an Euclidean
scalar product of vectors u = (ui)ieI, v = (vi)ieI according to the formula

We will consider in RNI the convex subsets

A i , w = { χ = ( x k ) k s ί d i x i ^ ) ^ r ^ w h e r e i ε l ,

and the convex subsets

Au = {x = (xk)keI: \χ.-χ.\ ^rt + rj, where ίje/, iή=j.

The set of these non-empty closed subsets (walls) we denote by W.
We consider a particle (ball with the radius 0) with trajectory x(t) = (xi(t))ieI,

with mass 1. The condition (5.1) is equivalent to

(5.4) there is £ ^ 0 such that \dx(t)/dt\=]/2E at any t when there is no
interaction at ί, i.e., x is linear in some neighborhood of t.
The axiom (5.2) takes the following form:
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•y f + \ -v (+ \ -v- ί' + \ Ύ (t \

(5.5) for every tι <t2<t3 the vector — — belongs to the
t3 —12

 t2~t\

cone generated by the cones of the form

(x(ί)-w')*, where w'eW ,te\tγ,t3~\, x(t)ew'.

The moments of interaction in RN and R^1 are the same. The assumption
min maxφc, w)^minr. of Theorem (5.3) is equivalent to the following: the
xeRN weW ' iel

intersection of all We W is not empty [if P^'is empty, i.e., Wis empty and Card (/)= 1,
then the intersection is the whole RNT by definition].

We want to prove that under the conditions of Theorem (5.3), which are now
rewritten in terms of configuration space as the conditions (5.4), (5.5), and the
assumption: either Γ # + oo, or the intersection of all walls We W is non-empty, -
there is only a finite number of moments of interaction in the system, i.e., whole
[0, T) can be divided into a finite number of subintervals (semisegments) on each of
which x being linear.

Case 1. x(t)e f] w'=:A for all ίe[0, T). We will show that then there is no
w'eW

moments of interaction at all, i.e., x is linear on (0, T). It is enough to show that for
each time ί2e(0, T) there is <5>0 such that δ%t2, δ^T—t2, and
x(t3)-x(t2) =x(t2)-x(t1)

t3-t2 t2-t\
for all tv t3 satisfying t2 - δ ̂  t1 < t2 < ί3 ̂  t2 + δ.

It is clear from the definition of (y — A)* that for any point ye A close enough to
x(t2) and any vector ve(y — A)* with \v\ = l, we have d(v,(x(t2) — A)*)<j. [Indeed,
otherwise we could find a sequence ykεA, a sequence vke(yk — A)*9 and a vector v
such that yk-*x(t2), vk-+v, and |ffe| = l, d(vk,(x(t2) — A)*)^.^ for all fc, hence,
d(v,{x(t2) — A)*)^j. On the other hand, for each point zeA we have
(v,x(t2)-z}= \im(vk,yk-z}^0, i.e., ve{x(t2)-A)*, i.e., φ,(x(ί2)-^[*) = 0.]

We choose (5>0 such that δ^t2, δ^T-t2i and d(u,(x(t2)-A)*)<% for all
te[t2 — (5,ί + δ] and all υe{x(t) — A)* with |ι;| = l. Then this inequality holds for all
vectors v with |ι>| = l from the convex cone V generated by the cones (x(t) — A)*
with \t — t2\^δ, hence, for any υeV, there is ue(x(t2) — A)* such that

<«,ϋ>^N Mj/3/2.

In view of the axiom (5.5) we can take here

v=x{t3)-x{t2) xjtj-xjt,)

(it is clear that (x(ί)-y4)*D(x(ί)-w')* for all WeW) with tί9 ί3 satisfying
t2 — δ^tί<t2<t3^tί+δ. On the other hand, in view of the definition of
(x(t2) — A)*, we have <u,w>^0 for this v. Hence v = 0, as required.

To consider the further cases, the following lemma will be useful.

Lemma (5.6). Let B be a convex closed non-empty subset in the intersection of all
walls WeW. Then the function f(t): =d(x(t),B)2 is convex on the whole interval

io9 T).
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Proof of the Lemma. We take any ίe(0, T) and set δ0: = min(ί, T— t) >0. We want
to show that f(t + δ) + / ( ί - ( 5 ) - 2 / ( ί ) ^ 0 for any positive δ^δ0 [see Lemma (1.2)].

Let yv y2, y3 be the points in B nearest to x(t — δ\ x(t\ x(t + δ) respectively. We
set y: =(y1+y3)/2eB, uγ: —x{t — δ) — y1? u2: =x(t) — y, u3: = x(t + δ) — y3. Then

2^K|2, f(t)S\u
From the condition (5.5) we have

1

\22\

i.e.

i.e.

i.e.

so

We continue now the proof of Theorem (5.3).

Case 2. T+ + oo and there is a sequence 0<t1 <t2 <... < T such that ίk->T when
/c->oo and the trajectory x(t) is linear on each segment [£ k ,£ k + 1 ]. We show then
that, for some to<T9 there is no interaction in the system during (ί0,T).

Let vk: =(x(tk+ί) — x(tk))/(tk+ί — tk) for fc = l, 2,.... From the condition (5.4)

vk\= ]/2E. Let x{T): = limx(ί). We denote by Wτ the set of walls W such that

x(ίk)ew' for infinitely many, fc, and choose Z such that x(tk)φw' for fc^Z, w'φWτ.
In view of Lemma (5.6) the function d(x(t\ x(T)) is convex for ί^ί/ 5 when the

walls outside P1̂ Γ have no influence on the trajectory. It follows, using the
convexity near tk+v that (uk+1—uk, x(tk+1) — x(T)>^0 for fc^Z. Consequently,
the distance dk from x(Γ) to the ray, going from the point xk in the direction vk (i.e.,
towards the point xk+ί) does not decrease (the trivial case E = 0 is excluded). Since
x(ίk)->x(T), dk-^0. Hence dk = 0 for fe^Z. Therefore % = ̂ k + 1 for fc^Z, as required
(Fig. 4).

3. Γ φ + oo. If we had infinitely many moments of interaction, then we could
find a time moment ί0 e [0, T] such that in every left or in every right neigh-
borhood of t0 there are infinitely many such moments. Taking into account the
possibility to reverse time, we can, without loss of generality, assume that in every
neighborhood of t0 = T there are infinitely many moments of interaction.

Using induction on the number of the walls in W, we can assume that, for each
time t such that x(ί) does not belong to the intersection A of all walls from W\
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Fig. 4. For Case 2 of Theorem (5.3) and for Lemma (5.7)

there is some neighborhood of t without moments of interaction besides, perhaps, t
itself. According to the Case 2, we get that as close to T as we please we can find t
such that x(t)eA. Applying Lemma (5.6) with B = A, we get: x(ήeΛ in some
neighborhood of T9 which contradicts Case 1.

Lemma (5.7). Let a point y belong to all WeW\ and let x(t)=\=y for all t. Then

var — ^ — ^ τ ^ π .
| ( ί ) l ~

Proof of the Lemma. Since the set of moments of interaction is discrete (see Case
3), we can find a sequence t1 <ί 2 . . . such that tx = 0, tk->T, and x(ί) is linear on every
segment [ ί k J ί k + 1 ] . Let vk: =(x(tk+1)-x(tk))/(tk+1-tk). By the axiom (5.4),
\υk\=]/2E (the case £ = 0 is trivial, so that let £ > 0 ) . From the convexity of

—y|2 C s e e Lemma (5.6)] in some neighborhood of tk, where fe^2, it follows
that <vk_vx(tk)-y>S<vk, x(tk)-y), i.e. ak_^βk, where

βk: =arccos(vk,x(tk)-y)/]/2E\x(tk)-y\.

Thus,

T χ(ή-y » tk+ί

var — — — — = > var
o |x(ί)-y| & tk \χ(t)-y\

\χ(tk+ι)-y\\χ(tj\

-βίSπ-β1^π (Fig. 4).

Lemma (5.8). Under condition (5.7), d(x(t), B) is convex.

Proof of the Lemma. At first we will show that d(x(t\B) is convex on every
interval, in which x(t) is linear. Let t — δ,t,t + δ belong to such an interval, and let
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y1? y2, y3, y = (y1 + y3)/2 be as in the proof of Lemma (5.6). Then

),B) + d(x(t-δ\B)-2d(x(t),B)

since now

In view of the discretness of the moments of interaction, it remains now to
prove that Ld(x(t\B)^Rd(x(t\B) for each isolated moment of interaction t. This
is obvious in the case d(x(t),B) = 0 because the function d(x(t),B) is non-negative.
When d(x(t),B)ή=0 it remains to use the inequality

Lf(t) = 2d(x(t\ B) Ld(x(t\ B)

which follows from Lemma (5.6).
We continue the proof of Theorem (5.3).

Case 4. T= +oo, the intersection A of all w'eW' is non-empty, and there is a
sequence 0 ^ ί 1 < ί 2 < . . . , such that ίfc-> + oo and x is linear on each segment
[_tk,tk+ί]. We want to show that x(t) is linear for t large enough.

Now, the function d(x(t\ A) is convex by Lemma (5.8). If it is constant on some
interval (ί0, T), then, as it can be seen from the proof of Lemma (5.6), x is linear for

Otherwise there are C>0, ε>0 such that

d(x(t),A)>εt-C for all t.

Using induction on the number of the walls in W, we see that it is enough to
consider the case when there are infinitely many k with x(tk)ew\ for any given
WeW.

We choose now a point y in A. Since d(x(t),A)>εt — C, x(t) + y for t large
enough. By Lemma (5.7) there exists

(5.9) lim ?β^
~y\

For any w'eW, we have x(t)ewr for infinitely many k. So, taking in account
(5.9) and the fact that \x(t) — y\-+ + oo, we get that W contains the ray V, going from
y in direction e. Consequently, this ray belongs to A.

It is clear from (5.9) that d(V,x(t))/\x(t)-y\->0 when ί-> + oo. But, on the other
hand,

\x(t)-y\£\x(0)-y\+]/2Et,
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Fig. 5

7 b = f ( α )

Fig. 6

hence

d(V,x(ή)/\x(t)-y\Uεt-C)/(\x(Q)-y\

+ \/2Et)-^ε/]/ΪE>0 when ί-> + oo.

Thus, in the case of a non-constant d(x(t\A) we get a contradiction with the
assumed infiniteness, for every w', of the number of k such that x(tk)ew'.

Theorem (5.3) is proved. It follows

Corollary (5.10). In the case T+ + oo, the trajectories xt can be continued on all time
interval [0, + oo) with conservation of the axioms of this section.

Such continuation is not necessary unique. It can be shown that the assertion
(5.10) holds also under the additional axiom of impenetrability. In our context the
statement about unique continuation for almost all trajectories makes sense.

In [1-4] the authors did not formulate exact axioms for the systems under
consideration in fact, excluding multiple collisions, and prohibiting to balls to go
into corners, they assumed a priori the finiteness of the number of the collisions in
a finite time (more exactly, in every closed subsegment of [0, T)). Modulo this,
Theorem (5.3) is proved: in [2] - in the case N = ί,W empty in [1] - in the case,
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Jt/2

Fig. 7

when every we W is an impenetrable hyperplane going through 0 and Card(/)= 1
(in fact, [1] covers [2]); in [3] - in the case JV = 2 = Card(W0, Card(/) = 1. In [4],
the maximal number of collisions between 3 equal balls is computed in the case
JV = 3. A result of [3] leads to the conjecture, that in the condition
min max d(x, w)^ min r of Theorem (5.3), the first min could be replaced by inf.

x w i

Sinai asked if it is possible to get some estimation on the number of collisions
in his billiards. To get it we have to introduce some new conditions on the system,
and we intend to do this in a future publication. For some illustrations of the
difficulties see Examples (5.11), (5.12) below.

Example (5.11). Let 7 = {1,2}, m 1 = m 2 = l, r1+r2 = l, £ = 1, AT = 2,
Ω = {(a, b)eR2: \a\ ^ 1, |fe| ^ 1} [such Ω can be realized with Card(W0 = 4]. Then, for
any T > 0 and any real C, there exist trajectories χ.(ί) with a number of moments of
interaction during [0, T) greater than C (Fig. 5).

Example (5.12). Let / be a non-negative convex function on [0,+oo), / + 0 ,
/(OHO. Let /-{I} , m ^ l , ^ = 0 , £ = 1, N = 2, W={wvw2}9 where

W l = {(μ,b)eR2:b^0}, w2 = {(α, (Fig. 6).

One can show that, when Rf (0) + 0, the number M of the reflections of the
particle by the walls (i.e. the number of moments of interaction in the system) is
less than π/arctg(#/(0))+1 for any trajectory and any T. If Rf(0) = 0, then for any
T > 0 and any real C there exists a trajectory with M>C reflections.

However, this number M can be estimated via the distance d from 0 = (0,0)eR2

to the ray x 1(ί 1) + JRx 1(ί 1)R+

5 where tγ is the instant of the first reflection, as
follows: M <π/arctg(/(α)/α) + 1 , where a2 +f(a)2 = d2, and T can be + oo if d = 0,
then M = l.

Example (5.13). 2 heterogeneous balls on the plane rolling round each other.
Let a point (α(ί), y(ή) moves in the plane (α,y) along the curve y = 2 — cosα at

unit speed from the point (α(0)=0, y(0)=l) to the point (α(T)=π/2, y(T)=ί) (Fig. 7).
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Fig. 8

Fig. 9

We take a 2-dimensional ball of radius 2, of mass 1, of moment of gyration 1,
with the distance 1 between the center of mass xλ and the geometric center cx

(Fig. 8).
We put the ball on the plane (α,b) so that x1(t) = (y(t),0), cί(t) = (y(t) + cos(α(ί)),

sin(α(ί))), and put another equal ball on the same plane so that x2(ή = — *i(ί)>
c2(0 = (~y(t)-cos(α(ί)), sin(α(ί))).

Then these hard balls interact at each moment ίe[0, T); the forces
d2x1(t)/dt2= -d2x2(t)/dt2 + 0 are directed from the point of contact (0,sin(α(ί)))
along the radiuses of the circles; the kinetic energy |dxf(ί)/dί|2/2 + |dα(ί)/Λ|2/2 of
each ball is constant.

Example (5.14). Infinitely many collisions between 2 convex hard bodies in the
plane.

Let 0Lk = \ — ψ for k = 0,1,... y be the function on [0,1) which is linear on
every [αfc, ak + x ] and y(<xk) = 2 — cos ak for all k ̂  0 z be a convex function on [0,2π]
such that z(αk) = y(αfe) = 2-cosα k for all fc^O,
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Fig. 10

for all /c^l, and z(oc) = 2 — cosα for αe[ l ,2π] . (We can take z — y on [0,1), or
choose an infinitely smooth z under this condition.)

Let a point (oc(t\ y(a(ή)) move along the curve y = y(oc) at unit speed from the
point (α(0) = 0, j;(0)=l) to the point (α(T) = l, J>(l) = 2 - c o s l ) (Fig. 9).

We consider a hard convex body on the plane, of mass 1, of moment of
gyration 1, with the center of mass xι(t) = (y(a(ή),0), with the initial position (at
ί = 0, see Fig. 10)

{(a, b)eR 2 :(1 -α)cosα + fr sinα^z(α) for all αe[0,2π)},

and the angle coordinate α(ί). We take another copy of the body symmetric with
the first body relative to the line a = 0.

Then the kinetic energy of each body is constant the moments of interaction in
the system are tk such that oc(tk) = ak the moments of contact between the bodies
are t such that y(α(ί)) = z(α(ί)).
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